A (5/3 + €)-Approximation for Unsplittable Flow on

a Path: Placing Small Tasks into Boxes

Fabrizio Grandoni® Tobias Mdmke? Andreas Wiese? Hang Zhou*

1IDSIA, Switzerland
2Saarland University and University of Bremen, Germany
3University of Chile, Chile

4Ecole Polytechnique, France

Symposium on Theory of Computing (STOC), 2018

Unsplittable Flow on a Path (UFP)

Task: subpath, demand, weight

subpath

Applications: resource allocation, caching, bandwidth allocation,
scheduling, etc.

Polynomial time:
e O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
@ 7 + ¢ [Bonsma, Schulz, Wiese, FOCS 2011]
@ 2+ ¢ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

Polynomial time:
e O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
@ 7 + ¢ [Bonsma, Schulz, Wiese, FOCS 2011]
@ 2+ ¢ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

@ 1+ € when weight/demand is bounded
[Batra, Garg, Kumar, Momke, Wiese, SODA 2015]

@ 1+ e when all tasks share a common edge
[Grandoni, Momke, Wiese, Zhou, SODA 2017]

Polynomial time:
e O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
@ 7 + ¢ [Bonsma, Schulz, Wiese, FOCS 2011]
@ 2+ ¢ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

@ 1+ € when weight/demand is bounded
[Batra, Garg, Kumar, Momke, Wiese, SODA 2015]

@ 1+ e when all tasks share a common edge
[Grandoni, Momke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:
e 1+ € (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
@ 1+ e [Batra, Garg, Kumar, Momke, Wiese, SODA 2015]

Polynomial time:
e O(logn) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
@ 7 + ¢ [Bonsma, Schulz, Wiese, FOCS 2011]
@ 2+ ¢ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

@ 1+ € when weight/demand is bounded
[Batra, Garg, Kumar, Momke, Wiese, SODA 2015]

@ 1+ e when all tasks share a common edge
[Grandoni, Momke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:
e 1+ € (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
@ 1+ e [Batra, Garg, Kumar, Momke, Wiese, SODA 2015]

Open Question
Is there a polynomial-time approximation scheme for UFP?

Polynomial-time (5/3 + ¢)-approximation for UFP

Idea: combine large tasks and small tasks together

large

Previous techniques:

Dynamic programming: large tasks

Linear programming: small tasks

+ —> (2 + ¢)-approximation

Previous techniques:

Dynamic programming: large tasks

Linear programming: small tasks

+ —> (2 + ¢)-approximation

Q: How to achieve better-than-2 approximation?

A: Dynamic programming with boxes: large tasks + 1/3 of small tasks

Combined with = (5/3 + ¢€)-approximation

Difficulty: Unknown separation between space for large tasks and
space for small tasks in the optimal solution

Preprocessing: Round down the separation profile to powers of 1 + ¢

Main idea: Decompose the space for small tasks into boxes

Q: What factor of small tasks do we lose by introducing boxes?
A: At most 2.

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming

|]

Q: How to avoid a small task being selected several times?

Q: How to avoid a small task being selected several times?

A: As soon as a small task is selected in some box, it is no longer allowed
in upper boxes.

Q: What factor of small tasks do we lose by filling boxes bottom-up?
A: At most 2.

Loss of small tasks

@ Factor 2 by introducing boxes

@ Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

Loss of small tasks

@ Factor 2 by introducing boxes

@ Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

A: No. Both factors of 2 cannot happen simultaneously.

Main technical contribution

Our algorithm loses at most a factor of 3 of small tasks.

Selecting large tasks

We guess large tasks during the dynamic program.

Observation: All profit from large tasks achieved when guessed correctly.

Summary

o Dynamic programming to guess large tasks and boxes

@ Linear programming to select small tasks inside each box

Total profit: large tasks + 1/3 of small tasks

/‘\b\
- Thank you!
=3
[\ e — l |

Polynomial-time (5/3 + ¢)-approximation for UFP

