
A (5/3 + ε)-Approximation for Unsplittable Flow on
a Path: Placing Small Tasks into Boxes

Fabrizio Grandoni1 Tobias Mömke2 Andreas Wiese3 Hang Zhou4

1IDSIA, Switzerland

2Saarland University and University of Bremen, Germany

3University of Chile, Chile

4École Polytechnique, France

Symposium on Theory of Computing (STOC), 2018



Unsplittable Flow on a Path (UFP)

Task: subpath, demand, weight

subpath

demand

Applications: resource allocation, caching, bandwidth allocation,
scheduling, etc.



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

1 + ε when all tasks share a common edge
[Grandoni, Mömke, Wiese, Zhou, SODA 2017]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

1 + ε when all tasks share a common edge
[Grandoni, Mömke, Wiese, Zhou, SODA 2017]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

1 + ε when all tasks share a common edge
[Grandoni, Mömke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:

1 + ε (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]

1 + ε [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

1 + ε when all tasks share a common edge
[Grandoni, Mömke, Wiese, Zhou, SODA 2017]

Quasi-polynomial time:

1 + ε (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]

1 + ε [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Open Question

Is there a polynomial-time approximation scheme for UFP?



Our Result

Polynomial-time (5/3 + ε)-approximation for UFP

Idea: combine large tasks and small tasks together

large

small



Previous techniques:

1 Dynamic programming: large tasks

2 Linear programming: small tasks

1 + 2 =⇒ (2 + ε)-approximation

Q: How to achieve better-than-2 approximation?

A: Dynamic programming with boxes: large tasks + 1/3 of small tasks

Combined with 2 =⇒ (5/3 + ε)-approximation



Previous techniques:

1 Dynamic programming: large tasks

2 Linear programming: small tasks

1 + 2 =⇒ (2 + ε)-approximation

Q: How to achieve better-than-2 approximation?

A: Dynamic programming with boxes: large tasks + 1/3 of small tasks

Combined with 2 =⇒ (5/3 + ε)-approximation



Difficulty: Unknown separation between space for large tasks and
space for small tasks in the optimal solution



Preprocessing: Round down the separation profile to powers of 1 + ε



Main idea: Decompose the space for small tasks into boxes



Q: What factor of small tasks do we lose by introducing boxes?

A: At most 2.



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Algorithm to compute small tasks within boxes

Guess boxes bottom-up using dynamic programming

Fill each box with small tasks using linear programming



Q: How to avoid a small task being selected several times?



Q: How to avoid a small task being selected several times?

A: As soon as a small task is selected in some box, it is no longer allowed
in upper boxes.



Q: What factor of small tasks do we lose by filling boxes bottom-up?

A: At most 2.



Loss of small tasks

Factor 2 by introducing boxes

Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?



Loss of small tasks

Factor 2 by introducing boxes

Factor 2 by filling boxes bottom up

Q: Do we have to lose altogether a factor of 4 of small tasks?

A: No. Both factors of 2 cannot happen simultaneously.

Main technical contribution

Our algorithm loses at most a factor of 3 of small tasks.



Selecting large tasks

We guess large tasks during the dynamic program.

Observation: All profit from large tasks achieved when guessed correctly.



Summary

Dynamic programming to guess large tasks and boxes

Linear programming to select small tasks inside each box

Total profit: large tasks + 1/3 of small tasks

Thank you!

Our Result

Polynomial-time (5/3 + ε)-approximation for UFP


