Correlation Clustering and Two-edge-connected Augmentation for Planar Graphs

Philip N. Klein1, Claire Mathieu2,3, and Hang Zhou3

1Brown University, United States
2CNRS, France
3École Normale Supérieure de Paris, France
My Hobby:
Embedding NP-complete problems in restaurant orders

Chotchkies Restaurant

Appetizers
Mixed Fruit 2.15
French Fries 2.75

Salad 5.35
Hot Wings 3.55

Mozzarella Sticks 4.20
Sampler Plate 5.30

Sandwiches
Barbecue

We'd like exactly $15. 05 worth of appetizers, please.

...Exactly? Uhh...

Here, these papers on the knapsack problem might help you out.

Listen, I have six other tables to get to.

As fast as possible, of course. What something on the traveling salesman?
Approximation Schemes for Planar Graphs

- **Local problems (1977-1983):**
 independent set, vertex cover, dominating set, etc.

- **Connectivity problems (2005-2011):**
 TSP, Steiner, 2-edge-connected subgraph, etc.

- **Other problems (2012-2014):**
 multiway cut, k-center.

- **In our work:**
 correlation clustering, 2-edge-connected augmentation.
Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled either $\langle + \rangle$ or $\langle - \rangle$ according to similarity of its endpoints

Output: a partition of the vertices that disagrees with the edge labels as little as possible

Motivated by **image segmentation**.

(an example from Berkeley Segmentation Dataset)
Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled either $\langle + \rangle$ or $\langle - \rangle$ according to *similarity of its endpoints*

Output: a partition of the vertices that disagrees with the edge labels as little as possible
Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled either $\langle + \rangle$ or $\langle - \rangle$ according to similarity of its endpoints

Output: a partition of the vertices that disagrees with the edge labels as little as possible
Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled either $\langle + \rangle$ or $\langle - \rangle$ according to similarity of its endpoints

Output: a partition of the vertices that disagrees with the edge labels as little as possible

Our Result

PTAS for correlation clustering in planar graphs

Previous results:

- **Constant-factor approximation for minor-excluded graphs**
 [Demaine, Emanuel, Fiat, Immorlica, 2006]

- **NP-hardness for planar graphs**
 [Bachrach, Kohli, Kolmogorov, Zadimoghaddam, 2013]

- **APX-hardness for general graphs** [Bansal, Blum, Chawla, 2004]
Two-Edge-Connected Augmentation

Goal: Augment input subset R of edges of a graph so that the result is a collection of 2-edge-connected components.

Our Result
PTAS for two-edge-connected augmentation in planar graphs

Previous results for general graphs:
- APX-hardness [Kortsarz, Krauthgamer, Lee, 2004]
- 2-approximation [Jain, 2001]
Techniques

Reduction from correlation clustering to 2-edge-connected augmentation
- planar duality

PTAS for 2-edge-connected augmentation
- prize-collecting clustering
- brick decomposition
- sphere-cut decomposition
- dynamic programming
Reduction from correlation clustering to 2-edge-connected augmentation:

1. Start from an instance of correlation clustering
2. Construct an instance of 2-edge-connected augmentation:
 - the graph is the dual of the correlation clustering graph
 - the set R contains the duals of the $\langle - \rangle$ edges
3. Solve the 2-edge-connected augmentation instance
4. Switch the labels of the dual edges of the augmentation to obtain a partition
Reduction from correlation clustering to 2-edge-connected augmentation:

1. Start from an instance of correlation clustering.
2. Construct an instance of 2-edge-connected augmentation:
 - the graph is the dual of the correlation clustering graph
 - the set R contains the duals of the $\langle - \rangle$ edges
3. Solve the 2-edge-connected augmentation instance.
4. Switch the labels of the dual edges of the augmentation to obtain a partition.
Reduction from correlation clustering to 2-edge-connected augmentation:

1. Start from an instance of correlation clustering
2. Construct an instance of 2-edge-connected augmentation:
 - the graph is the dual of the correlation clustering graph
 - the set R contains the duals of the $\langle - \rangle$ edges
3. Solve the 2-edge-connected augmentation instance
4. Switch the labels of the dual edges of the augmentation to obtain a partition
Reduction

Reduction from correlation clustering to 2-edge-connected augmentation:

1. Start from an instance of correlation clustering
2. Construct an instance of 2-edge-connected augmentation:
 - the graph is the dual of the correlation clustering graph
 - the set R contains the duals of the $\langle - \rangle$ edges
3. Solve the 2-edge-connected augmentation instance
4. Switch the labels of the dual edges of the augmentation to obtain a partition
Observation: A partition of $V[G]$ has a 1-to-1 correspondence to a collection of 2-edge-connected components of G^*.
Reduction

- Switch a $\langle + \rangle$ edge to a $\langle - \rangle$ edge \iff add an edge in the dual
- Switch a $\langle - \rangle$ edge to a $\langle + \rangle$ edge \iff remove an edge in the dual \iff double that edge in the dual
- Only need to find an augmentation in the dual so that every component is 2-edge-connected.
Reduction

- Switch a $\langle + \rangle$ edge to a $\langle - \rangle$ edge \iff add an edge in the dual
- Switch a $\langle - \rangle$ edge to a $\langle + \rangle$ edge \iff remove an edge in the dual \iff double that edge in the dual
- Only need to find an augmentation in the dual so that every component is 2-edge-connected.
Reduction

- Switch a $\langle + \rangle$ edge to a $\langle - \rangle$ edge \iff add an edge in the dual
- Switch a $\langle - \rangle$ edge to a $\langle + \rangle$ edge \iff remove an edge in the dual \iff double that edge in the dual
- Only need to find an augmentation in the dual so that every component is 2-edge-connected.
Reduction

- Switch a $\langle + \rangle$ edge to a $\langle - \rangle$ edge \iff add an edge in the dual
- Switch a $\langle - \rangle$ edge to a $\langle + \rangle$ edge \iff remove an edge in the dual \iff double that edge in the dual
- Only need to find an augmentation in the dual so that every component is 2-edge-connected.

Theorem

There is an approximation-preserving reduction from correlation clustering to 2-edge-connected augmentation.
Approximation Scheme

Universal paradigm

1. Reduce to bounded treewidth
2. Solve the problem by dynamic programming

Q: How do we reduce to bounded treewidth?

A: For local problems, Baker’s basic framework:
 1. Breadth First Search
 2. Delete edges on one level every $1/\varepsilon$ levels
Approximation Scheme

Universal paradigm

1. Reduce to bounded treewidth
2. Solve the problem by dynamic programming

Q: How do we reduce to bounded treewidth?

A: For local problems, Baker’s basic framework:
 1. Breadth First Search
 2. Delete edges on one level every $1/\epsilon$ levels
Approximation Scheme

Universal paradigm

1. Reduce to bounded treewidth
2. Solve the problem by dynamic programming

Q: How do we reduce to bounded treewidth?

A: For local problems, Baker’s basic framework:
 1. Breadth First Search
 2. Delete edges on one level every $1/\epsilon$ levels
Approximation Scheme

Universal paradigm

1. Reduce to bounded treewidth
2. Solve the problem by dynamic programming

Q: How do we reduce to bounded treewidth?

A: For local problems, Baker’s basic framework:
 1. Breadth First Search
 2. Delete edges on one level every $1/\epsilon$ levels
Klein’s Dual Framework for Non-Local Problems

1. Compute a brick decomposition such that
 - The total weight of brick boundaries is \(O(OPT) \);
 - **Structure Property:** A near-optimal solution inside each brick is simple.

2. Breadth First Search on the dual graph of the brick graph

3. Delete or contract edges on one level every \(1/\epsilon \) levels

Ensure that the brick graph has bounded treewidth.
Our Contribution: A New Structural Property on Bricks

Structure Property

For any two vertices u, v on the boundary of a brick, there exists a u-to-v Jordan curve inside the brick that intersects the near-optimal solution at only a constant number of points.
Our Contribution: A New Structural Property on Bricks

Structure Property
For any two vertices u, v on the boundary of a brick, there exists a u-to-v Jordan curve inside the brick that intersects the near-optimal solution at only a constant number of points.
Our Contribution: A New Structural Property on Bricks

Structure Property

For any two vertices u, v on the boundary of a brick, there exists a u-to-v Jordan curve inside the brick that intersects the near-optimal solution at only a constant number of points.

Theorem

We have a PTAS for 2-edge-connected augmentation in planar graphs.
Conclusion

- **Local problems (1977-1983):**
 independent set, vertex cover, dominating set, etc.

- **Connectivity problems (2005-2011):**
 TSP, Steiner, 2-edge-connected subgraph, etc.

- **Other problems (2012-2014):**
 multiway cut, k-center.

- **In our work:**
 correlation clustering, 2-edge-connected augmentation.

- **Open problem:**
 Steiner version of the 2-edge-connected subgraph problem.
Thank you!