A PTAS for Capacitated Vehicle Routing on Trees

Claire Mathieu

CNRS Paris, France

Hang Zhou

École Polytechnique, France

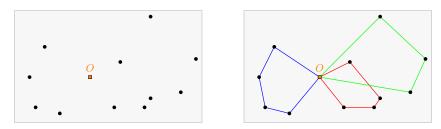
ICALP 2022

Capacitated vehicle routing

Input:

- depot O
- n terminals
- tour capacity k

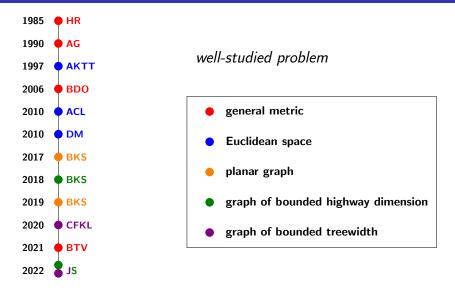
Minimize total length of tours



Fundamental problem in operations research

e.g., more than 4000 articles on vehicle routing on DBLP

Capacitated vehicle routing

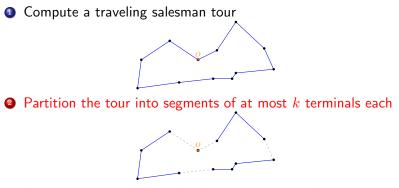


Polynomial time approximation scheme (PTAS) only for small capacity k.

② Partition the tour into segments of at most k terminals each

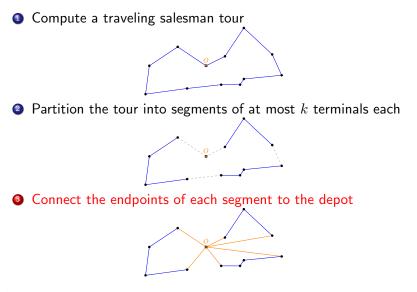
Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{\text{TSP}} \ge 2$

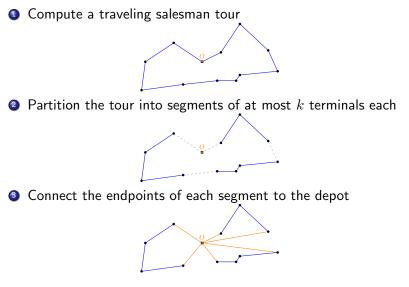


Connect the endpoints of each segment to the depot

Approximation ratio $\approx 1 + \alpha_{TSP} \ge 2$



Approximation ratio $\approx 1 + \alpha_{\rm TSP} \ge 2$



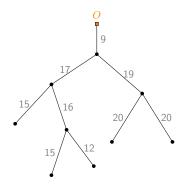
Approximation ratio $\approx 1 + \alpha_{TSP} \ge 2$

Capacitated vehicle routing on trees

NP-hard [LLM 1991]

Approximation algorithms:

- 1.5-approximation [HK 1998]
- 1.351-approximation [AKK 2001]
- 1.333-approximation [Bec 2018]
- bicriteria PTAS [BP 2019]
- QPTAS [JS 2022]



Our Result

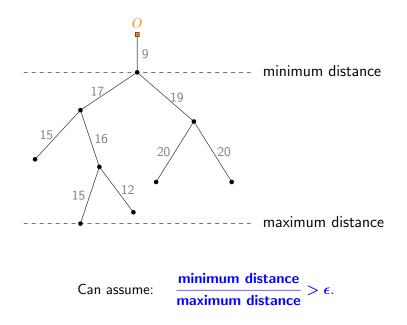
PTAS for Capacitated Vehicle Routing on Trees

Note: First PTAS for general capacity k.

Jayaprakash and Salavatipour [SODA 2022]:

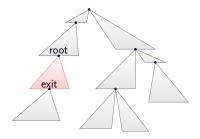
"it is not clear if it (the QPTAS) can be turned into a PTAS without significant new ideas."

Preprocessing: bounded distance property



Decomposing the tree into components

Inspiration: clusters decomposition [Becker and Paul]



each component has:

- $\bullet \, \approx k/\epsilon \, \, {\rm terminals}$
- 1 root vertex
- ≤ 1 exit vertex

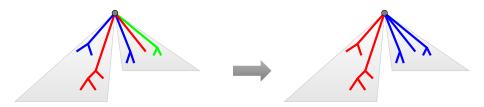
Structure Theorem

There is a near-optimal solution such that each subtour in a component visits either 0 or at least $\epsilon \cdot k$ terminals.

Definition: a subtour in a component is **small** if it visits more than 0 but less than $\epsilon \cdot k$ terminals.

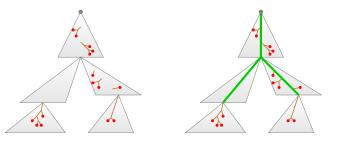
Elimination of small subtours

- Detach small subtours
- Ombine small subtours within components
- ③ Reassign combined subtours [Becker and Paul]



Difficulty: after reassignment some tours may exceed capacity

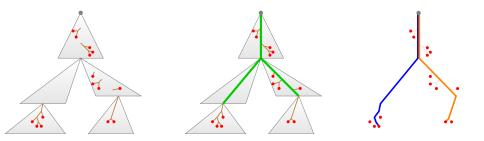
Proof of the Structure Theorem (2/4)



- Remove some subtours
- **6** Include spine subtours

brown & green: traveling salesman tour covering the red terminals

Proof of the Structure Theorem (3/4)

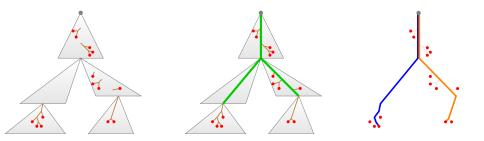


However, the traveling salesman tour may exceed capacity.

Our approach: iterated tour partitioning

• Add connections to the depot (blue & orange)

Proof of the Structure Theorem (4/4)



Extra cost is negligible:

- green: properties of components
- blue & orange: bounded distance property

Structure Theorem

There is a near-optimal solution such that each subtour in a component visits either 0 or at least $\epsilon \cdot k$ terminals.

- **()** Computing solutions inside each component: polynomial time
- Combining solutions from different components bottom-up:
 exponential time
- Q: How to improve the running time?
- A: Adaptive rounding to reduce the number of subtour demands.

Adaptive rounding [Jayaprakash and Salavatipour]

At each vertex:

Sort subtour demands

2 Make groups of equal cardinality

8 Round up to maximum demand in group

Theorem [Jayaprakash and Salavatipour]

There is a near-optimal solution in which the subtour demands can be rounded up to **polylogarithmic** many values.

\Rightarrow QPTAS

Our Theorem

There is a near-optimal solution in which the subtour demands can be rounded up to **constant** many values.

\implies PTAS

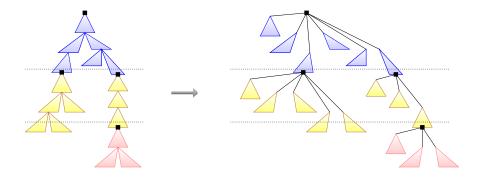
How do we bound the extra cost?

- Structure Theorem
- bounded distance property
- bounded height of components

Bounded height of components

Transform the tree of components so that:

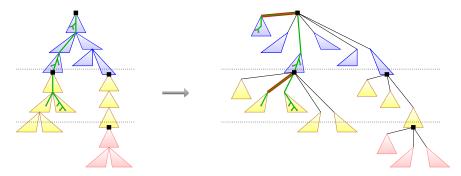
each leaf-root path traverses a bounded number of components



Bounded height of components

Transform the tree of components so that:

each leaf-root path traverses a bounded number of components



Extra cost of the tour is negligible:

- Structure Theorem
- bounded distance property

Dynamic programming and adaptive rounding



Dynamic program order of computation:

- each component
- ② subtrees rooted at d and e by adaptive rounding
- ${f 0}$ subtrees rooted at b and c
- subtree rooted at a by adaptive rounding

Polynomial time to obtain a $(1 + \epsilon)$ -approximate solution

Summary

- **2** Decomposing the tree into components \implies **Structure Theorem**
- Transforming the tree ⇒ Bounded height of components
- Adaptive Rounding ⇒ Constant many subtour demands
- **(**) Dynamic programming $\implies (1 + \epsilon)$ -approximate solution

Our Result

PTAS for Capacitated Vehicle Routing on Trees

Thank you!