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A fundamental problem in operations research, e.g., more than 3700
articles on vehicle routing at DBLP.
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The ITP algorithm [Haimovich and Rinnooy Kan 1985]
1 compute a traveling salesman tour
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Approximation ratio: upper bound = lower bound = 2− 1
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[Altinkemer and Gavish 1990, Li and Simchi-Levi 1990]
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Iterated Tour Partitioning (ITP)

Approximation ratio: upper bound = lower bound = 2− 1
k

[Altinkemer and Gavish 1990, Li and Simchi-Levi 1990]

Tight instance:

Q: How well does it work on random instances?



ITP in the Random Setting

Random Setting: Customers are independent, identically distributed (i.i.d.)
random points in the unit square.

Haimovich and Rinnooy Kan 1985

for k = o(
√
n): 1 + o(1)

for k = ω(
√
n): 1 + o(1)

for k = Θ(
√
n): also effective?



ITP in the Random Setting – New Results

Upper bound on the approximation ratio of ITP in the random setting

1.995 [Bompadre, Dror, and Orlin 2007]

1.915 [this work]

Lower bound on the approximation ratio of ITP in the random setting

1 + c0 for some constant c0 > 0 [this work]
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High-Level Analysis

Two factors in the cost of an ITP solution
[Haimovich and Rinnooy Kan 1985]:

1 traveling salesman tour cost: TSP

2 radius cost: radius = 2
k ·∑x δ(O, x)

O

Properties:

ITP ≤ radius + TSP

OPT ≥ radius

OPT ≥ TSP

Implication:

ITP is a 2-approximation.

Properties:

ITP ≤ radius + TSP

OPT ≥ radius + 0.085 · TSP
OPT ≥ TSP

Implication:

ITP is a 1.915-approximation.



Proof for the Lower Bound on OPT (1/4)

Consider a tour T visiting m points.

L :=
1

m

∑
x∈T

δ(O, x) and ∆ := max
x∈T

δ(O, x)− L.

cost(T ) ≥ 2(L+∆)

W =
{
x ∈ T

∣∣∣ δ(O, x) ≥ threshold
}

cost(T ) ≥ 2 · threshold + TSP(W )

Facts:

|W | ≥ λ ·m
TSP(W ) ≥ ∑

x∈W δ(x,W \ {x})
O

L+∆

L

threshold = L− λ
1−λ ·∆



Proof for the Lower Bound on OPT (2/4)

Summing over all tours T in an optimal solution, we obtain

OPT ≥
∑
T

2(LT +∆T )

OPT ≥
∑
T

2

(
LT − λ

1− λ
·∆T

)
+

∑
x∈U

δ(x, U \ {x}), where U =
⋃
T

WT .

Linear combination of both inequalities with coefficients λ and 1− λ:

Structural Theorem

Let V be a set of n points in any metric. For any λ ∈ (0, 1), there exists a
subset U ⊆ V of cardinality at least λ · n such that

OPT ≥ radius + (1− λ)
∑
x∈U

δ(x, U \ {x}).



Proof for the Lower Bound on OPT (3/4)

Next, we analyze

min
U

∑
x∈U

δ(x, U \ {x})

in the probabilistic setting for a subset U ⊆ V of cardinality at least λ · n.

Lemma

Asymptotically almost surely, min
U

∑
x∈U

δ(x, V \ {x}) > f(λ) · √n, where

f(λ) := 1
2 erf

(√
ln 1

1−λ

)
− (1− λ) ·

√
1
π · ln 1

1−λ in which erf(·) is the
Gauss error function.

Technique: weak law of large numbers on the closest point distance
[Penrose and Yukich 2003]



Proof for the Lower Bound on OPT (4/4)

OPT ≥ radius + (1− λ) · f(λ) · √n, for any λ.

Let h(λ) = (1− λ) · f(λ). The maximum value of h(λ) is 0.0786.

OPT ≥ radius + 0.0786 · √n

TSP < 0.922 · √n [Steinerberger 2015]

Conclusion: OPT ≥ radius + 0.085 · TSP.



ITP in the Random Setting – New Results

Upper bound on the approximation ratio of ITP in the random setting

1.995 [Bompadre, Dror, and Orlin 2007]

1.915 [this work]

Lower bound on the approximation ratio of ITP in the random setting

1 + c0 for some constant c0 > 0 [this work]



ITP Solution

1 Partition the unit square into small squares

2 Make a tour to visit points in each small square



New Solution: Decomposition of the Unit Square

box



New Solution: Decomposition of a Box



New Solution: A Mixed Tour

O

Positive effect on the TSP cost

Negative effect on the radius cost

Delicate definition of the decompositionw�
Improvement upon an ITP solution



Solution Costs

Cost of an ITP solution = radius + TSP

Cost of the new solution < radius + TSP− 0.000068 · √n

Conclusion: ITP is at best a (1 + c0)-approximation for c0 > 0.



Take-Home Message and Open Problems

We give a partial answer to the question:

How good is the Iterated Tour Partitioning algorithm?

Our partial answer in the random setting:

Approximation ratio between 1 + c0 and 1.915.

Open problems:

1 Reduce the gap between 1 + c0 and 1.915 for the performance of ITP
in the random setting.

2 Design a PTAS for capacitated vehicle routing in the random setting.


