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Unsplittable Flow on a Path (UFP)

Task: subpath, demand, weight

subpath

Applications: resource allocation, caching, bandwidth allocation,
scheduling, etc.
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@ 2+ ¢ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
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Open Question
Is there a polynomial-time approximation scheme for UFP?




Polynomial-time (5/3 + ¢)-approximation for UFP

Idea: combine large tasks and small tasks together

large




Previous techniques:

Dynamic programming: large tasks

Linear programming: small tasks

+ —> (2 + ¢)-approximation



Previous techniques:

Dynamic programming: large tasks

Linear programming: small tasks

+ —> (2 + ¢)-approximation

Q: How to achieve better-than-2 approximation?

A: Dynamic programming with boxes: large tasks + 1/3 of small tasks

Combined with = (5/3 + ¢€)-approximation



Difficulty: Unknown separation between space for large tasks and
space for small tasks in the optimal solution




Preprocessing: Round down the separation profile to powers of 1 + ¢




Main idea: Decompose the space for small tasks into boxes




Q: What factor of small tasks do we lose by introducing boxes?
A: At most 2.




Algorithm to compute small tasks within boxes

@ Guess boxes bottom-up using dynamic programming

o Fill each box with small tasks using linear programming
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Q: How to avoid a small task being selected several times?




Q: How to avoid a small task being selected several times?

A: As soon as a small task is selected in some box, it is no longer allowed
in upper boxes.




Q: What factor of small tasks do we lose by filling boxes bottom-up?
A: At most 2.




Loss of small tasks

@ Factor 2 by introducing boxes

@ Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?



Loss of small tasks

@ Factor 2 by introducing boxes

@ Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

A: No. Both factors of 2 cannot happen simultaneously.

Main technical contribution

Our algorithm loses at most a factor of 3 of small tasks.




Selecting large tasks

We guess large tasks during the dynamic program.

Observation: All profit from large tasks achieved when guessed correctly.




Summary

o Dynamic programming to guess large tasks and boxes

@ Linear programming to select small tasks inside each box

Total profit: large tasks + 1/3 of small tasks
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