Optimization of Bootstrapping in Circuits

Fabrice Benhamouda Tancrède Lepoint
Claire Mathieu
Hang Zhou

IBM Research, USA SRI International École Normale Supérieure Max Planck Institute

Motivation: Classical Encryption

Motivation: Classical Encryption

Motivation: Fully Homomorphic Encryption

Gentry 2008:
Fully Homomorphic Encryption (FHE)

Motivation: Fully Homomorphic Encryption

Gentry 2008:
Fully Homomorphic Encryption (FHE)

Encrypted (x)

Encrypted (f(x))

Motivation: Fully Homomorphic Encryption in Details

Encrypted(not a)

Encrypted (a)

Encrypted (a xor b)

Encrypted (b)

Encrypted (a and b)

Motivation: Noise Level

Valid for decryption: noise level within some parameter $L \quad(L \approx 17$ in practice $)$

Motivation: Bootstrap Operations

Goal: Minimize the number of bootstrap operations

Bootstrap Problem

Input:

- a directed acyclic graph $G=(V, E)$ with two kinds of vertices:

$$
\begin{aligned}
\bigcirc & =\max (\cdot, \cdot) \\
\quad & =1+\max (\cdot, \cdot)
\end{aligned}
$$

- an integer parameter L

Output:

- a subset $S \subseteq V$ of minimum cardinality such that bootstrapping S ensures $\ell \leq L$ at every vertex

Example

$$
\begin{aligned}
& \quad \ell=\max (\cdot, \cdot) \\
& \quad \ell=1+\max (\cdot, \cdot)
\end{aligned}
$$

$$
L=2
$$

Previous Results

- Greedy approaches with approximation ratio $\Omega(|V|)$ [Gentry Halevi 2011; Gentry Halevi Smart 2012]
- Heuristic method
[Lepoint Paillier 2013]
- Polynomial time algorithm for $L=1$ and NP-hardness for $L \geq 2$ [Paindavoine Vialla 2015]

Our Results

Approximation
 Polynomial-time L-approximation algorithm $(L \geq 1)$

Idea: linear program and new rounding scheme

Inapproximability

NP-hard to compute an $(L-\epsilon)$-approximation $(L \geq 2)$, assuming the Unique Games Conjecture

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

Our Results

Approximation
 Polynomial-time L-approximation algorithm $(L \geq 1)$

Idea: linear program and new rounding scheme

Inapproximability

NP-hard to compute an $(L-\epsilon)$-approximation ($L \geq 2$), assuming the Unique Games Conjecture

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

Preliminary Observation

Preliminary Observation

Preliminary Observation

Interesting path: containing $L+1$ red vertices

Preliminary Observation

Interesting path: containing $L+1$ red vertices

Observation

bootstrap solution \Longleftrightarrow every interesting path has a bootstrapped vertex

Linear Program Relaxation

$$
x_{v}= \begin{cases}1 & \text { if } v \text { is bootstrapped } \\ 0 & \text { otherwise }\end{cases}
$$

constraint: $x_{v_{1}}+x_{v_{2}}+x_{v_{3}}+x_{v_{4}} \geq 1$

$$
\begin{array}{ll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & \sum_{v \in p} x_{v} \geq 1 \\
& 0 \leq x_{v} \leq 1
\end{array} \quad \forall \text { interesting path } p
$$

Standard Rounding: Sphere Growing Technique

(1) choose a vertex u
(2) compute distance from u in metric of $\left\{x_{v}\right\}$
(3) bootstrap all vertices at distance ≈ 0.5
(9) repeat

Standard Rounding: Sphere Growing Technique

(1) choose a vertex u
(2) compute distance from u in metric of $\left\{x_{v}\right\}$
(3) bootstrap all vertices at distance ≈ 0.5
(3) repeat

Standard Rounding: Sphere Growing Technique

(1) choose a vertex u
(2) compute distance from u in metric of $\left\{x_{v}\right\}$
(3) bootstrap all vertices at distance ≈ 0.5
(3) repeat

Standard Rounding: Sphere Growing Technique

(1) choose a vertex u
(2) compute distance from u in metric of $\left\{x_{v}\right\}$
(3) bootstrap all vertices at distance ≈ 0.5
(3) repeat

Standard Rounding: Counter Example

$$
L=2
$$

u-to- v distance in the metric is 0 .

New Rounding

Definition:

- length of a path: sum of x_{v} along the path
- For every $i \leq L$, define $f_{v, i}$:
minimum length of a path that ends at v and contains i red vertices.
- Interval $A_{v, i}:=\left[f_{v, i}, f_{v, i}+x_{v}\right]$.

Randomized Rounding

(1) Pick $t \in[0,1]$ uniformly at random
(2) For every vertex v, bootstrap v if $t \in A_{v, i}$ for some $i \in\{1, \ldots, L\}$.

Correctness

Every interesting path v_{1}, \ldots, v_{k} contains a bootstrapped vertex.

Define $A_{v_{j}}^{*}:=A_{v_{j}, i_{j}}$, where $i_{j}:=\#$ red vertices among v_{1}, \ldots, v_{j}.

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

0

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

$f_{v_{j+1}, i_{j+1}} \leq f_{v_{j}, i_{j}}+x_{v_{j}}$ by definition of f

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

$f_{v_{j+1}, i_{j+1}} \leq f_{v_{j}, i_{j}}+x_{v_{j}}$ by definition of f

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

$f_{v_{j+1}, i_{j+1}} \leq f_{v_{j}, i_{j}}+x_{v_{j}}$ by definition of f

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

$f_{v_{j+1}, i_{j+1}} \leq f_{v_{j}, i_{j}}+x_{v_{j}}$ by definition of f

Correctness

Claim

The union of $A_{v_{j}}^{*}$ covers the $[0,1]$-interval.
Proof:
(1) $A_{v_{1}}^{*}$ starts at 0 ;
(2) every pair of consecutive intervals $A_{v_{j}}^{*}$ and $A_{v_{j+1}}^{*}$ intersect;
(3) $A_{v_{k}}^{*}$ covers 1 .

$i_{k}=L+1 \quad \Longrightarrow \quad f_{v_{k}, i_{k}} \geq 1$ by definition of f and LP constraints

Approximation Ratio

A vertex v is bootstrapped if $t \in A_{v, i}$ for some $i \in\{1, \ldots, L\}$.
$\mathbb{P}[v$ is bootstapped $] \leq L \cdot x_{v}$.
Expected number of bootstrapped vertices:

$$
\sum_{v \in V} L \cdot x_{v} \leq L \cdot \mathrm{OPT}
$$

Derandomization

$\left\{f_{v, i}\right\}_{v, i} \cup\left\{f_{v, i}+x_{v}\right\}_{v, i}$ contains $2|V| \cdot L$ values.
$[0,1]$ interval is decomposed into $O(|V| \cdot L)$ sub-intervals.

Deterministic Rounding

(1) For each sub-interval, pick any t and perform the previous rounding;
(2) Return the best solution found.

Conclusion

Approximation
 Polynomial-time L-approximation algorithm $(L \geq 1)$

Inapproximability

NP-hard to compute an $(L-\epsilon)$-approximation $(L \geq 2)$, assuming the Unique Games Conjecture

Thank you!

