Optimization of Bootstrapping in Circuits

Fabrice Benhamouda Tancrède Lepoint Claire Mathieu Hang Zhou

IBM Research, USA SRI International École Normale Supérieure Max Planck Institute
Motivation: Classical Encryption

x → $Encrypted(x)$ → $Encrypted(x)$

Key K
Motivation: Classical Encryption

What is $f(x)$?
Motivation: Fully Homomorphic Encryption

Gentry 2008: Fully Homomorphic Encryption (FHE)
Motivation: Fully Homomorphic Encryption

Gentry 2008:
Fully Homomorphic Encryption (FHE)
Motivation: Fully Homomorphic Encryption in Details

- Encrypted(a)
- Encrypted(b)
- Encrypted(not a)
- Encrypted(a xor b)
- Encrypted(a and b)
Motivation: Noise Level

Valid for decryption:
noise level within some parameter L \hspace{1em} ($L \approx 17$ in practice)
Motivation: Bootstrap Operations

Goal: Minimize the number of bootstrap operations
Bootstrap Problem

Input:
- a directed acyclic graph $G = (V, E)$ with two kinds of vertices:
 - $\ell = \max(\cdot, \cdot)$
 - $\ell = 1 + \max(\cdot, \cdot)$
- an integer parameter L

Output:
- a subset $S \subseteq V$ of minimum cardinality such that bootstrapping S ensures $\ell \leq L$ at every vertex
Example

\[\ell = \max(\cdot, \cdot) \]

\[\ell = 1 + \max(\cdot, \cdot) \]

\[L = 2 \]
Previous Results

- **Greedy approaches with approximation ratio** $\Omega(|V|)$
 [Gentry Halevi 2011; Gentry Halevi Smart 2012]

- **Heuristic method**
 [Lepoint Paillier 2013]

- **Polynomial time algorithm for** $L = 1$ **and NP-hardness for** $L \geq 2$
 [Paindavoine Vialla 2015]
Our Results

Approximation
Polynomial-time L-approximation algorithm ($L \geq 1$)

Idea: linear program and new rounding scheme

Inapproximability
NP-hard to compute an $(L - \epsilon)$-approximation ($L \geq 2$), assuming the Unique Games Conjecture

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]
Our Results

Approximation
Polynomial-time L-approximation algorithm ($L \geq 1$)
Idea: linear program and new rounding scheme

Inapproximability
NP-hard to compute an $(L - \epsilon)$-approximation ($L \geq 2$), assuming the Unique Games Conjecture
Idea: reduction to the DAG vertex deletion problem [Svensson 2013]
Preliminary Observation

$L = 2$

a path containing 3 red vertices

⇓

some vertex is bootstrapped
Preliminary Observation

\[L = 2 \]

a path containing 3 red vertices
\[\Downarrow \]
some vertex is bootstrapped
Interesting path: containing $L + 1$ red vertices
Preliminary Observation

\[L = 2 \]

a path containing 3 red vertices \implies some vertex is bootstrapped

Interesting path: containing \(L + 1 \) red vertices

\[L = 2 \]

Bootstrap solution \iff every interesting path has a bootstrapped vertex
\[x_v = \begin{cases}
1 & \text{if } v \text{ is bootstrapped} \\
0 & \text{otherwise}
\end{cases} \]

Constraint: \(x_{v_1} + x_{v_2} + x_{v_3} + x_{v_4} \geq 1 \)

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} x_v \\
\text{s.t.} & \quad \sum_{v \in p} x_v \geq 1 \quad \forall \text{ interesting path } p \\
& \quad 0 \leq x_v \leq 1 \quad \forall v \in V
\end{align*}
\]
Standard Rounding: Sphere Growing Technique

1. choose a vertex \(u \)
2. compute distance from \(u \) in metric of \(\{ x_v \} \)
3. bootstrap all vertices at distance \(\approx 0.5 \)
4. repeat
Standard Rounding: Sphere Growing Technique

1. choose a vertex u
2. compute distance from u in metric of $\{x_v\}$
3. bootstrap all vertices at distance ≈ 0.5
4. repeat
Standard Rounding: Sphere Growing Technique

1. choose a vertex \(u \)
2. compute distance from \(u \) in metric of \(\{x_v\} \)
3. bootstrap all vertices at distance \(\approx 0.5 \)
4. repeat
Standard Rounding: Sphere Growing Technique

1. choose a vertex u
2. compute distance from u in metric of $\{x_v\}$
3. bootstrap all vertices at distance ≈ 0.5
4. repeat
Standard Rounding: Counter Example

$L = 2$

u-to-v distance in the metric is 0.
New Rounding

Definition:

- length of a path: sum of x_v along the path
- For every $i \leq L$, define $f_{v,i}$:
 minimum length of a path that ends at v and contains i red vertices.
- Interval $A_{v,i} := [f_{v,i}, f_{v,i} + x_v]$.

Randomized Rounding

1. Pick $t \in [0, 1]$ uniformly at random
2. For every vertex v, bootstrap v if $t \in A_{v,i}$ for some $i \in \{1, \ldots, L\}$.
Correctness

Every interesting path v_1, \ldots, v_k contains a bootstrapped vertex.

Define $A^*_{v_j} := A_{v_j, i_j}$, where $i_j := \#$ red vertices among v_1, \ldots, v_j.

Claim

The union of $A^*_{v_j}$ covers the $[0, 1]$-interval.
Correctness

Claim

The union of $A_{v_j}^*$ covers the [0, 1]-interval.

Proof:

1. $A_{v_1}^*$ starts at 0;
2. every pair of consecutive intervals $A_{v_j}^*$ and $A_{v_{j+1}}^*$ intersect;
3. $A_{v_k}^*$ covers 1.
Correctness

Claim

The union of $A^*_{v_j}$ covers the $[0, 1]$-interval.

Proof:

1. $A^*_{v_1}$ starts at 0;
2. every pair of consecutive intervals $A^*_{v_j}$ and $A^*_{v_{j+1}}$ intersect;
3. $A^*_{v_k}$ covers 1.
Correctness

Claim

The union of $A_{v_j}^*$ covers the [0, 1]-interval.

Proof:

1. $A_{v_1}^*$ starts at 0;
2. every pair of consecutive intervals $A_{v_j}^*$ and $A_{v_{j+1}}^*$ intersect;
3. $A_{v_k}^*$ covers 1.

$f_{v_{j+1},i_{j+1}} \leq f_{v_{j},i_{j}} + x_{v_{j}}$ by definition of f
Correctness

Claim

The union of $A_{v_j}^*$ covers the $[0, 1]$-interval.

Proof:

1. $A_{v_1}^*$ starts at 0;
2. every pair of consecutive intervals $A_{v_j}^*$ and $A_{v_{j+1}}^*$ intersect;
3. $A_{v_k}^*$ covers 1.

$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$ by definition of f
Correctness

Claim

The union of $A_{v_j}^*$ covers the $[0, 1]$-interval.

Proof:

1. $A_{v_1}^*$ starts at 0;
2. every pair of consecutive intervals $A_{v_j}^*$ and $A_{v_{j+1}}^*$ intersect;
3. $A_{v_k}^*$ covers 1.

\[f_{v_{j+1}, i_{j+1}} \leq f_{v_j, i_j} + x_{v_j} \] by definition of f
Correctness

Claim

The union of $A^*_{v_j}$ covers the $[0, 1]$-interval.

Proof:

1. $A^*_{v_1}$ starts at 0;
2. every pair of consecutive intervals $A^*_{v_j}$ and $A^*_{v_{j+1}}$ intersect;
3. $A^*_{v_k}$ covers 1.

$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$ by definition of f
Correctness

Claim

The union of $A_{v_j}^*$ covers the $[0, 1]$-interval.

Proof:

1. $A_{v_1}^*$ starts at 0;
2. every pair of consecutive intervals $A_{v_j}^*$ and $A_{v_{j+1}}^*$ intersect;
3. $A_{v_k}^*$ covers 1.

\[i_k = L + 1 \implies f_{v_k, i_k} \geq 1 \text{ by definition of } f \text{ and LP constraints} \]
A vertex v is bootstrapped if $t \in A_{v,i}$ for some $i \in \{1, \ldots, L\}$.

$\mathbb{P}[v \text{ is bootstrapped}] \leq L \cdot x_v$.

Expected number of bootstrapped vertices:

$$\sum_{v \in V} L \cdot x_v \leq L \cdot \text{OPT}.$$
Derandomization

\{f_{v,i}\}_{v,i} \cup \{f_{v,i} + x_v\}_{v,i} \text{ contains } 2|V| \cdot L \text{ values.}

[0, 1] interval is decomposed into \(O(|V| \cdot L)\) sub-intervals.

Deterministic Rounding

1. For each sub-interval, pick any \(t\) and perform the previous rounding;
2. Return the best solution found.
Conclusion

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Polynomial-time L-approximation algorithm ($L \geq 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inapproximability</td>
<td>NP-hard to compute an $(L - \epsilon)$-approximation ($L \geq 2$), assuming the Unique Games Conjecture</td>
</tr>
</tbody>
</table>
Thank you!