A Tight $(1.5 + \epsilon)$ -Approximation for Unsplittable Capacitated Vehicle Routing on Trees

Claire Mathieu

Hang Zhou

CNRS Paris, France

École Polytechnique, France

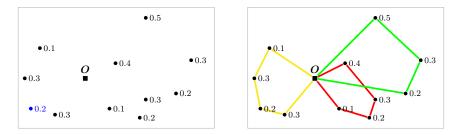
ICALP 2023

Unsplittable capacitated vehicle routing problem (UCVRP)

Input:

- depot O
- n terminals with unsplittable demands in (0,1]

Minimize total length of tours s.t. each tour has total demand ≤ 1



Fundamental problem in operations research

Equal Demand

2023 Nie and Zhou

Unequal Demand

1981	Golden and Wong
1987	Altinkemer and Gavish
1991	Labbé, Laporte, and Mercure
2021	 Blauth, Traub, and Vygen
2022	Friggstad, Mousavi, Rahgoshay, and Salavatipour
2023	 Grandoni, Mathieu, and Zhou
2023	Mathieu and Zhou

- general metrics
- Euclidean plane
- planar graphs
- trees
- graphs of bounded treewidth
- graphs of bounded highway dimension
- graphic metrics

- NP-hard to approximate to better than 1.5 [Golden Wang 1981]
- polynomial-time 2-approximation [Labbé Laporte Mercure 1991]



Our Result

polynomial-time $(1.5 + \epsilon)$ -approximation

Easier versions

unit demand: PTAS [Mathieu Zhou 2022]

splittable demand: PTAS [Mathieu Zhou 2022]

infinite capacity: poly-time [folklore: TSP on trees]

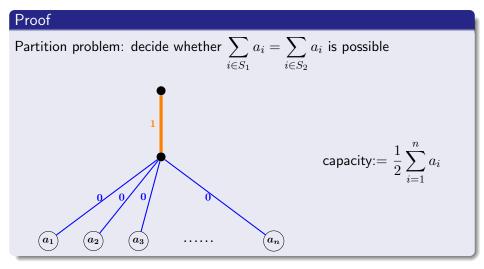
UCVRP on trees is the easiest vehicle routing problem that is APX-hard

Harder versions	
general metric:	lower bound 1.5 v.s. upper bound $3.194 + \epsilon$ [Friggstad Mousavi Rahgoshay Salavatipour 2022]
Euclidean plane:	lower bound 1.5 v.s. upper bound $2 + \epsilon$ [Grandoni Mathieu Zhou 2023]

complexity of approximation of all harder vehicle routing problems is open

UCVRP on trees: Hardness of approximation

NP-hard to approximate UCVRP on trees to better than 1.5 [Golden Wang 1981]



Our Result

polynomial-time $(1.5 + \epsilon)$ -approximation

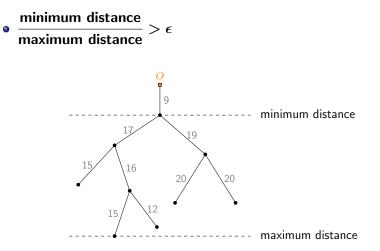
Standard general approach

simplifying input: modifying input to have a particular structuresimplifying output: modifying output to have a particular structuredynamic programming: solving simplified problem optimally

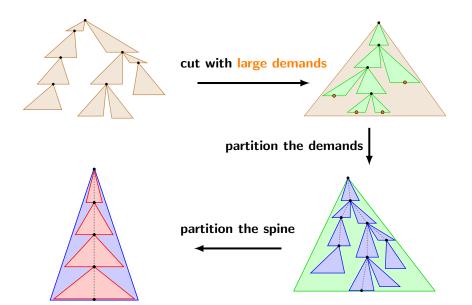
Simplifying input

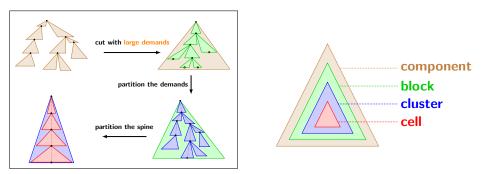
May assume without loss of generality:

- binary tree
- depot at the root, demands at the leaves



Simplifying output: Multi-level decomposition

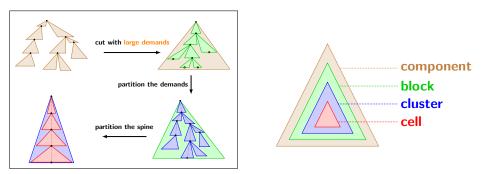




Properties

- at most O(1) tours in component
- no large demands in block
- small total demand in cluster
- short spine in cell

Combine solutions between components by adaptive rounding and $\ensuremath{\mathsf{DP}}$



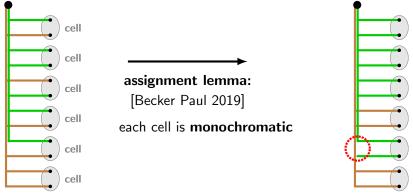
Structure Theorem in Component

There is a **capacity-preserving** way to modify the solution, **setting aside some terminals**, so that

- in each cell, the terminals are visited by a single tour
- the terminals set aside are covered by just one additional tour
- the solution cost is increased by at most 50%

Proof of the Structure Theorem (1/4)

For intuition: special case when all demands are small Optimal solution = green tour and brown tour

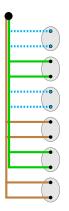


To keep green tour connected, lengthen its spine

- short spine in cell \implies lengthening is cheap
- small total demand in cluster => tour capacity increased slightly

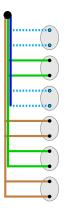
Proof of the Structure Theorem (2/4)

Set aside demands so that each tour is within capacity



Proof of the Structure Theorem (3/4)

Create a new tour for demands set aside by adding a piece of spine

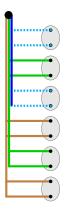


Cost increases by at most 50%:

the added spine already used by two tours: green tour and brown tour

Proof of the Structure Theorem (4/4)

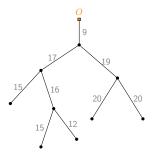
Create a new tour for demands set aside by adding a piece of spine



- Q: Why can the terminals set aside be covered by one additional tour?
- A: Play with the parameters between
 - number of tours in component (large constant), and
 - max demand of a cell or cluster (small constant)

• NP-hard to approximate to better than 1.5 [Golden Wang 1981]

• polynomial-time 2-approximation [Labbé Laporte Mercure 1991]



Our Result

polynomial-time $(1.5 + \epsilon)$ -approximation

Thank you!