Capacitated Vehicle Routing in Graphic Metrics

Tobias Mömke
University of Augsburg, Germany

Hang Zhou
École Polytechnique, France

SIAM Symposium on Simplicity in Algorithms (SOSA23)

Capacitated vehicle routing problem (CVRP)

Input:

- depot O
- set of \boldsymbol{n} terminals
- capacity k

Minimize total length of tours

Fundamental problem in operations research

Capacitated vehicle routing problem (CVRP)

Unit demands

Unsplittable demands

- general metrics
- Euclidean plane
- planar graphs
- trees
- graphs of bounded treewidth
- graphs of bounded highway dimension

Results in general metrics

α : approximation ratio for TSP

CVRP in general metrics

- $1+\left(1-\frac{1}{k}\right) \cdot \alpha$ factor [Altinkemer and Gavish, 1990]
- $1+\left(1-\frac{1}{k}\right) \cdot \alpha-\Omega\left(\frac{1}{k^{3}}\right)$ factor [Bompadre, Dror, Orlin, 2006]
- $1+\alpha-\frac{1}{3000}$ factor [Blauth, Traub, Vygen, 2022]

Graphic metrics

Let $G=(V, E)$ be a connected and unweighted graph.
For each $(u, v) \in V^{2}$, define
$\delta(u, v):=$ number of edges on a shortest u-to- v path.
δ is called a graphic metric.

Results in graphic metrics

TSP in graphic metrics

- $1.5-\epsilon_{0}$ factor for some $\epsilon_{0}>0$
[Oveis Gharan, Saberi, Singh, 2011]
- 1.461 factor [Mömke and Svensson, 2011]
- $\frac{13}{9}$ factor [Mucha, 2012]
- 1.4 factor [Sebő and Vygen, 2014]

CVRP in graphic metrics

- $2.4-\frac{1}{3000}$ factor
[Sebö and Vygen, 2014] + [Blauth, Traub, Vygen, 2022]
- 1.95 factor [our result]

Iterated tour partitioning [Haimovich and Rinnooy Kan 1985]

(1) Compute a TSP tour S on all terminals

(2) Partition S into segments of k terminals

(3) For each segment, connect its endpoints to the depot

Fact: solution $\leq \boldsymbol{S}+\mathrm{rad}$, where $\mathrm{rad}:=\frac{2}{k} \cdot \sum_{v \in V} \delta(O, v)$.

CVRP in graphic metrics - Algorithm

Algorithm for CVRP in graphic metrics

(1) $S_{1} \leftarrow$ TSP tour computed by Christofides algorithm
(2) $\boldsymbol{S}_{\mathbf{2}} \leftarrow$ TSP tour computed by Sebö-Vygen algorithm
(3) $S \leftarrow$ cheaper one of S_{1} and S_{2}
(3) Apply iterated tour partitioning on S

CVRP in graphic metrics - Analysis

Lemma

solution $\leq \mathrm{rad}+0.5 \cdot n+0.95 \cdot$ opt.
Proof. Combining:

- solution $\leq S+$ rad
- $S \leq \frac{1}{2}\left(S_{1}+S_{2}\right)$
- $\boldsymbol{S}_{1} \leq \boldsymbol{n}+\mathbf{0 . 5} \cdot$ opt [Christofides]
- $S_{2} \leq 1.4 \cdot$ opt [Sebő-Vygen]

> Structure Theorem
> opt $\geq \mathrm{rad}+0.5 \cdot n$.

Main result
1.95-approximation for CVRP in graphic metrics.

Tightness of the Structure Theorem

Structure Theorem $\mathrm{opt} \geq \mathrm{rad}+0.5 \cdot n$.

$$
\begin{aligned}
& n=48 \\
& k=12 \\
& \text { opt }=n+\frac{n}{k} \\
& \operatorname{rad}=0.5 \cdot n+\frac{n}{k}
\end{aligned}
$$

Proof of the Structure Theorem

Structure Theorem
 $\mathrm{opt} \geq \mathrm{rad}+0.5 \cdot n$.

summing over all tours in an optimal solution

Structure Lemma

Consider any tour T visiting a subset U of m terminals.
Then $\operatorname{cost}(T) \geq 2 L+0.5 \cdot m$, where $L:=\frac{1}{m} \cdot \sum_{v \in U} \delta(O, v)$.

Proof of the Structure Lemma (1/2)

$H:=\max _{v \in U}\{\delta(O, v)\}$
$a_{i}:=$ first terminal on T s.t. $\delta\left(O, a_{i}\right)=i$
$b_{i}:=$ last terminal on T s.t. $\delta\left(O, b_{i}\right)=i$
$W:=\left\{a_{i}\right\}_{i} \cup\left\{b_{i}\right\}_{i}$

Combining:

$$
\begin{aligned}
\operatorname{cost}(T) & \geq 2 H+m-2 \sqrt{m \cdot(H-L)} \\
& \geq 2 L+0.5 \cdot m
\end{aligned}
$$

$O \in U$
$O \notin U$

Proof of the Structure Lemma (2/2)

Lemma 2

$|U \cap W| \leq 2 \sqrt{m \cdot(H-L)}$.

Proof:

$\sum_{v \in U \cap W} \delta(O, v) \leq|U \cap W| \cdot H-\frac{|U \cap W|^{2}}{4}$

$$
\sum_{v \in U \backslash W} \delta(O, v) \leq(m-|U \cap W|) \cdot H
$$

Summary

> Structure Theorem
> opt $\geq \mathrm{rad}+0.5 \cdot n$.

Main result
1.95-approximation for CVRP in graphic metrics.

Open question
Study the graphic TSP whose cost depends on n instead of opt.

Thank you!

