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Unsplittable Flow on a Path (UFP)

Task: subpath, demand, weight

subpath

demand

Applications: resource allocation, caching, bandwidth allocation,
scheduling, etc.



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

1 + ε when all tasks share a common edge
[Grandoni, Mömke, Wiese, Zhou, SODA 2017]
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Open Question

Is there a polynomial-time approximation scheme for UFP?



Our Result

Polynomial-time (5/3 + ε)-approximation for UFP

Idea: combine large tasks and small tasks together

large

small



Previous techniques:

1 Dynamic programming: large tasks

2 Linear programming: small tasks

1 + 2 =⇒ (2 + ε)-approximation

Q: How to achieve better-than-2 approximation?

A: Dynamic programming with boxes: large tasks + 1/3 of small tasks

Combined with 2 =⇒ (5/3 + ε)-approximation
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Difficulty: Unknown separation between space for large tasks and
space for small tasks in the optimal solution



Preprocessing: Round down the separation profile to powers of 1 + ε



Main idea: Decompose the space for small tasks into boxes



Q: What factor of small tasks do we lose by introducing boxes?

A: At most 2.



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming
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Q: How to avoid a small task being selected several times?



Q: How to avoid a small task being selected several times?

A: As soon as a small task is selected in some box, it is no longer allowed
in upper boxes.



Q: What factor of small tasks do we lose by filling boxes bottom-up?

A: At most 2.



Loss of small tasks

Factor 2 by introducing boxes

Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?



Loss of small tasks

Factor 2 by introducing boxes

Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

A: No. Both factors of 2 cannot happen simultaneously.

Main technical contribution

Our algorithm loses at most a factor of 3 of small tasks.



Selecting large tasks

We guess large tasks during the dynamic program.

Observation: All profit from large tasks achieved when guessed correctly.



Summary

Dynamic programming to guess large tasks and boxes

Linear programming to select small tasks inside each box

Total profit: large tasks + 1/3 of small tasks

Thank you!

Our Result

Polynomial-time (5/3 + ε)-approximation for UFP


