Near-Linear Query Complexity for Graph Inference

Sampath Kannan¹, Claire Mathieu^{2,3}, and Hang Zhou³

¹University of Pennsylvania, United States

²CNRS, France

³École Normale Supérieure de Paris, France

Network tomography

Iraceroute

$$(n, k): n - d - c - b - k$$

 $(f, m): f - e - a - m$

Traceroute blocked by routers $(n, k): n - \star - \star - \star - k$ $(f, m): f - \star - \star - m$

Network tomography

Traceroute

$$(n, k): n - d - c - b - k$$

 $(f, m): f - e - a - m$

Traceroute blocked by routers

$$(n, k): n - \star - \star - \star - k$$

 $(f, m): f - \star - \star - m$

Graph reconstruction and verification

Two QUERY models:

shortest path query: $(u, v) \in V \times V \mapsto$ a shortest *u*-to-*v* path distance query: $(u, v) \in V \times V \mapsto$ length of a shortest *u*-to-*v* path

Connected and unweighted graph G = (V, E), where V is known

- *E* is unknown/guessed and must be reconstructed/verified.
- Minimize the number of queries. Computation is free.

Other models

Network discovery and verification:

[Beerliova, Eberhard, Erlebach, Hall, Hoffmann, Mihal'ak, Ram, 2006] query: $u \in V \mapsto \{(\text{length of}) \text{ a shortest } u\text{-to-}v \text{ path}\}_{v \in V}$

Evolutionary tree:

[Hein 1989; King, Zhang, Zhou, 2003; Reyzin, Srivastava, 2007; etc.] query: leaves $u, v \mapsto$ length of a shortest *u*-to-*v* path

$O(n^2)$ algorithm: exhaustive queries

- Query every (*u*, *v*)
- Output $\{(u, v) : d(u, v) = 1\}$

$\Omega(n^2)$ lower bound [Reyzin Srivastava 2007]

•
$$V = \{1, 2, ..., n\}$$

• $E = \{(1, i) : 2 \le i \le n\}$, plus possibly one additional edge (i, j)

Reconstruction using distance queries [MZ 2013]

• $\tilde{O}(n\sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

• $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

• $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

$\tilde{O}(n)$ algorithms:

- reconstructing outerplanar graphs using distance queries [MZ 2013]
- reconstructing chordal graphs using distance queries
- verifying bounded treewidth graphs
- reconstructing bounded treewidth graphs using shortest path queries

 $\Omega(n \log n / \log \log n)$ lower bound for reconstruction [Gavoille Zwick]

Reconstruction using distance queries [MZ 2013]

• $\tilde{O}(n\sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

• $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

• $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Input: $\hat{G} = (V, \hat{E})$ Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E} .

bounded degree $\implies O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

Input: $\hat{G} = (V, \hat{E})$ Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E} .

bounded degree $\implies O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

Input: $\hat{G} = (V, \hat{E})$ Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E} .

bounded degree $\implies O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

How to verify non-edges?

(a,b) is a non-edge if for some $(u,v)\in V^2$, $d(u,v)=\hat{d}(u,v)$ and $\hat{d}(u,a)+1+\hat{d}(b,v)<\hat{d}(u,v).$

For $(u, v) \in V^2$, let $S_{u,v} = \left\{ (a, b) \notin \hat{E} \text{ with this property} \right\}$.

Near-Linear Query Complexity for Graph Inference

How to verify non-edges?

(a, b) is a non-edge if for some $(u, v) \in V^2$, $d(u, v) = \hat{d}(u, v)$ and $\hat{d}(u, a) + 1 + \hat{d}(b, v) < \hat{d}(u, v)$.

For $(u, v) \in V^2$, let $S_{u,v} = \left\{ (a, b) \notin \hat{E} \text{ with this property} \right\}$.

Near-Linear Query Complexity for Graph Inference

How to verify non-edges?

(a, b) is a non-edge if for some $(u, v) \in V^2$, $d(u, v) = \hat{d}(u, v)$ and $\hat{d}(u, a) + 1 + \hat{d}(b, v) < \hat{d}(u, v)$.

For $(u, v) \in V^2$, let $S_{u,v} = \left\{ (a, b) \notin \hat{E} \text{ with this property} \right\}$.

Near-Linear Query Complexity for Graph Inference

Reduction to SET-COVER

 $\operatorname{Set-Cover}$ instance:

universe: all the non-edges of \hat{G} sets: $S_{u,v}$ for every pair (u, v)

Another algorithm for non-edge verification:

- Voronoi cell decomposition $\implies \tilde{O}(n\sqrt{n})$

Greedy is simpler

Warm-up: bounding OPT by $\tilde{O}(n\sqrt{n})$

A : set of \sqrt{n} centers Voronoi(a) : set of vertices closer to a than to $A \setminus \{a\}$

Incorrect algorithm

- **2** Compute *Voronoi*(a) for all $a \in A$
- For every $a \in A$, verify G[Voronoi(a)] by exhaustive queries

Warm-up: bounding OPT by $\tilde{O}(n\sqrt{n})$

A : set of \sqrt{n} centers Voronoi(a) : set of vertices closer to a than to $A \setminus \{a\}$

Incorrect algorithm

- **2** Compute *Voronoi*(a) for all $a \in A$
- For every $a \in A$, verify G[Voronoi(a)] by exhaustive queries

 a_5

Warm-up: bounding OPT by $ilde{O}(n\sqrt{n})$

- A : set of \sqrt{n} centers
- D_a : subgraph associated to $a \in A$, a bit larger than Voronoi(a)

Goal :

• $\bigcup_A G[D_a]$ covers E• $|D_a| = O(\sqrt{n})$

Correct algorithm

- Pick a subset A of V
- **2** Compute D_a for all $a \in A$
- So For every $a \in A$, verify $G[D_a]$ by exhaustive queries

Goal :

↓ ∪_A G[D_a] covers E
 |D_a| = O(√n)

Notation: $C(b) = \{ \text{vertices in } b \text{ 's Voronoi cell, if } b \text{ was added to } A \}$ Definition: $D_a = \bigcup \{ C(b) : d(a, b) \le 2 \}$

Lemma [MZ 2013]: $\bigcup_A G[D_a]$ covers E.

Observation: If every C(b) has size $<\sqrt{n}$, then $|D_a| = O(\sqrt{n})$ for all a.

Idea from compact routing:

Lemma (Thorup Zwick 2001)

There exists a set A of size $O(\sqrt{n} \cdot \log n)$ such that every C(b) has size $O(\sqrt{n})$. It can be computed in polynomial time when the graph is given.

Our approach:

- In the guessed graph \hat{G} , compute A and $\{C(b)\}$, thus obtaining $\{D_a\}$.
- ② Check whether $\{D_a\}$ in G and in \hat{G} are the same: $\tilde{O}(n\sqrt{n})$ queries.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

- **2** Compute D_a for all $a \in A$
- So For every $a \in A$, verify $G[D_a]$ by exhaustive queries recursion

- Allow selection of centers outside the cell.
- Limit the subcells to being contained *inside* the cell.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

- **2** Compute D_a for all $a \in A$
- So For every $a \in A$, verify $G[D_a]$ by exhaustive queries recursion

- Allow selection of centers outside the cell.
- Limit the subcells to being contained *inside* the cell.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

- **2** Compute D_a for all $a \in A$
- So For every $a \in A$, verify $G[D_a]$ by exhaustive queries recursion

- Allow selection of centers outside the cell.
- Limit the subcells to being contained *inside* the cell.

Reconstruction using distance queries [MZ 2013]

• $\tilde{O}(n\sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

• $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

• $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Suppose we know a subgraph H of G.

Suppose we know a subgraph H of G.

 $d_G(u,v) \neq d_H(u,v)$

Suppose we know a subgraph H of G.

find an edge of G and update H

Suppose we know a subgraph H of G.

 $d_G(u,v) = d_H(u,v)$

Suppose we know a subgraph H of G.

confirm non-edges of G

Suppose we know a subgraph H of G.

confirm non-edges of G

- #(queries such that $d_G(u, v) \neq d_H(u, v)) = O(n).$
- #(queries such that $d_G(u, v) = d_H(u, v)) = O(\log n) \cdot OPT$, where $OPT = n^{1+o(1)}$ is the optimum number of queries for verification.

Overall query complexity: $n^{1+o(1)}$

Reconstruction using distance queries [MZ 2013]

• $\tilde{O}(n\sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

• $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

• $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Thank you!

- Pick A of size $\tilde{O}(n^{1/3})$
- **2** Query $(a, v) \quad \forall (a, v) \in A \times V$, and obtain cells $\{D_a\}_{a \in A}$
- In each cell D_a
- Pick $A' \subseteq D_a$ of size $\tilde{O}(n^{1/3})$
- Solution Query $(a', v) \quad \forall (a', v) \in A' \times D_a$, and obtain subcells $\{D'_{a'}\}_{a' \in A'}$
- **6** For each subcell $D'_{a'}$, reconstruct $G[D'_{a'}]$ by exhaustive queries.

We might hope it's a $\tilde{O}(n^{4/3})$ algorithm.

To bound the size of each cell, earlier we could write

$$D_a = \bigcup \{C(b) : d(a,b) \leq 2\}.$$

Now we can write

$$D'_{a'} = \bigcup \big\{ C'(b) : d(a', b) \leq 2 \big\}.$$

But *b* may be outside D_a . Problem!