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Capacitated vehicle routing problem (CVRP)

Input:

depot O

n terminals with unsplittable demands in (0,1]

Minimize total length of tours s.t. each tour has total demand ≤ 1
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Fundamental problem in operations research
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general metrics

Euclidean plane

planar graphs

trees

graphs of bounded treewidth

graphs of bounded highway dimension

graphic metrics



Previous and new results on the Euclidean CVRP

Arbitrary demands

1.5-hard [folklore]

2.694-approximation [Friggstad et al. 2022]

(2 + ϵ)-approximation for any ϵ > 0 [our result]

Big demands only

NP-hard [folklore]

2.694-approximation [Friggstad et al. 2022]

(1 + ϵ)-approximation for any ϵ > 0 [our result]

Note: Both our results match the best known approximation factors
in the corresponding equal demand settings.



Big demands only

Our result

(1 + ϵ)-approximation for any ϵ > 0



Polynomial time algorithm under assumptions

Definition

Let ϵ > 0. A demand is big if it is at least ϵ, and is small otherwise.

Polynomial time exact algorithm for big demands only, assuming:

1 Oϵ(1) locations

2 Oϵ(1) distinct demands at each location

Q: How to achieve both assumptions?



Reducing the number of locations (1/3)

Step 1: Reduce to bounded distance
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all points are here



Reducing the number of locations (2/3)

Step 2: Decompose the gray area into Oϵ(1) cells



Reducing the number of locations (3/3)

Step 3: Move each terminal to the center of its cell



Reducing the number of distinct demands

Adaptive rounding

(a) Sort all demands at a center

0 ϵ 1

(b) Make groups of equal cardinality

0 ϵ 1

(c) Round up to maximum demand in group

0 ϵ 1



Algorithm for big demands only

1 Reduce to bounded distance
2 Decompose into cells
3 Move each big terminal to the center of its cell
4 Apply adaptive rounding on the demands at each center
5 Solve the resulting instance in polynomial time
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adaptive rounding:

0 ϵ 1

demands at a center:

1 2 3 4



Arbitrary demands

Our result

(2 + ϵ)-approximation for any ϵ > 0



Case 1: Optimal solution has sufficiently many tours (1/5)

Algorithm for big demands only (revisited)

1 Reduce to bounded distance
2 Decompose into cells
3 Move each big terminal to the center of its cell
4 Apply adaptive rounding on the demands at each center
5 Solve the resulting instance in polynomial time

Q: How to deal with small demands?

A: Insert one step between 2 and 3 :

Cluster the small terminals in each cell into big terminals



Case 1: Optimal solution has sufficiently many tours (2/5)

Cluster the small terminals in each cell into big terminals:

(a) Compute a TSP tour on the small
terminals in the cell

(b) Partition the tour into segments, each of
total demand ≈ ϵ

(c) For each segment, connect its endpoints
to the center of the cell

⇓
a big terminal at the center of the cell



Case 1: Optimal solution has sufficiently many tours (3/5)

opt : cost of an optimal solution to the initial instance

opt′ : cost of an optimal solution to the clustered instance

Lemma 1

The cost within cells is at most (1 + 2ϵ) · opt.

green is the optimal solution

blue ≤ 1.5 · cell boundaries ≤ ϵ · opt,
by Karp and since the optimal solution has many tours

orange ≤ ϵ · opt, since each segment has total demand ≈ ϵ



Case 1: Optimal solution has sufficiently many tours (4/5)

opt : cost of an optimal solution to the initial instance

opt′ : cost of an optimal solution to the clustered instance

Lemma 2

The cost between cells is at most (1 + ϵ) · opt′ ≤ (1 + 4ϵ) · opt.

Construction of a near-optimal solution to the clustered instance:

Compute a set of tours each of capacity 1 + ϵ [Becker and Paul]
cost ≤ (1 + ϵ) · opt
Remove one cluster (of demand ϵ) from each tour

Connect the removed clusters by a TSP tour
cost ≤ ϵ · opt, since the optimal solution has many tours

Iterated tour partitioning on the TSP tour
cost ≤ ϵ · opt, since only ϵ demand is removed from each tour



Case 1: Optimal solution has sufficiently many tours (5/5)

opt : cost of an optimal solution to the initial instance

opt′ : cost of an optimal solution to the clustered instance

Lemma 1

The cost within cells is at most (1 + 2ϵ) · opt.

Lemma 2

The cost between cells is at most (1 + 4ϵ) · opt.

Conclusion: Overall cost is at most (2 + 6ϵ) · opt.



Case 2: Optimal solution has a bounded number of tours

Algorithm

1 Round down each demand to an integer multiple of 1
2n

2 Compute a (1 + ϵ)-approximation to the rounded instance [Arora]

3 Split each tour into two tours, each within the capacity

Cost analysis:

2 : at most (1 + ϵ) · opt
3 : doubling the cost

Conclusion: Overall cost is at most (2 + 2ϵ) · opt.



Summary on the Euclidean CVRP

Arbitrary demands

1.5-hard [folklore]

2.694-approximation [Friggstad et al. 2022]

(2 + ϵ)-approximation for any ϵ > 0 [our result]

Big demands only

NP-hard [folklore]

2.694-approximation [Friggstad et al. 2022]

(1 + ϵ)-approximation for any ϵ > 0 [our result]

Thank you!


