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A fundamental problem in operations research, e.g., more than 3700
articles on vehicle routing at DBLP.
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lterated Tour Partitioning (ITP)

Approximation ratio: upper bound = lower bound = 2 — %
[Altinkemer and Gavish 1990, Li and Simchi-Levi 1990]

Tight instance:

Group 2 Group s-1

Group 1 Group 8

Q: How well does it work on random instances?



ITP in the Random Setting

Random Setting: Customers are independent, identically distributed (i.i.d.)
random points in the unit square.

Haimovich and Rinnooy Kan 1985
e for k =o(y/n): 14 0(1)
o for k =w(y/n): 1+o0(1)
e for k = ©(y/n): also effective?
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Upper bound on the approximation ratio of ITP in the random setting
e 1.995 [Bompadre, Dror, and Orlin 2007]
e 1.915 [this work]

Lower bound on the approximation ratio of ITP in the random setting

@ 1+ ¢y for some constant ¢y > 0 [this work]
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High-Level Analysis

Two factors in the cost of an ITP solution

[Haimovich and Rinnooy Kan 1985]: /\
@ traveling salesman tour cost: TSP
@ radius cost: radius = £ - Y. §(0, z)

Properties: Properties:
o ITP < radius + TSP o ITP < radius + TSP
e OPT > radius @ OPT > radius + 0.085 - TSP
e OPT > TSP e OPT > TSP

Implication: Implication:

o ITP is a 2-approximation. @ ITP is a 1.915-approximation.



Proof for the Lower Bound on OPT (1/4)

Consider a tour T visiting m points.

1
L= - 25(0,$) and A= ma%cé(O,x) — L.

A
zeT

cost(T) > 2(L + A)

W = {T eT ‘ 0(0,x) > threshold} o

- - threshold = L — ﬁ AN

cost(T") > 2 - threshold + TSP(W)
Facts:

o [W|>A-m

o TSP(W) >3 ey o(x, W\ {z})




Proof for the Lower Bound on OPT (2/4)

Summing over all tours T" in an optimal solution, we obtain

OPT > Z (Lt + A7)

OPT>Z (LT— AT> Z(SazU\{w}) where U = UWT'

zelU

Linear combination of both inequalities with coefficients A and 1 — A:

Structural Theorem

Let V' be a set of n points in any metric. For any A € (0, 1), there exists a
subset U C V of cardinality at least A - n such that

OPT > radius + (1 — A 25 z, U\ {z}).
zelU




Proof for the Lower Bound on OPT (3/4)

Next, we analyze

mUin Z 3z, U\ {z})

zeU
in the probabilistic setting for a subset U C V of cardinality at least A - n.

Asymptotically almost surely, mUin Z §(x, V\{z}) > f(\) - v/n, where
zelU

FO) = Serf (/i lx) = (=X /L In Ly in which erf(") is the

Gauss error function.

Technique: weak law of large numbers on the closest point distance
[Penrose and Yukich 2003]



Proof for the Lower Bound on OPT (4/4)

OPT > radius + (1 — A) - f(A) - y/n, for any A.
Let A(A) = (1 = A) - f(A). The maximum value of h(\) is 0.0786.

()

e OPT > radius + 0.0786 - v/n
e TSP < 0.922 - /n [Steinerberger 2015]

Conclusion: OPT > radius + 0.085 - TSP.



ITP in the Random Setting — New Results

Upper bound on the approximation ratio of ITP in the random setting
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ITP Solution

@ Partition the unit square into small squares

© Make a tour to visit points in each small square




New Solution: Decomposition of the Unit Square

box

y




New Solution: Decomposition of a Box




New Solution: A Mixed Tour

@ Positive effect on the TSP cost

@ Negative effect on the radius cost
Delicate definition of the decomposition
Improvement upon an I'TP solution

d
o]



Solution Costs

Cost of an ITP solution = radius + TSP
Cost of the new solution < radius + TSP — 0.000068 - v/n

Conclusion: ITP is at best a (1 + ¢p)-approximation for ¢y > 0.



Take-Home Message and Open Problems

We give a partial answer to the question:

How good is the Iterated Tour Partitioning algorithm?

Our partial answer in the random setting:

Approximation ratio between 1 + co and 1.915.

Open problems:

@ Reduce the gap between 1 + ¢y and 1.915 for the performance of ITP
in the random setting.

@ Design a PTAS for capacitated vehicle routing in the random setting.



