Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

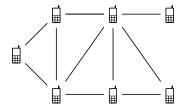
Marc Lelarge^{1,2} and Hang Zhou¹

¹École Normale Supérieure de Paris, France

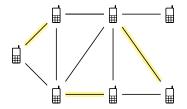
²INRIA, France

December 16, 2013

- Sublinear-time algorithms for graph problems
- Optimization vs. Counting and Statistics



- Sublinear-time algorithms for graph problems
- Optimization vs. Counting and Statistics



- G = (V, E) undirected graph with |V| = n
- Maximum degree Δ
- Monomer \leftrightarrow one vertex, Dimer \leftrightarrow two adjacent vertices
- Monomer-Dimer arrangement ↔ matching

Definition

- M: set of all matchings of G
- Partition function: $Z(G, \lambda) = \sum_{M \in \mathbb{M}} \lambda^{|M|}$
- Gibbs distribution:

$$\pi_{G,\lambda}(M) = rac{\lambda^{|M|}}{Z(G,\lambda)}, \quad \forall M \in \mathbb{M}$$

• Marginal probability:

$$p_{G,\lambda}(v) := \sum_{M
i \neq v} \pi_{G,\lambda}(M), \quad \forall v \in V$$

• Partition function:

- #P-complete (Valiant 1979, Vadhan 2002)
- Randomized polynomial-time approximation scheme (Sinclair 1993, Jerrum Sinclair 1997)
- Deterministic polynomial-time approximation scheme (Bayati *et al.* 2007)
- Matching statistics
 - #P-hard (Sinclair Srivastava 2013)
- Permanent of expander graphs
 - Randomized polynomial-time approximation scheme (Jerrum Sinclair Vigoda 2004)
 - Deterministic polynomial-time approximation algorithm (Gamarnik Katz 2010)

Local computations for marginal probability

- Approximation algorithm
- Complexity lower bound

Randomized sublinear-time approximation algorithms for

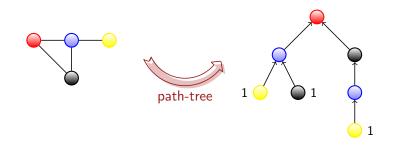
- Partition function
- Matching statistics
- Permanent of expander graphs

- ϵ -approximation solution : within additive error ϵ
- ϵ -approximation algorithm : outputs an ϵ -approximation solution with probability at least 2/3

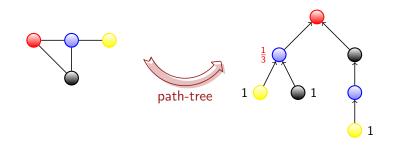
- Oracles: $\mathcal{D}(v)$ and $\mathcal{N}(v, i)$
- Our focus: Query complexity

$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in N(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$

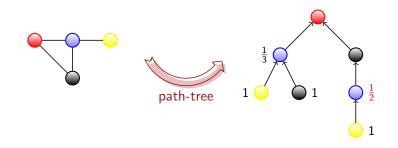
$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in N(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$



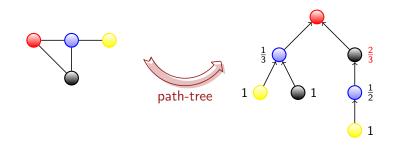
$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in \mathcal{N}(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$



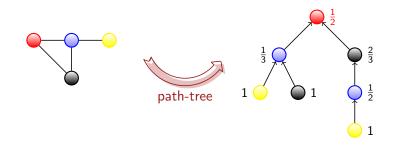
$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in \mathcal{N}(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$



$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in \mathcal{N}(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$



$$p_{G,\lambda}(v) = \frac{1}{1 + \lambda \sum_{u \in \mathcal{N}(G,v)} p_{G \setminus \{v\},\lambda}(u)}$$



•
$$T(v)$$
 : the path-tree rooted at v

•
$$x_u(v) := rac{1}{1 + \lambda \sum_{w \succ u} x_w(v)}, ext{ for every } u \in T(v)$$

• $x_v(v) = p_{G,\lambda}(v)$

- $T^h(v)$: T(v) truncated at depth h
- $x_u^h(v)$: the solution of the recursions in $T^h(v)$

Correlation decay property (Bayati et al. 2007)

$$|\log x_{v}^{h}(v) - \log p_{G,\lambda}(v)| \leq \epsilon$$
, for any $h \geq h(\epsilon, \Delta) = \tilde{O}\left(\sqrt{\lambda\Delta}\log(1/\epsilon)
ight).$

Proposition

We can compute an ϵ -approximation of $p_{G,\lambda}(v)$ using $O\left(\Delta^{h(\epsilon,\Delta)}\right)$ queries.

Proposition (lower bound)

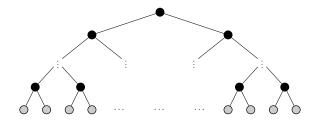
Any approximation algorithm requires at least the above query complexity.

Proposition

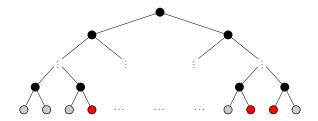
We can compute an ϵ -approximation of $p_{G,\lambda}(v)$ using $O(\Delta^{h(\epsilon,\Delta)})$ queries.

Proposition (lower bound)

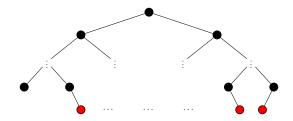
Any approximation algorithm requires at least the above query complexity.



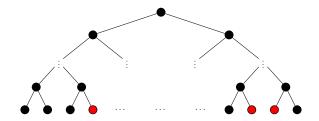
Sublinear-Time Algorithms for Monomer-Dimer Systems



Sublinear-Time Algorithms for Monomer-Dimer Systems



Sublinear-Time Algorithms for Monomer-Dimer Systems



Sublinear-Time Algorithms for Monomer-Dimer Systems

$$Z(G,\lambda) = \prod_{1 \le k \le n} p_{G_k,\lambda}^{-1}(v_k)$$

Algorithm for log $Z(G, \lambda)$

- Take $\Theta(1/\epsilon^2)$ samples uniformly at random from $[1, \ldots, n]$;
- Compute an ϵ -approximation of log $p_{G_k,\lambda}^{-1}(v_k)$ for every sample k;
- Return $n \cdot ($ the average of the estimates).

Main Theorem

We have an ϵ n-approximation algorithm for the logarithm of the partition function with $\tilde{O}\left((1/\epsilon)^{\tilde{O}(\sqrt{\Delta})}\right)$ queries. In addition, any ϵ n-approximation algorithm needs $\Omega(1/\epsilon^2)$ queries.

Average matching size

$$E(G,\lambda) := \sum_{M \in \mathbb{M}} |M| \cdot \pi_{G,\lambda}(M)$$
$$= n - \frac{1}{2} \sum_{1 \le k \le n} p_{G,\lambda}(v_k)$$

Theorem

We have an ϵ n-approximation algorithm for the average matching size with $\tilde{O}\left((1/\epsilon)^{\tilde{O}(\sqrt{\Delta})}\right)$ queries. In addition, any ϵ n-approximation algorithm needs $\Omega(1/\epsilon^2)$ queries.

$$\begin{array}{lll} S(G,\lambda) & := & -\sum_{M\in\mathbb{M}}\pi_{G,\lambda}(M)\log\pi_{G,\lambda}(M) \\ & = & \log Z(G,\lambda) + \log\lambda\cdot E(G,\lambda) \end{array}$$

Corollary

We have an ϵ n-approximation algorithm for the entropy of a matching with $\tilde{O}\left((1/\epsilon)^{\tilde{O}(\sqrt{\Delta})}\right)$ queries. In addition, any ϵ n-approximation algorithm needs $\Omega(1/\epsilon^2)$ queries.

Application: Permanent of expander graphs

- Bi-partite graph G with vertices $X \cup Y$, |X| = |Y| = n
- α -expander graph:

 $|N(S)| \ge (1 + \alpha)|S|$, for $S \subset X$ or $S \subset Y$ with $|S| \le n/2$

• PERM : Permanent of the adjacency matrix of G

Lemma (Gamarnik Katz 2010)

$$1 \leq \frac{Z(\mathcal{G}, \lambda)}{\lambda^n \cdot \operatorname{PERM}} \leq e^{O(n\lambda^{-1}\log^{-1}(1+\alpha)\log\Delta)}.$$

Corollary

We have an ϵ n-approximation algorithm for $\log PERM$ with query complexity $\tilde{O}\left((1/\epsilon)^{\tilde{O}(\sqrt{\Delta/(\epsilon\alpha)})}\right)$.

- Marginal probability (correlation decay property)
- Sublinear-time approximation for monomer-dimer systems
- Extension to the partition function of independent sets
- Experiments on large real-world graphs

Thank you!