Unsplittable Euclidean Capacitated Vehicle Routing

Fabrizio Grandoni

Claire Mathieu

Hang Zhou

IDSIA, Switzerland

CNRS Paris, France

École Polytechnique, France

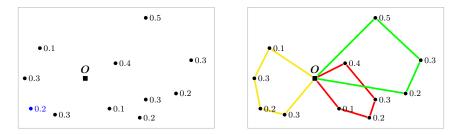
Innovations in Theoretical Computer Science (ITCS) 2023

Capacitated vehicle routing problem (CVRP)

Input:

- depot O
- n terminals with unsplittable demands in (0,1]

Minimize total length of tours s.t. each tour has total demand ≤ 1



Fundamental problem in operations research

Equal demands

Unequal demands

1981	Golden and Wong
1987	
1991	Labbé, Laporte, and Mercure
2021	Blauth, Traub, and Vygen
2022	Friggstad, Mousavi, Rahgoshay, and Salavatipour
2023	Mathieu and Zhou

• general metrics
• Euclidean plane
• planar graphs
• trees
graphs of bounded treewidth
• graphs of bounded highway dimension
graphic metrics

Arbitrary demands

- 1.5-hard [folklore]
- 2.694-approximation [Friggstad et al. 2022]
- $(2+\epsilon)$ -approximation for any $\epsilon>0$ [our result]

Big demands only

- NP-hard [folklore]
- 2.694-approximation [Friggstad et al. 2022]
- $(1+\epsilon)$ -approximation for any $\epsilon > 0$ [our result]

Note: Both our results **match the best known approximation factors** in the corresponding equal demand settings.

Big demands only

Our result

 $(1+\epsilon)$ -approximation for any $\epsilon>0$

Definition

Let $\epsilon > 0$. A demand is **big** if it is at least ϵ , and is **small** otherwise.

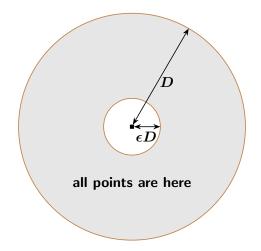
Polynomial time exact algorithm for big demands only, assuming:

- $O_{\epsilon}(1)$ locations
- **2** $O_{\epsilon}(1)$ distinct demands at each location

Q: How to achieve both assumptions?

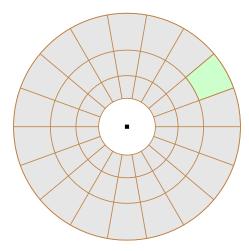
Reducing the number of locations (1/3)

Step 1: Reduce to bounded distance



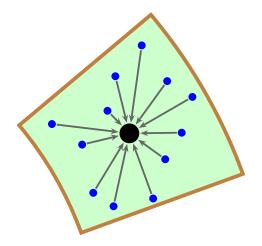
Reducing the number of locations (2/3)

Step 2: Decompose the gray area into $O_{\epsilon}(1)$ cells



Reducing the number of locations (3/3)

Step 3: Move each terminal to the center of its cell



Reducing the number of distinct demands

Adaptive rounding

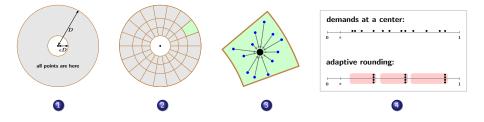
(a) Sort all demands at a center

(b) Make groups of equal cardinality

(c) Round up to maximum demand in group

Algorithm for big demands only

- Reduce to **bounded distance**
- Occompose into cells
- Move each big terminal to the center of its cell
- Apply adaptive rounding on the demands at each center
- Solve the resulting instance in **polynomial time**



Arbitrary demands

Our result

 $(2+\epsilon)$ -approximation for any $\epsilon>0$

Algorithm for big demands only (revisited)

- Reduce to **bounded distance**
- Oecompose into cells
- Move each big terminal to the center of its cell
- Apply adaptive rounding on the demands at each center
- Solve the resulting instance in **polynomial time**
- Q: How to deal with small demands?
- A: Insert one step between ② and ③ : Cluster the small terminals in each cell into big terminals

Case 1: Optimal solution has sufficiently many tours (2/5)

Cluster the small terminals in each cell into big terminals:

(a) Compute a TSP tour on the small terminals in the cell

- (b) Partition the tour into segments, each of total demand $\approx \epsilon$
- (c) For each segment, connect its endpoints to the center of the cell

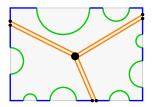
a big terminal at the center of the cell

Case 1: Optimal solution has sufficiently many tours (3/5)

 $\mathbf{opt}\,$: cost of an optimal solution to the initial instance

Lemma 1

The cost within cells is at most $(1+2\epsilon) \cdot \text{opt.}$



- green is the optimal solution
- blue ≤ 1.5 · cell boundaries ≤ ε · opt, by Karp and since the optimal solution has many tours
- orange $\leq \epsilon \cdot \operatorname{opt}$, since each segment has total demand $\approx \epsilon$

Case 1: Optimal solution has sufficiently many tours (4/5)

opt : cost of an optimal solution to the initial instance **opt'** : cost of an optimal solution to the clustered instance

Lemma 2

The cost between cells is at most $(1 + \epsilon) \cdot \operatorname{opt}' \leq (1 + 4\epsilon) \cdot \operatorname{opt}$.

Construction of a near-optimal solution to the clustered instance:

- Compute a set of tours each of capacity $1 + \epsilon$ [Becker and Paul] cost $\leq (1 + \epsilon) \cdot opt$
- Remove one **cluster** (of demand ϵ) from each tour
- Connect the removed clusters by a TSP tour
 cost ≤ ε ⋅ opt, since the optimal solution has many tours
- Iterated tour partitioning on the TSP tour
 cost ≤ ε opt, since only ε demand is removed from each tour

Case 1: Optimal solution has sufficiently many tours (5/5)

opt : cost of an optimal solution to the initial instance **opt'** : cost of an optimal solution to the clustered instance

Lemma 1

The cost within cells is at most $(1+2\epsilon) \cdot \text{opt.}$

Lemma 2

The cost between cells is at most $(1+4\epsilon) \cdot \text{opt.}$

Conclusion: Overall cost is at most $(2+6\epsilon) \cdot \text{opt.}$

Algorithm

- **Q** Round down each demand to an integer multiple of $\frac{1}{2n}$
- **②** Compute a $(1 + \epsilon)$ -approximation to the rounded instance [Arora]
- Split each tour into two tours, each within the capacity

Cost analysis:

- **2** : at most $(1 + \epsilon) \cdot \text{opt}$
- I doubling the cost

Conclusion: Overall cost is at most $(2+2\epsilon) \cdot \text{opt.}$

Arbitrary demands

- 1.5-hard [folklore]
- 2.694-approximation [Friggstad et al. 2022]
- $(2+\epsilon)$ -approximation for any $\epsilon>0$ [our result]

Big demands only

- NP-hard [folklore]
- 2.694-approximation [Friggstad et al. 2022]
- $(1+\epsilon)$ -approximation for any $\epsilon>0$ [our result]

Thank you!