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Abstract

This paper deals with two problems in topos theory; the construction
of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories
of the 2-category of toposes, and the definition and construction of the
fundamental groupoid of a topos, in the context of the Galois theory of
coverings; we will take results on the fundamental group of étale coverings
in [1] as a starting example for the latter. We work in the more general
context of bounded toposes over Set (instead of starting with an effec-
tive descent morphism of schemes). Questions regarding the existence of
limits and colimits of diagram of toposes arise while studying this prob-
lem, but their general relevance makes it worth to study them separately.
We expose mainly known constructions, but give some new insight on
the assumptions and work out an explicit description of a functor in a
coequalizer diagram which was as far as the author is aware unknown,
which we believe can be generalised.

This is essentially an overview of study and research conducted at
dpmms, University of Cambridge, Great Britain, between March and Au-
gust 2006, under the supervision of Martin Hyland.

Contents
1 Introduction 2

2 General knowledge 3

3 On (co)limits of toposes 6
3.1 The construction of finite limits in BTop/S . . . . . . . . . . . . 7
3.2 The construction of finite colimits in BTop/S . . . . . . . . . . . 9

4 The fundamental groupoid of a topos 12
4.1 The fundamental group of an atomic topos with a point . . . . . 13
4.2 The fundamental groupoid of an unpointed locally connected topos 15

5 Conclusion and future work 17

References 17

∗e-mail: sam.zoghaib@ens.fr

1



1 Introduction
Toposes were first conceived ([2]) as kinds of “generalised spaces” which could
serve as frameworks for cohomology theories; that is, mapping topological or
geometrical invariants with an algebraic structure to topological spaces. As
such, the first definition was that of a category of sheaves (“good” functions, in
that they can be restricted to open sets and glued in a reasonable fashion) on a
topological space, in line with the thought that knowledge of the sheaves on a
space is as good as knowledge of the space itself. The first generalization is to
extend the definition to sheaves on a site, i.e. a category with a Grothendieck
topology (in which the notion of open set is replaced by that of a cover of an
object. Throughout this introduction, we will refer to these as Grothendieck
toposes.

A second, largely independant approach of the Anglo-American school, was
to define a topos as a category of “generalised sets”; this yields so-called ele-
mentary toposes (cartesian closed categories with finite limits and a subobject
classifier), which enjoy in all generality many properties of sets, but notably
not necessarily the axiom of choice and the law of excluded middle. While
Grothendieck toposes have obvious topological and geometrical information, el-
ementary toposes have logical information; one can indeed define, internally, a
formal language and semantics of a topos, allowing to rigourously make argu-
ments on objects of a topos as if they were sets. Furthermore, it appeared that
toposes were the right framework to define some models of formal systems.

It is easy to see that Grothendieck toposes are a particular case of elementary
toposes, and that some constructions first made in the case of Grothendieck
toposes can be naturally carried in the general case. This is, in a way, the
essence of topos theory; we have two visions of a particular class of objects,
one which is inherently geometrical and the other inherently logical, and we
wish to understand how these visions yield either the same or complementary
information. A useful approach is to start with the utmost generality and try to
understand how particular geometrical properties of toposes can be expressed
elementarily (in formal categorical terms). An example that we will state is
the fact that, once we adopt a relative view (i.e. we work with morphisms of
toposes over a base rather than absolute objects), a Grothendieck topos really
is an elementary topos with an object of generators.

This paper is an overview of the work done during a 5 month internship in
Cambridge University, Great Britain, under the supervision of Martin Hyland.
After being introduced to topos theory, it started with the study of constructions
of the fundamental groupoid of a topos due to Bunge, Moerdijk, ([8]) and Dubuc
([11]) during which I realised some technical details as well as some fundamental
lines of thought behind these constructions were very unclear (among others,
the existence of limits and colimits in subcategories of the category of toposes,
and the role of points in the construction of a fundamental groupoid); also, the
link between generalised Galois theory ([6]) and the theory of the fundamental
group is not as obvious as it seems on first glance.

The first section is devoted to giving general definitions and results in topos
theory, that can be found in books on the subject ([4], [2]). It only assumes a
moderate background in category theory. However, this section is not meant as
an introduction to topos theory (which would need a whole book); rather, it is
intended to set the vocabulary we will use. Then, we will focus on describing
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a few constructions of limits and colimits of diagrams of toposes, in particular
cases. Next, we will introduce and discuss (omitting some tedious calculations)
the construction of the fundamental groupoid of an atomic topos with a point,
and sketch the corresponding construction if we do not assume the existence
of a point. We will finish by a discussion on the links between Galois theory
and these results, especially relating to points, stressing the fact that the results
we have do not form yet a general coherent theory, and suggest some lines of
thought that would be interesting to consider as a new approach.
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2 General knowledge
We first recall a few general definitions and results that we will use throughout
the paper. A general reference for these is [4], but [2] is also very useful. We will
not enter general considerations on universes (but of course will make sure we
do not run into problems!); basically, we can assume we are working in a fixed
universe U , and the very few times we will need to enlarge it, we will assume
there exist a universe V large enough for our purposes such that U ⊂ V.

Definition 2.1 (Sites). A site (C, J) is a category C equipped with a Grothendieck
topology J , i.e. an application that maps each object C of C to a set of sieves
J(C) of codomain C such that:

• the maximal sieve tC = {f
∣∣ cod f = C} is in J(C).

• if S is in J(C) and f : D → C is an arrow in C, then the sieve f∗(S) =
{h

∣∣ cod h = D, f ◦ h ∈ S} in in J(D).

• if S is in J(C) and R is a sieve on C such that for any h : D → C in S,
h∗(R) is in J(D), then R is in J(C).

A sieve S in J(C) is said to be a J-cover of C; when there is no ambiguity
on the topology, we will simply say a cover. Also, we will often not explicitely
mention the topology, and simply say that C is a site.
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Definition 2.2 (Sheaves on a site). Let C be a site; a presheaf F : Cop → Set
on C is a sheaf if it satisifies the following condition: for all objects C of C and
covering sieves S of C, the canonical morphism Hom(yC,F ) → Hom(S, F ),
where y is the Yoneda functor and S is naturally identified with a subfunctor
of y, is a bijection. If C has pullbacks, we have an equivalent definition which
is closer to the one in the topological case, viz., writing S = {fi : Ci → C}i∈I ,
F is a sheaf if the diagram

F (C) −→
∏
i∈I

F (Ci) −→−−→
∏

i,j∈I

F (Ci ×C Cj)

is an equaliser.
If C is a site, we write C̃ for the category of sheaves on C.

Definition 2.3 (Toposes, geometric morphisms).

• we will simply call topos what some authors call an elementary topos, i.e.,
a cartesian closed category with finite limits and a subobject classifier, that
is an object Ω and a map true : 1→ Ω such that for any monomorphism
Y → X, there exist a unique morphism X → Ω such that the diagram

Y

��

// 1

true
��

X // Ω

is a pullback. A morphism of toposes (also called a geometric morphism)
f : E → F is a pair of adjoint functors f∗ a f∗ (f∗ : F → E) where
f∗ is left exact. f∗ is called the inverse image and f∗ the direct image.
We do not recall the definition of the Mitchell-Bénabou language, nor the
Kripke-Joyal semantics associated to it, and (or rather, because) we will
most of the time write internal arguments in a topos as if it were Set
(taking precautions not to use the axioms of infinity, choice, or excluded
middle unless we know they are valid).

• a functor F : E → F between toposes is said to be logical if it preserves
the topos structure, that is, finite limits and colimits, exponentials and
the subobject classifier.

• a morphism of toposes f : E → F is bounded if E has an object of genera-
tors (over F ), i.e., there exists an object G of E such that every object of
E is a subquotient of one of the form f∗I ×G; i.e. for all A in E , such a
diagram exists:

S
��
m

��

h // // A

f∗I ×G

where m is mono and h is epi. Equivalently, this means that E has a
separating family S in F , that is, a family of arrows {u}i∈I such as for
any α, β : X ⇒ Y if αui = βui for all i ∈ I, then α = β.

The category of toposes with bounded morphisms is noted BTop.
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Let us note that, in a way, “most” morphisms are bounded; more precisely,
we only know of a very few ways to systematically build unbounded mor-
phisms (above Set). Describing them would make us stray too far, but [3]
gives some insight on the problem. In practical, this means that working
in BTop is not a very deep loss of generality, thus we will not always strive
to achieve constructions in Top.

• A functor u : C → D between sites is said to be continous if for all X ∈ C
and for all sheaves F on D, the functor X 7→ X ◦ u is a sheaf on C.
Given such a functor, if we assume C and D are closed under finite limits
(which is innocuous given any Grothendieck topos admits such a site), if
u also preserves finites limits, it is said to be a morphism of sites from D
to C (note that the morphism of site is in the direction opposite to the
direction of the functor).

• A functor u : C → D between sites is said to be cocontinuous if for all
C ∈ C and S a cover of u(C) in D, there exists a cover R of C in C such
that u(R) ⊂ S.

Proposition 2.4. Let f : E → F be a geometric morphism; there exists a
canonical F-indexed topos E whose underlying regular topos is E ; the index is
given by f∗; i.e., for I in F , E(I) = Ef∗I . Therefore, given such a geometric
morphism, we can consider E as an F-topos.

Definition 2.5. If γ : E → S is bounded, we will say that E is a Grothendieck
S-topos. Given two Grothendieck S-toposes, a morphism between these is a
pair of adjoint S-indexed functors such that the obvious diagram commutes.
Bearing the original definition of a Grothendieck topos as a category of sheaves
of sets on a site, this is due to the following result.

Theorem 2.6. Let f : E → F be a geometric morphism. f is bounded if and
only if E is equivalent to a category of F-valued sheaves on an internal site in
F . That is, there exists an internal category C in F and a topology J on C
such that E is equivalent to the subtopos of FC consisting of J-sheaves on C.

Continuing the line of thought of the previous note, restricting our study to
BTop has the further advantage that we can enjoy both descriptions of a topos;
we will see that some constructions are better understood considering sites of
definitions than the corresponding toposes.

We will not discuss the construction of sites for toposes in all generality, but
let us remark that given a bounded morphism γ : E → S, there is a canonical
site in S for E given by the category E equipped with the canonical topology,
that is, the finest topology for which representable presheaves are sheaves.

Note 2.7. What was originally called a topos, and studied in [2] is a Grothendieck
Set-topos, according to our definition; indeed, any such topos has a unique ge-
ometric morphism to Set, which provides the (canonical) indexing making it a
Set-topos, and making geometric morphisms as defined previously Set-indexed.

Theorem 2.8 (Morphisms of sites and morphisms of toposes).

• Given two sites C and D, a morphism of sites u : D → C induces a
geometric morphism f : C̃ → D̃, where f∗ : X 7→ X ◦ u.
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Given a morphism of Grothendieck toposes f : E → F , there exists re-
spective sites C and D such that f is induced by a morphism of sites from
C to D. In fact, there is an equivalence of categories between morphisms
of sites D → E (where E is equipped with the canonical topology) and
geometric morphisms E → F = D̃.

• Given two sites C and D, a cocontinous functor F : C → D induces a
geometric morphism f : C̃ → D̃ given by f∗ : X 7→ a(F ◦ f) (a is the
sheafification functor).

We would like to stress that given a morphism of toposes f : C̃ → D̃, there
exists a morphism of sites that yields f , but there is no reason it should be from
C to D. Also, we note that one cannot necessarily find a cocontinous functor
between sites that yields f .

When there is no ambiguity, we will indifferently call “topos” an object of
(B)Top or (B)Top/S.

Definition 2.9 (Points). Let γ : E → S be an S-topos; an S-point of γ is
a section, that is, a morphism p : S → E such that γp = id. There is an
equivalence of categories between points of a topos E and its fibre functors, i.e.
functors E → S (internal to S) that preserve limits and are left exact.

A topos E is said to have enough points if the family of fibre functors corre-
sponding to the points is conservative.

Definition 2.10 (Types of toposes).

• a morphism of toposes f : E → F is said to be an inclusion (or an
embedding) if f∗ is full and faithful (or equivalently, the counit of the
adjunction ε : f∗f∗ → 1 is an isomorphism). It is said to be a surjection
if f∗ is faithful. It is easy to check that if a geometric morphism is both
an inclusion and a surjection, then it is an isomorphism.

• f : E → F is said to be locally connected if f∗ has a left adjoint f!.

• f : E → F is said to be atomic1 if f∗ is logical. Given f is geometric
morphism, f∗ preserves finite limits and colimits, so we only need to check
it preserves exponentials and the subobject classifier. A theorem of Paré
asserts that a logical functor has a left adjoint if and only if it has a right
adjoint, therefore, atomic morphisms are locally connected.

• f : E → F is said to be connected if f∗ is full and faithful.

3 On (co)limits of toposes
This section is devoted to the construction of a few cases of limits and colimits
in some subcategories of Top. Formally, we should consider the 2-categorical
structure of Top, and distinguish between 2-limits, pseudo-limits, and lax lim-
its. In pratice, we will focus on pseudo-(co)limits (lax limits do exist in fairly

1In the bounded case over Set, this corresponds indeed to having a site comprised of atoms,
i.e. connected objects with maps between them being epi.
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general situations), that is, only require the limit diagram to commute up to
isomorphism, and we will loosely call these “(co)limits”.

Little seems to be known on the general existence of (co)limits in Top; neither
finite limits or colimits are known to exist, but there is no formal argument or
even vague intuition that they do not. The situation is better in BTop/S: we
will prove that finite limits exist. Finite colimits also exist in BTop/S, provided
S has a natural number object. It is not completely clear while this is needed,
and the construction itself is not particularly elegant or inspiring, but we will
try to explain heuristically why this is the case.

3.1 The construction of finite limits in BTop/S
BTop/S obviously has a terminal object, namely 1 : S → S. We will focus
in this subsection on constructing a fibre product. It has been known to exist
for at least 30 years, and a purely algebraic construction is given in [3], using
comonads and identifying the limit with a category of coalgebras. However, we
will rather follow a more geometrical construction using sites due to Gabber
and written down by Illusie ([12]).

The main idea in the construction is that one can find sites for the two lax
fibre products which differ only in a symmetry in the definition of the topology.
We then take the intersection of the two topologies and it appears that it defines
a site for the (pseudo-, as always) fibre product. More precisely:

Let S be a topos (that we will call the base), f : E → S, g : F → S
two bounded (indexed) morphisms. Let C and D be sites in S for E and F
respectively; we will abuse the notation and write f and g for the corresponding
morphisms of sites. Let X be the category whose objects are pairs of morphisms
(u, w) where u : U → f∗(V ), w : W → g∗(V ); morphisms in X are given by
triples of morphisms that make the obvious diagram commute. For the sake
of simplicity, we write such a pair (U → V ← W ). X is equipped with the
topology generated by the following families of covers:

• {(Ui → V ←W )→ (U → V ←W )}i∈I such that {Ui → U}i∈I is a cover.

• {(U → V ← Wi) → (U → V ← W )}i∈I such that {Wi → W}i∈I is a
cover.

• (U → V ←W )→ (U → V ′ ←W ′) where W ′ = W ×g∗V V ′.

The morphisms p1 : C → X and p2 : D → X given by p1(U) = (U → 1S ← 1F ),
p2(W ) = (1E → 1S ←W ) yield projection morphisms p1 : X̃ → E , p2 : X̃ → F .
Now, we claim:

Theorem 3.1. X̃ is a lax fibre product; we have a 2-cell τ : gp2 → fp1.

Proof. Indeed, given a sheaf F on X and an object V of S, we define

(τ∗F )(V ) = F (1E → 1S ← g∗V )→ F (f∗V → V ← g∗V )← F (f∗V → 1S ← 1F )

where the second map is an isomorphism (see [12]).
It remains to show that the universal property of the lax fibre product is

satisfied. Let T be a topos and assume we have morphisms a : T → E , b : T → F
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and a natural transformation t : gb → fa. We claim there exist a unique
triple (h : T → X̃, α : p1h ' a, β : p2h ' b) such that τ(h) = t. For
uniqueness, the reader is referred to [12]. Let us prove the existence of h. For
Z = (U → V ←W ) we define h∗Z as the fibre product:

a∗U ×(gb)∗V b∗W //

��

b∗W

��
a∗U // (fa)∗V t // (gb)∗V

h∗(τ)(V ) is given by (fa)∗V ← (fa)∗V ×(gb)∗V (gb)∗V → (gb)∗V , therefore is
equal to t((fa)∗V ). Also, h∗ is trivially left exact; thus it remains to show that
it extends to the inverse image part of a morphism of toposes; it is sufficient to
show that h∗ is continuous, which is obvious.

We will usually write this lax fibre product E←−×SF .
We define the other lax fibre product, E−→×SF in the exact same way, replac-

ing covers of the third type in the site of definition by covers (U → V ←W )→
(U ′ → V ′ ←W ) where U ′ = U ×g∗V V ′.

Now, let Z be the site defined by the same category as the sites of E−→×SF and
E←−×SF , and with the topology defined as the supremum of the two corresponding
topologies. The construction of τ described above clearly yields an isomorphism,
therefore the topos Z̃ is the fibre product E ×S F .

Note 3.2. If X and Y are topological spaces over S, we see that the fibre
product of X̃ and Ỹ is equivalent to the topos over the fibre product of X and
Y , since open sets U ×V W form a basis of the topology of U ×S W . However,
this is not the case in all generality; if X and Y are schemes over S, because the
Zariski topology of X×S Y is not the product of the Zariski topologies of X and
Y , the natural map X̃ ×S Y → X̃ ×eS Ỹ is not an equivalence. Similarly, the
corresponding map between the étale toposes of X and Y is not an equivalence.
This suggests that these toposes might not be ideal topological settings for
algebraic geometry.

We shall now state, but not prove (these are usually readily checked) some
properties that are preserved by change of base.

Proposition 3.3 (Behaviour regarding change of base).

• Open maps, those whose inverse image functor f∗ is sub-cartesian closed
(i.e. f∗(BA) → (f∗B)f∗A is monic) and sub-logical (f∗ΩE → ΩF ), are
preserved by change of base.

• Atomic maps are preserved by pullback (since a map f : E → S is atomic
if and only if it is open and the projections f : E ×S E ⇒ E are also open).

• Locally connected maps are preserved by change of base.

Let us note (this will be of slight importance later) that surjections are not
necessary preserved by change of base.

We now take a look at the construction of colimits in the category of toposes
with bounded morphisms. We will work over a base S.
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3.2 The construction of finite colimits in BTop/S
Coproducts are easily constructed; the underlying category is the product in
Cat/S. Thus, this subsection is devoted to constructing coequalisers of pairs
of morphisms F ⇒ E . Unfortunately, the situation is much more complicated
than that of limits. Indeed, we do not know whether coequalisers exist either in
BTop, or even in BTop/S, if S is arbitrary. We will assume in this subsection
that S has a natural number object (as far as our set-theoretic style reasoning
goes, this allows us to index families of objects over the natural numbers). Before
we delve into the formal construction, we will try to give an intuition of why
the situation is not as simple as we might expect.

Intuitively, a coequaliser is some kind of quotient object. If we look at the
sites of F and E as theories and the corresponding toposes as models of these
theories, we are indeed building a model for a quotient; this may be an arbitrar-
ily complicated; e.g. while equality on natural numbers is trivial to compute,
equality on having the same number of prime factors is not. Therefore, we
should not expect even the site of definition of a coequaliser to be simple.

We now state and prove the main theorem of this subsection:

Theorem 3.4. Let f, g : F ⇒ E be a diagram in BTop/S, where S is assumed
to have a natural number object; then the coequaliser of this diagram exists, and
is given by the topos G whose objects are pairs 〈X, h〉 where X is an object of
E and h : f∗X

∼→ g∗X and morphisms are arrows u : 〈X, h〉 → 〈Y, k〉 satisfying
the obvious coherence condition. The geometric morphism q : E → F is defined
by q∗ being the forgetful functor.

Proof. We essentially follow an argument of Moerdijk ([5]), giving the precision
that we need the base topos to have a natural number object. Let C and D be
small sites in S for E and F respectively. Let us assume that C has finite limits2,
and that f and g are given by morphisms of sites F,G : C ⇒ D, i.e. internal
functors (in S). We use Giraud’s criterion to see that G is indeed a S-topos.
All conditions apart from the existence of an object of generators stem from the
fact that E is an S-topos, given f∗ and g∗ preserve colimits. Therefore we only
need to prove that G has an object of generators.

For X an object of E , let

P (X) = lim−→x∈X(C)
C∈C

Hom(−, FC)

Q(X) = lim−→x∈X(C)
C∈C

Hom(−, GC)

f∗ and g∗ are indeed the associated sheaves of P (X) and Q(X) respectively.
Now we enlarge C to get an object of generators for G. Let I be the index set

of a cover in D, and let C0 = C, and for n > 1, let Cn+1 be the full subcategory of
E whose objects are coproducts

∐
i∈I Ci where Ci ∈ Cn. Let C∞ be the category

whose objects are coproducts
∐

n∈N Cn where Cn ∈ Cn for all n. Finally, for all
n ∈ J0;∞K, let Ĉn be the full subcategory of all quotients of Cn. Clearly the
above families can be indexed over S, therefore Ĉ∞ is indeed internal to S. We

2again, there is no loss of generality, given up to enlargement of universe, we can find such
a small site.
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claim that the indexed family of objects (C, µ) where C is an object of Ĉ∞ and
µ : FC

∼→ GC is a generating family for G.
Assume α, β : 〈X, θ〉⇒ 〈Y, ξ〉 are arrows in G such that for all u : (C, µ) →

(X, θ) with C ∈ Ĉ∞, αu = βu; we want to show that α = β. Let C0 ∈ C,
x0 ∈ X(C0). x0 determines an element f∗(x0) ∈ f∗(X)(FC0) corresponding to
the element of P (X)(FC0) given by idFC0 at (x0, C0) in the colimit diagram.
Also, θFC0(x0) is given by a family of elements yj ∈ Q(X)(Dj) for a cover
{Dj → FC}j∈J in D. yj , in turn, is represented by an arrow gj : Dj → GCj

at the vertex (xj , Cj) in the colimit diagram that defines Q(X)(Dj). Let C1 =∐
j∈J Cj ; we have a map x1 = {xj} : C1 → X, whose image we note U1, and

θ ◦ f∗(x0) factors through g∗(U1), as in the following diagram:

f∗(C0)

���
�
�

f∗(x0) // f∗(X)

θ

��
g∗(C1) // // g∗(U1) // // g∗(X)

Now we recursively define a sequence of objects (Cn)n∈N such that for all n, Cn

is an object of Cn, and maps xn : Cn → X with image Un, such that we have a
factorization:

f∗(Un)

���
�
�

// f∗(X)

θ

��
g∗(Un+1) // // g∗(X)

Let U = ∪nUn ∈ Ĉn; θ restricts to a map f∗(U) → g∗(U), so that (U, θ) is a
subobject of (X, θ) in G; since α|U = β|U , α(x0) = β(x0); since x0 was arbitrary,
we have α = β.

We now know that G is a bounded S-topos. It remains to show that it
satisfies the universal property of a coequaliser. But this is trivial; G and E
are toposes bounded over S and q∗, defined as the forgetful functor G → E ,
obviously preserves colimits; therefore, by the Indexed Special Adjoint Functor
theorem ([4]) it has an indexed right adjoint q∗, which makes the pair a geometric
morphism. Now let T be a bounded S-topos, Φ : E → E a geometric morphism,
and k : f∗Φ∗ ∼→ g∗Φ∗), so that (T ,Φ) satisfies the property of a coequaliser. The
same argument shows that the functor δ∗ : T → G defined by δ∗A = 〈Φ∗A, kA〉
is the inverse image part of a geometric morphism δ : G → T such that the
following diagram commutes:

F
f //
g

// E
(Φ,k)

��

// G

δ����
��

��
�

T

Let us remark that obtaining an explicit description of the subobject classi-
fier for G is not easy unless we have more information on the maps.
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Note that in the previous proof, we do not give explicit descriptions of q∗
and δ∗; we will now explicitely construct the latter, and while we believe the
method can be generalised to compute a large class of adjoints3, we do not have
a general theorem yet, thus will construct δ∗ “by hand”.

Recall that δ∗A = 〈Φ∗A, kA〉, kA : f∗Φ∗A
∼→ g∗Φ∗A. We want to construct

a right adjoint δ∗ to δ∗, so that Hom(〈Φ∗A, kA〉, 〈X, h〉) ' Hom(A, δ∗〈X, h〉). A
map in the left-side Hom-set is a map α : Φ∗A → X such that the following
diagram commutes:

f∗Φ∗A

kA

��

f∗α // f∗X

h

��
g∗Φ∗A

g∗α // g∗X

We transpose this diagram using the adjunction Φ∗ a Φ∗; first, recall that given
two adjunctions F ∗ a F∗, G∗ a G∗ and a natural transformation θ : F ∗ → G∗,
we have a canonical natural transformation θ̄ : G∗ → F∗ given by the compo-
sition F∗ε

G ◦ F∗θG∗ ◦ ηF G∗, called the mate of θ across the adjunction. It is
clear that if θ is an isomorphism, then θ̄ also is an isomorphism.

We get the following diagram:

A
ᾱ //

ᾱ

��

Φ∗X

Φ∗ηf

��
Φ∗X

Φ∗ηg

��

Φ∗f∗f
∗X

Φ∗f∗h

��
Φ∗g∗g

∗X
Φ∗k̄X

// Φ∗f∗g
∗X

which is commutative by naturality (this is tedious but rather straightforward
to check).

Now let δ∗〈X, h〉 be the equaliser of the above diagram, i.e.:

Φ∗g∗g
∗X

k̄

&&MMMMMMMMMMM

δ∗〈X, h〉 // Φ∗X

Φ∗ηg
99tttttttttt

Φ∗ηf
%%JJJJJJJJJJ Φ∗f∗g

∗X

Φ∗f∗f
∗X

Φ∗f∗h

88qqqqqqqqqqq

then δ∗ is the right adjoint to δ∗ (naturality is given by the universality of the
equaliser).

Comparing this to the description of the direct image of the localisation
morphism, we remark that the main idea is to translate the adjunction into
a suitable commutative diagram for which we can define the desired adjoint

3partly because a similar method is used to compute the direct image of the localisation
morphism E/X → E.
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functor to be a limit. Given the rather “automatic” computation involved, we
believe there may be a general adjoint functor theorem hidden behind.

We now turn to the study of the fundamental groupoid of a topos, which
will use some of the above constructions.

4 The fundamental groupoid of a topos
In the case of topological spaces, the fundamental group (respectively groupoid),
π1 : Top → Grp (respectively π1 : Top → Grpd) is the functor that maps a
topological space to its group of loops (respectively paths) up to homotopy. We
do not recall the theory of the fundamental group here (which is not technically
that useful in our context, but will help build our intuition), but we will study
how we can generalise the notion to toposes. In this section, we will work most
of the time with toposes bounded over Set, that is, we work in the category
BTop/Set. Some constructions apply in a more general context, but given
the rather unclear status of the subject, we would rather try and focus on
understanding the general concepts and ideas rather than immediately delve
into the technicalities that appear when dealing with an arbitrary base, or even
more so an unbounded topos.

We will start, perhaps unusually, from the most general theorem we have,
and then give more precise but less general results; we believe that even pedagog-
ically, it is a better way to understand the (unfinished and certainly unpolished!)
theory of the fundamental groupoid, because of the relative simplicity of the gen-
eral theorem, and because the links between it and its particular instances are
not that clear.

The most general theorem we have is the following:

Theorem 4.1 (The fundamental theorem of generalised Galois theory).
Let f : E → S be an arbitrary (bounded) topos. Then there exist a localic4

groupoid G such that E is equivalent to the topos BG of G-sets.

The reader is referred to [6] for a proof; the idea is to find a topos X and
an open surjection X → E ; the central result to use is that open surjections
are effective descent morphisms. The localic groupoid is then obtained in the
descent data.

We may want to define the fundamental groupoid of a topos to be the5

groupoid G which gives the equivalence mentioned above. This is rather in line
with the topos theoretic interpretation of Galois theory; if X̃ is the étale topos
of X = Spec k, it has been known since [1] that X̃ is equivalent to BG where G
is the Galois group of the separable closure of k.

A very important example is that of Galois toposes, i.e. connected and
locally connected toposes generated by locally constant sheaves. The first result
on the fundamental groupoid of toposes was established in [1], in this context.
The vocabulary there is slightly different as the concept of a topos had not been
introduced yet; the context was that of “Galois categories”, which are actually
Galois toposes, but were considered merely as particular categories equipped

4a locale L is simply a complete Heyting algebra; for intuition we may often reason as if it
were a topological space – at least in presence of points, i.e. morphisms 2 → L

5actually, a representative of the equivalence class of groupoids satisfying the property;
indeed, BG ' BG′ does not imply G ' G′; we will see examples later.
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with a functor to Set satisfying some properties. We will state the above result
in a slightly more general case, that of an atomic topos with a point, and we will
sketch a proof different from ([1]), so that the link with classical Galois theory
is more apparent.

4.1 The fundamental group of an atomic topos with a
point

Definition 4.2. We denote by
∫

F the category of elements of F , and DF the
poset obtained by identifying all arrows in each Hom-set of

∫
F . For each object

X of E we write λX : FX → DF defined by x 7→ (X, x).

Definition 4.3. Natural relations A natural relation between F and G is an
R ↪→ F ×G, i.e. a family of relations RX ↪→ FX × GX such that if we have
f : X → Y and then (F (f)×G(f))RX ⊂ RY . If R is a function, clearly it is
a natural transformation. Alternatively, one can see a relation as a family of
functions ΦX : FX ×GX → 2 such that ΦX(x0, x1) 6 ΦY ◦ (F (f)x0, G(f)x1).

Note 4.4. A morphism of posets D∆F → 2 corresponds to a natural relation
on F .

Theorem 4.5. Let γ : E → Set be a connected atomic topos with a point.
Then E is equivalent to the topos of G-sets, where G is the localic group of
automorphisms of any base point of E .

Proof. We will omit some tedious calculations, for which we refer to [10]. Let
p : Set→ E be the base point of E , and let C be a site for E such that F : C → Set
yields the point p; since E is atomic, it can be taken to consist only of connected
objects with all arrows being epimorphisms, and F can be taken so that it
reflects isomorphisms and preserves strict epimorphisms; since E is atomic, F
can also be taken so that for all X, FX 6= 0. Since F yields a point, its category
of elements is cofiltered, and a poset.

Let D(D∆F ) be the free-inf lattice on D∆F . We write [〈a1〉, . . . , 〈an〉] for the
object of D(D∆F ) corresponding to the subset (a1, . . . , an) of D∆F .

Since lRel(X) = L(X ×X) = D̂(X ×X), natural relations on F correspond
to points of the locale D̂(D∆F ). Now we add covers forcing a relation to be a
bijection; for the precise definition of these covers, we refer the reader to [10]; for
instance, the covers generated by ∅ → [(X, 〈x|z〉), (X, 〈y|z〉)] force the relation
to be injective. Indeed, the object [(X1, 〈x1|y1〉), . . . , (Xn, 〈xn|yn〉)] corresponds
to the set {Φ : F → F |ΦXi(xi) = yi}.Taking sheaves on the resulting site, we
get the localic group of automorphisms of F , which we write lAut(F ).

The composition FX × FX
λX→ D(D∆F ) a→ lAut(F ) defines a morphism of

locales lAut(FX) → lAut(F ), i.e. an action of lAut(F ) on FX6. We write
lFix(x) for the object in D̃(D∆F ) = lAut(F ) corresponding to [(X, 〈x|x〉)]. A
morphism of G-sets for a localic group G is a function X → Y such that
µ∗〈x|y〉 6 µ∗〈f(x)|f(y)〉.

Lemma 4.6. For any X ∈ C, (x0, x1) ∈ FX × FX, the empty family does not
cover [(X, 〈x0|x1〉)].

6more generally, an action of an localic group G on a set X is a continous morphism of
localic groups G → lAut(X × X), which is determined by the values of its inverse image
µ∗ : X ×X → G on the generators of lAut(X).
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The reader is referred to [10] for a proof.

Lemma 4.7 (Lifting lemma). Let X and Y be objects of C, and x ∈ FX,
y ∈ FY . If lFix(x) 6 lFix(y) then there exists a unique arrow f : X → Y such
that F (f)x = y.

Again, we refer the reader to [10] for a proof. The central argument is that
the canonical functor D∆F → lAut(F ) is full.

Lemma 4.6 implies that [(X, 〈x0|x1〉)] is not 0 in lAut(F ). This proves, in
turn, that the action of lAut(F ) on FX is transitive.

The paragraph before the lemma shows that F lifts into a functor µF :
C → BG, for G = lAut(F ). Now, the lemma says that in fact this functor
lands in tBG, the category of transitive G-sets. Now F is faithful; indeed, take
f : X → Y in C such that F (f) is an isomorphism. Let z, t : Z ⇒ X be arrows
such that fs = ft; then F (s) = F (t). Take z in FZ and let x = F (s)(z) =
F (t)(z); s and t define in this way arrows (Z, z)→ (X.x) in

∫
F ; since

∫
F is a

poset, s = t, so F is faithful. Therefore, µF is faithful.
But µF is also full, thanks to the lifting lemma: let f : (µF )X → (µF )Y

be a morphism of G-sets, take x0 in FX and let y0 = f(x0). By definition of a
morphism of G-sets, lFix(x0) 6 lFix(y0) in lAut(F ). By the lifting lemma, we
get the desired result.

There remains to show that for any transitive lAut(F )-set S, there exist an
X ∈ C and a strict epimorphism (µF )X → S in tBG. This is follows from
the fact that

∫
F is cofiltered (we refer the reader to [10] for details). By the

comparison lemma, given that BG is the topos of sheaves for the canonical
topology on tBG, we get that E ∼→ BG, where G can be taken to be lAut(F ) =
lAut(p)op.

It is reasonable to define the fundamental group of a connected atomic topos
with a point p to be lAut(p)op. In fact, one can take the groupoid of all points,
and the result remains. In both cases, this assignement is obviously functorial7.
In the non-connected case, the result still holds; we write E as a sum of con-
nected atomic toposes, and apply the theorem to each connected component,
then “glue” the result.

Note that the result is indeed a particular case of 4.1, since a point of a
connected and atomic topos is an open surjection.

Note 4.8. The example of classical Galois theory (i.e., of the fundamental
group of the étale topos of a field) is an instance of this theorem.

Note 4.9. We shall not discuss topos cohomology here, though that is a very
interesting subject which would undoubtedly provide technical help. We would
like to mention that it is proven ([7]) that in the case of an atomic topos with
a point, the fundamental group represent first order cohomology, i.e. classifies
torsors. That is, for any abelian group K, Hom(G, K) ' H1(E ,K).

7if we are working with a base point, we need to work in the category of connected atomic
pointed toposes, i.e. pairs (E, p) of a topos and a base point.
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We will now give an overview of what happens in the unpointed case; we will
need to first give a few definitions and results on Galois toposes, then sketch a
theorem and discuss why we think this is a rather different result.

4.2 The fundamental groupoid of an unpointed locally
connected topos

Let us recall a few definitions and result on Galois toposes; these can be found
for instance in [11].

Definition 4.10 (Locally constant objects, Galois toposes).

• An object X of a bounded topos γ : E → Set is said to be U -split for a
cover U (i.e. an epimorphic family {Ui → 1}i∈I) if it is constant on each
Ui. That is, there exist a family of sets {Si}i∈I and isomorphisms in E ,
{γ∗Si × Ui → X × Ui}i∈I .

• An object X in a topos is said to be locally constant if there exists a cover
U → 1 such that it is U -split.

• An object A in a bounded topos γ : E → Set is said to be a Galois
object if it is connected (i.e. it is not a nontrivial coproduct) and is an
Aut(A)-torsor, that is, A → 1 is epi and A × γ∗Aut(A) → A × A is an
isomorphism.

• A topos is said to be a Galois topos if it connected, locally connected, and
generated by its Galois objects.

Proposition 4.11. A Galois topos has enough points.

Theorem 4.12. Let γ : E → Set be a connected and locally connected topos.
There exists a Galois topos, which we will denote G(E), and a geometric mor-
phism E → G(E) whose inverse image is given by inclusion, such that G(E) is
the topos of sums of locally constant objects in E .

Proof. Let U → 1 be an epimorphism in E and consider the following pushout
diagram:

E/U
ϕU //

ρU

��

E

σu

��
Set/γ!U

fU // SU

ρU and ϕU are the canonical morphism, defined respectively by ρ∗U (S → γ!U) =
γ∗S ×γ∗γ!U U and ϕ∗U (X) = (X × U → U).

Now, this diagram being a pushout of toposes, objects of SU are triples
(X, S → γ!U, θ) where θ : X × U

∼→ γ∗S ×γ∗γ!U U is an isomorphism over U ,
and a morphism in SU is a pair of morphisms X → X ′, S → S′, the latter being
over U , satisfying the obvious coherence conditions. Then σ∗U is the projection
functor SU → E , which is full and faithful. Therefore SU is in fact the topos of
U -split objects of E .

Clearly, a morphism U → V where U → 1 and V → 1 are epimorphisms
yields a geometric morphism SV → SU whose inverse image is the inclusion
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functor. We will admit that the poset of coverings {Ui → 1} has a small cofinal
system ([9]), which yields a filtered inverse limit of toposes. It is clear that this
inverse limit is the topos of sums locally constant objects of E , which is a Galois
topos. The geometric morphism E → G(E) is given by the colimit diagram.

Since G(E) is a Galois topos, we can apply the result of the previous subsec-
tion to it. This yields a group(oid) G, which Bunge and Moerdijk ([8]) suggest
as the fundamental groupoid of E , claiming it represent first-order cohomology
of E , and citing [7]8 (and not only of G(E) as we would expect).

Let us try to analyse this result in its general setting. First, let us note that
it is not clear how this is a particular instance of Theorem 4.1. While Theorem
4.1 can certainly be applied to E , it will yield a groupoid G′ such that E → BG′;
there is no clear link between G and G′. Much more disturbing, the fundamental
group of E , as we just defined following [8] is the same as that of G(E); we do
not understand why the fundamental group should only depend on (sums of)
locally constant sheaves, considering for instance the case of a locally connected
topos which cannot be described solely by its locally constant sheaves.

Furthermore, we have not unveiled a transitive action of the localic groupoid
on any meaningful set; the only case we are provided canonically with such an
action is when we work with a base point. However, we must stress that we do
not have such an action in Theorem 4.1; it is not clear to the author whether
such an action is indeed necessary data of what we would call “a Galois theory”;
we certainly do not want to assume the existence of points, so the question boils
down to whether we can find a description of the action of the fundamental
groupoid on objects that are intrisic to the topos. In the case of a Galois topos,
the data is contained in the Galois objects, since they (pro)represent the fibre
functors, so we may suggest that the corresponding data in the case of an atomic
topos is in the atoms, though we do not have an formal description of the action
unless we assume points again.

We finish this analysis by mentioning we can always reduce the situation, if
E → S is atomic, to a case where we have a more explicit result. Indeed, we can
find a localic cover of E , for instance, to preserve functoriality, the Diaconescu
cover DE , defined as the topos of sheaves on the site whose underlying category
String(C) is the poset of words labeled by composable arrows of C, C being a
site for C (let s = Cn → . . . → C0, t = Cl → . . . → C0, we say that t 6 s if t
prolongs s to the left). We have a canonical functor π : String(C)→ C, viz. the
projection functor. We define a topology on String(C) saying that a sieve U on
s is a cover if and only if for any t 6 s, the set of arrows π(t′ 6 t) : π(t′)→ π(t)
where t′ ∈ U is a cover of π(t) in C.

Now we can form the fiber product E ×S DE → DE which is bounded
and atomic since DE → S is clearly bounded and E → S is atomic. π yields
a DE-point of E ×S DE , so that we can apply theorem 4.5. We then have
the issue of translating results over DE to results over S. It is yet unclear
whether this would yield interesting results; certainly an explicit comparison of
the cohomology (at least of first-order) of E ×S DE → DE and E → S would

8Unfortunately, we have been unable to find any written proof of this non-trivial fact,
and while this work was conducted, the author of the cited paper was away from her printed
copies.
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be helpful in understanding whether we retain enough information through this
change of base.

5 Conclusion and future work
We hope to have given a reasonable overview of a few problems in topos theory.
The reader should be convinced, by now, that there is much to be done in the
subject, and that there are problems of very different natures. As far as limits
and colimits are concerned, we think it is important to have a better intuition of
what exactly the (co)limits are9, in term of toposes as well as of sites, because
it is fairly unlikely that the problem is conceptual. We hope to be able to find
a proper generalisation of the method exposed to compute the direct image of
the geometric morphism δ which would allow us to have explicit descriptions of
large classes of (co)limits of toposes.

It is quite disappointing that the fibre product of toposes is of little help
in algebraic geometry, because it suggests the aforementioned toposes may well
not be the proper topological frameworks. We do not know currently whether
some other construction might be more appropriate.

The current state of the Galois theory of toposes is rather disturbing, as
we hope to have shown without confusing the reader. It seems there is a fun-
damental misunderstanding of what should be called Galois theory10 or the
fundamental groupoid of a topos; in the case of topological spaces, points play
an essential role; however their obvious topos theoretic counterparts should not
be assumed to exist, as they do not in even quite simple non-geometrical cases
(such as the topos of sheaves on an atomless boolean algebra). It might be
useful to try an approach to points of a topos that is closer to that of points
of a scheme; that is, work with the “functor of points” Hom(−, E) of a topos.
We do not know of anyone who has tried such an approach, but it seems clear
some constructions can be adapted to rely on such “points”: a group of automor-
phisms is trivially definable, for instance, but it remains to see what properties
it could have.

We conclude on the fact that what we have introduced is indeed a very
small aspect of topos theory, and that many other approaches to the subject
are possible and interesting, at all scales; we have for instance ignored all purely
logical questions (even in concerning we have introduced), and focused on a
rather topological view of the situation. Even retaining a largely topological or
geometrical approach, many open problems remain, and there is undoubtedly a
wealth of aspects of topos theory which remain to be discovered. Among these,
there is ongoing work on the homotopy theory of toposes ([13]) which would
certainly be of interest to the author.

9perhaps by working out more examples; it turns out that even in simple cases, examples
are often quite hard to get a grasp on.

10Rather, it seems there is no consensus on what Galois theory is; some believe it refers to
points, possibly “phantom” ([11]), others think it is contained in the equivalence with a topos
of G-sets.
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