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Approximation Schemes for Planar Graphs

Local problems (1977-1983):
independent set, vertex cover, dominating set, etc.

Connectivity problems (2005-2011):
TSP, Steiner, 2-edge-connected subgraph, etc.

Other problems (2012-2014):
multiway cut, k-center.

In our work:
correlation clustering, 2-edge-connected augmentation.
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Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled
either 〈+〉 or 〈−〉 according to similarity of its endpoints

Output: a partition of the vertices that disagrees with the edge labels
as little as possible

Motivated by image segmentation.

(an example from Berkeley Segmentation Dataset)
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Correlation Clustering

Input: a graph with edge-weights, where every edge is labelled
either 〈+〉 or 〈−〉 according to similarity of its endpoints

Output: a partition of the vertices that disagrees with the edge labels
as little as possible

Our Result

PTAS for correlation clustering in planar graphs

Previous results:

Constant-factor approximation for minor-excluded graphs
[Demaine, Emanuel, Fiat, Immorlica, 2006]

NP-hardness for planar graphs
[Bachrach, Kohli, Kolmogorov, Zadimoghaddam, 2013]

APX-hardness for general graphs [Bansal, Blum, Chawla, 2004]
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Two-Edge-Connected Augmentation

Goal: Augment input subset R of edges of a graph so that the result is a
collection of 2-edge-connected components.

Our Result

PTAS for two-edge-connected augmentation in planar graphs

Previous results for general graphs:

APX-hardness [Kortsarz, Krauthgamer, Lee, 2004]

2-approximation [Jain, 2001]
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Techniques

Reduction from correlation clustering to 2-edge-connected augmentation

planar duality

PTAS for 2-edge-connected augmentation

prize-collecting clustering

brick decomposition

sphere-cut decomposition

dynamic programming
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Reduction

Reduction from correlation clustering to 2-edge-connected augmentation:

1 Start from an instance of
correlation clustering

2 Construct an instance of
2-edge-connected augmentation:

the graph is the dual of the
correlation clustering graph
the set R contains the duals
of the 〈−〉 edges

3 Solve the 2-edge-connected
augmentation instance

4 Switch the labels of the dual
edges of the augmentation to
obtain a partition
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Reduction

Observation: A partition of V [G ] has a 1-to-1 correspondence to a
collection of 2-edge-connected components of G ∗.
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Reduction

Switch a 〈+〉 edge to a 〈−〉 edge ⇔ add an edge in the dual

Switch a 〈−〉 edge to a 〈+〉 edge ⇔ remove an edge in the dual ⇔
double that edge in the dual

Only need to find an augmentation in the dual so that every
component is 2-edge-connected.

augment
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Reduction

Switch a 〈+〉 edge to a 〈−〉 edge ⇔ add an edge in the dual

Switch a 〈−〉 edge to a 〈+〉 edge ⇔ remove an edge in the dual ⇔
double that edge in the dual

Only need to find an augmentation in the dual so that every
component is 2-edge-connected.

Theorem

There is an approximation-preserving reduction from correlation clustering
to 2-edge-connected augmentation.

P. N. Klein, C. Mathieu, and H. Zhou Correlation Clustering and Two-edge-connected Augmentation



Approximation Scheme

Universal paradigm

1 Reduce to bounded treewidth

2 Solve the problem by dynamic programming

Q: How do we reduce to bounded treewidth?

A: For local problems, Baker’s basic framework:

1 Breadth First Search
2 Delete edges on one level every 1/ε levels
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Klein’s Dual Framework for Non-Local Problems

1 Compute a brick decomposition such that

The total weight of brick boundaries is O(OPT );
Structure Property: A near-optimal solution inside each brick is simple.

2 Breadth First Search on the dual graph of the brick graph

3 Delete or contract edges on one level every 1/ε levels

Ensure that the brick graph has bounded treewidth.
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Our Contribution: A New Structural Property on Bricks

Structure Property

For any two vertices u, v on the boundary of a brick, there exists a u-to-v
Jordan curve inside the brick that intersects the near-optimal solution at
only a constant number of points.

u

v
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Our Contribution: A New Structural Property on Bricks

Structure Property

For any two vertices u, v on the boundary of a brick, there exists a u-to-v
Jordan curve inside the brick that intersects the near-optimal solution at
only a constant number of points.

Theorem

We have a PTAS for 2-edge-connected augmentation in planar graphs.
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Conclusion

Local problems (1977-1983):
independent set, vertex cover, dominating set, etc.

Connectivity problems (2005-2011):
TSP, Steiner, 2-edge-connected subgraph, etc.

Other problems (2012-2014):
multiway cut, k-center.

In our work:
correlation clustering, 2-edge-connected augmentation.

Open problem:
Steiner version of the 2-edge-connected subgraph problem.
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Thank you!
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