Capacitated Vehicle Routing in Graphic Metrics

Tobias Mömke

University of Augsburg, Germany

Hang Zhou École Polytechnique, France

SIAM Symposium on Simplicity in Algorithms (SOSA23)

Capacitated vehicle routing problem (CVRP)

Input:

- depot O
- set of n terminals
- capacity k

Minimize total length of tours

Fundamental problem in operations research

Capacitated vehicle routing problem (CVRP)

Unit demands

Unsplittable demands

1981	Golden and Wong
1987	Altinkemer and Gavish
1991	Labbé, Laporte, and Mercure
2021	Blauth, Traub, and Vygen
2022	Friggstad, Mousavi, Rahgoshay, and Salavatipour
2023	Grandoni, Mathieu, and Zhou
2023	Mathieu and Zhou

general metrics
Euclidean plane
planar graphs
trees
graphs of bounded treewidth
graphs of bounded highway dimension

α : approximation ratio for TSP

CVRP in general metrics

• $1 + (1 - \frac{1}{k}) \cdot \alpha$ factor [Altinkemer and Gavish, 1990]

• $1 + \left(1 - rac{1}{k}
ight) \cdot lpha - \Omega\left(rac{1}{k^3}
ight)$ factor [Bompadre, Dror, Orlin, 2006]

• $1 + \alpha - \frac{1}{3000}$ factor [Blauth, Traub, Vygen, 2022]

Let G=(V,E) be a connected and unweighted graph. For each $(u,v)\in V^2$, define $\delta(u,v):=$ number of edges on a shortest u-to-v path.

 δ is called a graphic metric.

TSP in graphic metrics

- $1.5 \epsilon_0$ factor for some $\epsilon_0 > 0$ [Oveis Gharan, Saberi, Singh, 2011]
- 1.461 factor [Mömke and Svensson, 2011]
- $\frac{13}{9}$ factor [Mucha, 2012]
- 1.4 factor [Sebő and Vygen, 2014]

CVRP in graphic metrics

•
$$2.4 - rac{1}{3000}$$
 factor

[Sebő and Vygen, 2014] + [Blauth, Traub, Vygen, 2022]

• 1.95 factor [our result]

Iterated tour partitioning [Haimovich and Rinnooy Kan 1985]

Oracle Compute a TSP tour *S* on all terminals

2 Partition S into segments of k terminals

For each segment, connect its endpoints to the depot

Fact: solution
$$\leq S + \operatorname{rad}$$
, where $\operatorname{rad} := \frac{2}{k} \cdot \sum_{v \in V} \delta(O, v)$

Algorithm for CVRP in graphic metrics

- **0** $S_1 \leftarrow \mathsf{TSP}$ tour computed by Christofides algorithm
- **2** $S_2 \leftarrow \mathsf{TSP}$ tour computed by Sebő-Vygen algorithm
- $\textbf{ § } S \leftarrow \text{cheaper one of } S_1 \text{ and } S_2$
- **③** Apply iterated tour partitioning on S

CVRP in graphic metrics – Analysis

Lemma

solution $\leq \operatorname{rad} + 0.5 \cdot n + 0.95 \cdot \operatorname{opt.}$

Proof. Combining:

- solution $\leq S + rad$
- $S \leq \frac{1}{2}(S_1 + S_2)$
- $S_1 \leq n + 0.5 \cdot \mathrm{opt}$ [Christofides]
- $S_2 \leq 1.4 \cdot \mathrm{opt}$ [Sebő-Vygen]

Structure Theorem

 $opt \geq rad + 0.5 \cdot n.$

Main result

1.95-approximation for CVRP in graphic metrics.

Tightness of the Structure Theorem

Structure Theorem

opt \geq rad $+ 0.5 \cdot n$.

n = 48 k = 12 $opt = n + \frac{n}{k}$ $rad = 0.5 \cdot n + \frac{n}{k}$

Proof of the Structure Lemma (1/2)

$$H := \max_{v \in U} \left\{ \delta(O, v) \right\} \qquad \cdots \odot \cdots \odot \cdots H$$

 $\begin{array}{l} a_i := \text{ first terminal on } T \text{ s.t. } \delta(O, a_i) = i \\ b_i := \text{ last terminal on } T \text{ s.t. } \delta(O, b_i) = i \\ W := \{a_i\}_i \cup \{b_i\}_i \end{array}$

Lemma 1

$$\operatorname{cost}\left(T
ight)\geq 2H+|U\setminus W|.$$

Lemma 2

$$|U \cap W| \leq 2\sqrt{m \cdot (H-L)}.$$

Combining:

$$egin{aligned} \cos\left(T
ight) &\geq 2H+m-2\sqrt{m\cdot\left(H-L
ight)} \ &\geq 2L+0.5\cdot m \end{aligned}$$

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

 $\bigcirc \in U \\ \bigcirc \notin U$

Proof of the Structure Lemma (2/2)

Lemma 2

$$|U \cap W| \leq 2\sqrt{m \cdot (H-L)}.$$

Proof:

$$\sum_{v \in U \cap W} \delta(O, v) \le |U \cap W| \cdot H - \frac{|U \cap W|^2}{4}$$

$$\sum_{v \in U \backslash W} \delta(O, v) \leq (m - |U \cap W|) \cdot H$$

Summing:

$$m \cdot L = \sum_{v \in U} \delta(O, v) \le m \cdot H - \frac{|U \cap W|^2}{4}$$

Structure Theorem

 $opt \geq rad + 0.5 \cdot n.$

Main result

1.95-approximation for CVRP in graphic metrics.

Open question

Study the graphic TSP whose cost depends on n instead of opt.

Thank you!