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Unsplittable capacitated vehicle routing problem (UCVRP)

Input:
e depot O

e n terminals with unsplittable demands in (0, 1]

Minimize total length of tours s.t. each tour has total demand <1
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Fundamental problem in operations research
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UCVRP on trees

o NP-hard to approximate to better than 1.5
[Golden Wang 1981]

@ polynomial-time 2-approximation
[Labbé Laporte Mercure 1991]

polynomial-time (1.5 + €)-approximation




UCVRP on trees: Related work

Easier versions

unit demand: PTAS [Mathieu Zhou 2022]
splittable demand: PTAS [Mathieu Zhou 2022]
infinite capacity: poly-time [folklore: TSP on trees]

UCVRP on trees is the easiest vehicle routing problem that is APX-hard

Harder versions

general metric: lower bound 1.5 v.s. upper bound 3.194 + ¢
[Friggstad Mousavi Rahgoshay Salavatipour 2022]
Euclidean plane: lower bound 1.5 v.s. upper bound 2 + ¢
[Grandoni Mathieu Zhou 2023]

complexity of approximation of all harder vehicle routing problems is open



UCVRP on trees: Hardness of approximation

NP-hard to approximate UCVRP on trees to better than 1.5
[Golden Wang 1981]

Partition problem: decide whether Z a; = Z a; is possible
1€S1 €S2

1 n
capacity:= 3 Z a;
i=1




UCVRP on trees: Approximation algorithm

polynomial-time (1.5 4 €)-approximation

Standard general approach

simplifying input: modifying input to have a particular structure
simplifying output: modifying output to have a particular structure

dynamic programming: solving simplified problem optimally




Simplifying input



May assume without loss of generality:
@ binary tree
@ depot at the root, demands at the leaves

minimum distance

o
maximum distance

minimum distance

maximum distance



Simplifying output:

Multi-level decomposition
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Properties

e at most O(1) tours in component
@ no large demands in block
o small total demand in cluster

@ short spine in cell

Combine solutions between components by adaptive rounding and DP
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Structure Theorem in Component

There is a capacity-preserving way to modify the solution, setting aside
some terminals, so that

@ in each cell, the terminals are visited by a single tour

@ the terminals set aside are covered by just one additional tour

@ the solution cost is increased by at most 50%




Proof of the Structure Theorem (1/4)

For intuition: special case when all demands are small
Optimal solution = green tour and brown tour
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S i assignment lemma:
[Becker Paul 2019]

() cell . .
e/ each cell is monochromatic

| cell

| cell

To keep green tour connected, lengthen its spine

@ short spine in cell = lengthening is cheap
o small total demand in cluster = tour capacity increased slightly



Proof of the Structure Theorem (2/4)

Set aside demands so that each tour is within capacity




Proof of the Structure Theorem (3/4)

Create a new tour for demands set aside by adding a piece of spine

Cost increases by at most 50%:

the added spine already used by two tours: green tour and brown tour



Proof of the Structure Theorem (4/4)

Create a new tour for demands set aside by adding a piece of spine

Q: Why can the terminals set aside be covered by one additional tour?
A: Play with the parameters between

@ number of tours in component (large constant), and

@ max demand of a cell or cluster (small constant)



UCVRP on trees: Conclusion

@ NP-hard to approximate to better than 1.5
[Golden Wang 1981]

@ polynomial-time 2-approximation
[Labbé Laporte Mercure 1991]

polynomial-time (1.5 + €)-approximation \

Thank you!
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