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Capacitated vehicle routing

Input:

depot O

n terminals

tour capacity k

Minimize total length of tours

O O

Fundamental problem in operations research
e.g., more than 4000 articles on vehicle routing on DBLP



Capacitated vehicle routing

1985 HR

1990 AG

1997 AKTT
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2010 ACL

2010 DM

2017 BKS
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2020 CFKL
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2022 JS

well-studied problem

general metric

Euclidean space

planar graph

graph of bounded highway dimension

graph of bounded treewidth

Polynomial time approximation scheme (PTAS) only for small capacity k.



Iterated tour partitioning [Haimovich and Rinnooy Kan]

1 Compute a traveling salesman tour

O

2 Partition the tour into segments of at most k terminals each

3 Connect the endpoints of each segment to the depot

Approximation ratio ≈ 1 + αTSP ≥ 2
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Capacitated vehicle routing on trees

NP-hard [LLM 1991]

Approximation algorithms:

1.5-approximation [HK 1998]

1.351-approximation [AKK 2001]

1.333-approximation [Bec 2018]

bicriteria PTAS [BP 2019]

QPTAS [JS 2022]
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Our Result

PTAS for Capacitated Vehicle Routing on Trees

Note: First PTAS for general capacity k.



Capacitated vehicle routing on trees

Jayaprakash and Salavatipour [SODA 2022]:

“it is not clear if it (the QPTAS)

can be turned into a PTAS

without significant new ideas.”



Preprocessing: bounded distance property

minimum distance

maximum distance
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Can assume:
minimum distance

maximum distance
> ϵ.



Decomposing the tree into components

Inspiration: clusters decomposition [Becker and Paul]

root

exit

each component has:

≈ k/ϵ terminals

1 root vertex

≤ 1 exit vertex

Structure Theorem

There is a near-optimal solution such that each subtour in a component
visits either 0 or at least ϵ · k terminals.



Proof of the Structure Theorem (1/4)

Definition: a subtour in a component is small if it visits more than 0
but less than ϵ · k terminals.

Elimination of small subtours
1 Detach small subtours

2 Combine small subtours within components

3 Reassign combined subtours [Becker and Paul]

Difficulty: after reassignment some tours may exceed capacity



Proof of the Structure Theorem (2/4)

4 Remove some subtours

5 Include spine subtours

brown & green: traveling salesman tour covering the red terminals



Proof of the Structure Theorem (3/4)

However, the traveling salesman tour may exceed capacity.

Our approach: iterated tour partitioning

6 Add connections to the depot (blue & orange)



Proof of the Structure Theorem (4/4)

Extra cost is negligible:

green: properties of components

blue & orange: bounded distance property

Structure Theorem

There is a near-optimal solution such that each subtour in a component
visits either 0 or at least ϵ · k terminals.



First attempt for the dynamic program

1 Computing solutions inside each component: polynomial time

2 Combining solutions from different components bottom-up:

exponential time

Q: How to improve the running time?

A: Adaptive rounding to reduce the number of subtour demands.



Adaptive rounding [Jayaprakash and Salavatipour]

At each vertex:

1 Sort subtour demands

0 ϵ · k k

2 Make groups of equal cardinality

0 ϵ · k k

3 Round up to maximum demand in group

0 ϵ · k k



Theorem [Jayaprakash and Salavatipour]

There is a near-optimal solution in which the subtour demands can be
rounded up to polylogarithmic many values.

=⇒ QPTAS

Our Theorem

There is a near-optimal solution in which the subtour demands can be
rounded up to constant many values.

=⇒ PTAS

How do we bound the extra cost?

Structure Theorem

bounded distance property

bounded height of components



Bounded height of components

Transform the tree of components so that:

each leaf-root path traverses a bounded number of components



Bounded height of components

Transform the tree of components so that:

each leaf-root path traverses a bounded number of components

Extra cost of the tour is negligible:

Structure Theorem

bounded distance property



Dynamic programming and adaptive rounding

a

b c

d e

Dynamic program order of computation:

1 each component

2 subtrees rooted at d and e by adaptive rounding

3 subtrees rooted at b and c

4 subtree rooted at a by adaptive rounding

Polynomial time to obtain a (1 + ϵ)-approximate solution



Summary

1 Preprocessing =⇒ Bounded distance

2 Decomposing the tree into components =⇒ Structure Theorem

3 Transforming the tree =⇒ Bounded height of components

4 Adaptive Rounding =⇒ Constant many subtour demands

5 Dynamic programming =⇒ (1 + ϵ)-approximate solution

Our Result

PTAS for Capacitated Vehicle Routing on Trees

Thank you!


