Optimization of Bootstrapping in Circuits

Fabrice Benhamouda Tancrède Lepoint Claire Mathieu Hang Zhou

IBM Research, USA SRI International École Normale Supérieure Max Planck Institute

Motivation: Classical Encryption

Motivation: Classical Encryption

Motivation: Fully Homomorphic Encryption

Motivation: Fully Homomorphic Encryption

Motivation: Fully Homomorphic Encryption in Details

Motivation: Noise Level

Valid for decryption:

noise level within some parameter L ($L \approx 17$ in practice)

Motivation: Bootstrap Operations

Goal: Minimize the number of bootstrap operations

Bootstrap Problem

Input:

• a directed acyclic graph G = (V, E) with two kinds of vertices:

$$\ell = 1 + \max(\cdot, \cdot)$$

an integer parameter L

Output:

• a subset $S \subseteq V$ of minimum cardinality such that bootstrapping S ensures $\ell \leq L$ at every vertex

Example

$$\ell = 1 + \max(\cdot, \cdot)$$

$$\ell = 0$$

$$L=2$$

Previous Results

- Greedy approaches with approximation ratio $\Omega(|V|)$ [Gentry Halevi 2011; Gentry Halevi Smart 2012]
- Heuristic method [Lepoint Paillier 2013]
- Polynomial time algorithm for L=1 and NP-hardness for $L\geq 2$ [Paindavoine Vialla 2015]

Our Results

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Idea: linear program and new rounding scheme

Inapproximability

NP-hard to compute an $(L-\epsilon)$ -approximation $(L\geq 2)$, assuming the Unique Games Conjecture

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

Our Results

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Idea: linear program and new rounding scheme

Inapproximability

NP-hard to compute an $(L-\epsilon)$ -approximation $(L\geq 2)$, assuming the Unique Games Conjecture

Idea: reduction to the DAG vertex deletion problem [Svensson 2013]

Interesting path: containing L+1 red vertices

Interesting path: containing L+1 red vertices

Observation

bootstrap solution ← every interesting path has a bootstrapped vertex

Linear Program Relaxation

$$x_v = \begin{cases} 1 & \text{if } v \text{ is bootstrapped} \\ 0 & \text{otherwise} \end{cases}$$

constraint:
$$x_{v_1} + x_{v_2} + x_{v_3} + x_{v_4} \ge 1$$

$$\min \quad \sum_{v \in V} x_v$$
 s.t.
$$\sum_{v \in p} x_v \ge 1 \qquad \forall \text{ interesting path } p$$

$$0 \le x_v \le 1 \qquad \forall v \in V$$

- choose a vertex u
- ② compute distance from u in metric of $\{x_v\}$
- ullet bootstrap all vertices at distance pprox 0.5
- repeat

- choose a vertex u
- ② compute distance from u in metric of $\{x_v\}$
- \odot bootstrap all vertices at distance ≈ 0.5
- repeat

- choose a vertex u
- 2 compute distance from u in metric of $\{x_v\}$
- \odot bootstrap all vertices at distance ≈ 0.5
- repeat

- choose a vertex u
- ② compute distance from u in metric of $\{x_v\}$
- \odot bootstrap all vertices at distance ≈ 0.5
- repeat

Standard Rounding: Counter Example

$$L = 2$$

u-to-v distance in the metric is 0.

New Rounding

Definition:

- length of a path: sum of x_v along the path
- For every i ≤ L, define f_{v,i}:
 minimum length of a path that ends at v and contains i red vertices.
- Interval $A_{v,i} := [f_{v,i}, f_{v,i} + x_v].$

Randomized Rounding

- Pick $t \in [0,1]$ uniformly at random
- ② For every vertex v, bootstrap v if $t \in A_{v,i}$ for some $i \in \{1, ..., L\}$.

Every interesting path v_1, \ldots, v_k contains a bootstrapped vertex.

Define $A^*_{v_i} := A_{v_i,i_j}$, where $i_j := \#$ red vertices among v_1,\ldots,v_j .

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- \bullet $A_{v_1}^*$ starts at 0;
- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{\nu_{\nu}}^*$ covers 1.

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{\nu_{\nu}}^*$ covers 1.

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- **2** every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{\nu_k}^*$ covers 1.

$$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$$
 by definition of f

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- \bullet $A_{v_1}^*$ starts at 0;
- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{v_k}^*$ covers 1.

$$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$$
 by definition of f

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- \bullet $A_{v_1}^*$ starts at 0;
- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{\nu_k}^*$ covers 1.

$$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$$
 by definition of f

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;
- \bullet $A_{\nu_k}^*$ covers 1.

$$f_{v_{j+1},i_{j+1}} \leq f_{v_j,i_j} + x_{v_j}$$
 by definition of f

Claim

The union of $A_{\nu_i}^*$ covers the [0,1]-interval.

- ② every pair of consecutive intervals $A_{v_i}^*$ and $A_{v_{i+1}}^*$ intersect;

$$i_k = L+1 \quad \Longrightarrow \quad f_{v_k,i_k} \geq 1$$
 by definition of f and LP constraints

Approximation Ratio

A vertex v is bootstrapped if $t \in A_{v,i}$ for some $i \in \{1, \dots, L\}$.

$$\mathbb{P}[v \text{ is bootstapped}] \leq L \cdot x_v.$$

Expected number of bootstrapped vertices:

$$\sum_{v \in V} L \cdot x_v \le L \cdot \text{OPT}.$$

Derandomization

$$\left\{f_{v,i}\right\}_{v,i} \cup \left\{f_{v,i} + x_v\right\}_{v,i} \text{ contains } 2|V| \cdot L \text{ values.}$$

[0, 1] interval is decomposed into $O(|V| \cdot L)$ sub-intervals.

Deterministic Rounding

- $oldsymbol{0}$ For each sub-interval, pick any t and perform the previous rounding;
- Return the best solution found.

Conclusion

Approximation

Polynomial-time *L*-approximation algorithm ($L \ge 1$)

Inapproximability

NP-hard to compute an $(L - \epsilon)$ -approximation $(L \ge 2)$, assuming the Unique Games Conjecture

Thank you!