Near-Linear Query Complexity for Graph Inference

Sampath Kannan ${ }^{1}$, Claire Mathieu ${ }^{2,3}$, and Hang Zhou ${ }^{3}$
${ }^{1}$ University of Pennsylvania, United States
${ }^{2}$ CNRS, France
${ }^{3}$ École Normale Supérieure de Paris, France

Network tomography

Network tomography

Traceroute

$(n, k): n-d-c-b-k$
$(f, m): f-e-a-m$

Traceroute blocked by routers

$$
\begin{aligned}
& (n, k): n-\star-\star-\star-k \\
& (f, m): f-\star-\star-m
\end{aligned}
$$

Graph reconstruction and verification

Two Query models:
shortest path query: $(u, v) \in V \times V \mapsto$ a shortest u-to- v path
distance query: $(u, v) \in V \times V \mapsto$ length of a shortest u-to- v path
Connected and unweighted graph $G=(V, E)$, where V is known

- E is unknown/guessed and must be reconstructed/verified.
- Minimize the number of queries. Computation is free.

Other models

Network discovery and verification:
[Beerliova, Eberhard, Erlebach, Hall, Hoffmann, Mihal'ak, Ram, 2006] query: $u \in V \mapsto\{\text { (length of) a shortest } u \text {-to- } v \text { path }\}_{v \in V}$

Evolutionary tree:
[Hein 1989; King, Zhang, Zhou, 2003; Reyzin, Srivastava, 2007; etc.] query: leaves $u, v \mapsto$ length of a shortest u-to- v path

Warm-up: general graphs

$O\left(n^{2}\right)$ algorithm: exhaustive queries

- Query every (u, v)
- Output $\{(u, v): d(u, v)=1\}$
$\Omega\left(n^{2}\right)$ lower bound [Reyzin Srivastava 2007]
- $V=\{1,2, \ldots, n\}$
- $E=\{(1, i): 2 \leq i \leq n\}$, plus possibly one additional edge (i, j)

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

- $\tilde{O}(n \sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

- $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

- $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Graphs of bounded degree - side results

$\tilde{O}(n)$ algorithms:

- reconstructing outerplanar graphs using distance queries [MZ 2013]
- reconstructing chordal graphs using distance queries
- verifying bounded treewidth graphs
- reconstructing bounded treewidth graphs using shortest path queries
$\Omega(n \log n / \log \log n)$ lower bound for reconstruction [Gavoille Zwick]

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

- $\tilde{O}(n \sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

- $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

- $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Verification using distance queries

Input: $\hat{G}=(V, \hat{E})$
Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E}. bounded degree $\Longrightarrow O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

Verification using distance queries

Input: $\hat{G}=(V, \hat{E})$
Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E}. bounded degree $\Longrightarrow O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

Verification using distance queries

Input: $\hat{G}=(V, \hat{E})$
Output: whether \hat{G} is correct

Verify edges: Query each pair in \hat{E}.
bounded degree $\Longrightarrow O(n)$ queries

Question: How do we verify $(a, b) \notin \hat{E}$ is a non-edge?

How to verify non-edges?

(a, b) is a non-edge if for some $(u, v) \in V^{2}, d(u, v)=\hat{d}(u, v)$ and

$$
\hat{d}(u, a)+1+\hat{d}(b, v)<\hat{d}(u, v)
$$

For $(u, v) \in V^{2}$, let $S_{u, v}=\{(a, b) \notin \hat{E}$ with this property $\}$.

How to verify non-edges?

(a, b) is a non-edge if for some $(u, v) \in V^{2}, d(u, v)=\hat{d}(u, v)$ and

$$
\hat{d}(u, a)+1+\hat{d}(b, v)<\hat{d}(u, v)
$$

For $(u, v) \in V^{2}$, let $S_{u, v}=\{(a, b) \notin \hat{E}$ with this property $\}$.

How to verify non-edges?

Greedy

(a, b) is a non-edge if for some $(u, v) \in V^{2}, d(u, v)=\hat{d}(u, v)$ and

$$
\hat{d}(u, a)+1+\hat{d}(b, v)<\hat{d}(u, v) .
$$

For $(u, v) \in V^{2}$, let $S_{u, v}=\{(a, b) \notin \hat{E}$ with this property $\}$.

Reduction to Set-Cover

Set-Cover instance:
universe: all the non-edges of \hat{G}
sets: $S_{u, v}$ for every pair (u, v)

Greedy Set-Cover uses $O(\log n) \cdot O P T$ sets

Greedy non-edge verification uses $O(\log n) \cdot O P T$ queries

Bounding OPT by $n^{1+o(1)}$

Another algorithm for non-edge verification:
(1) Voronoi cell decomposition $\Longrightarrow \tilde{O}(n \sqrt{n})$
(2) Recursion
$\Longrightarrow n^{1+o(1)}$

Greedy is simpler

Warm-up: bounding OPT by $\tilde{O}(n \sqrt{n})$

A : set of \sqrt{n} centers
Voronoi(a) : set of vertices closer to a than to $A \backslash\{a\}$

Incorrect algorithm

(1) Pick a subset A of V
(2) Compute Voronoi(a) for all $a \in A$
(3) For every $a \in A$, verify $G[\operatorname{Voronoi}(a)]$ by exhaustive queries

Warm-up: bounding OPT by $\tilde{O}(n \sqrt{n})$

A : set of \sqrt{n} centers
Voronoi(a) : set of vertices closer to a than to $A \backslash\{a\}$

Incorrect algorithm

(1) Pick a subset A of V
(2) Compute Voronoi(a) for all $a \in A$
(3) For every $a \in A$, verify $G[\operatorname{Voronoi}(a)]$ by exhaustive queries

Warm-up: bounding OPT by $\tilde{O}(n \sqrt{n})$

A : set of \sqrt{n} centers
D_{a} : subgraph associated to $a \in A$, a bit larger than Voronoi(a)
Goal :
(1) $\cup_{A} G\left[D_{a}\right]$ covers E
(2) $\left|D_{a}\right|=O(\sqrt{n})$

Correct algorithm

(1) Pick a subset A of V
(2) Compute D_{a} for all $a \in A$
(3) For every $a \in A$, verify $G\left[D_{a}\right]$ by exhaustive queries

Definition of D_{a}

Goal :
(1) $\bigcup_{A} G\left[D_{a}\right]$ covers E
(2) $\left|D_{a}\right|=O(\sqrt{n})$

Notation: $C(b)=\{$ vertices in b 's Voronoi cell, if b was added to $A\}$
Definition: $D_{a}=\bigcup\{C(b): d(a, b) \leq 2\}$

Lemma [MZ 2013]: $\bigcup_{A} G\left[D_{a}\right]$ covers E.
Observation: If every $C(b)$ has size $<\sqrt{n}$, then $\left|D_{a}\right|=O(\sqrt{n})$ for all a.

How to compute A and $\left\{D_{a}\right\}$?

Idea from compact routing:

Lemma (Thorup Zwick 2001)

There exists a set A of size $O(\sqrt{n} \cdot \log n)$ such that every $C(b)$ has size $O(\sqrt{n})$. It can be computed in polynomial time when the graph is given.

Our approach:
(1) In the guessed graph \hat{G}, compute A and $\{C(b)\}$, thus obtaining $\left\{D_{a}\right\}$.
(2) Check whether $\left\{D_{a}\right\}$ in G and in \hat{G} are the same: $\tilde{O}(n \sqrt{n})$ queries.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

(1) Pick a subset A of V
(2) Compute D_{a} for all $a \in A$
(3) For every $a \in A$, verify $G\left[D_{a}\right]$ by exhaustive queries recursion

(1) Allow selection of centers outside the cell.
(2) Limit the subcells to being contained inside the cell.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

(1) Pick a subset A of V
(2) Compute D_{a} for all $a \in A$
(3) For every $a \in A$, verify $G\left[D_{a}\right]$ by exhaustive queries recursion

(1) Allow selection of centers outside the cell.
(2) Limit the subcells to being contained inside the cell.

Extension: bounding OPT by $n^{1+o(1)}$

Algorithm

(1) Pick a subset A of V
(2) Compute D_{a} for all $a \in A$
(3) For every $a \in A$, verify $G\left[D_{a}\right]$ by exhaustive queries recursion

(1) Allow selection of centers outside the cell.
(2) Limit the subcells to being contained inside the cell.

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

- $\tilde{O}(n \sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

- $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

- $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

find an edge of G and update H

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

confirm non-edges of G

Reconstruction using shortest path queries

Suppose we know a subgraph H of G.

Greedy

confirm non-edges of G

Reconstruction using shortest path queries

- $\#\left(\right.$ queries such that $\left.d_{G}(u, v) \neq d_{H}(u, v)\right)=O(n)$.
- \#(queries such that $\left.d_{G}(u, v)=d_{H}(u, v)\right)=O(\log n) \cdot O P T$, where $O P T=n^{1+o(1)}$ is the optimum number of queries for verification.

Overall query complexity: $n^{1+o(1)}$

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

- $\tilde{O}(n \sqrt{n})$ algorithm using Voronoi cell decomposition

Verification

- $n^{1+o(1)}$ greedy algorithm

Reconstruction using shortest path queries

- $n^{1+o(1)}$ greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

Thank you!

Attempting a

algorithm for reconstruction

(1) Pick A of size $\tilde{O}\left(n^{1 / 3}\right)$
(2) Query $(a, v) \forall(a, v) \in A \times V$, and obtain cells $\left\{D_{a}\right\}_{a \in A}$
(3) In each cell D_{a}
(9) Pick $A^{\prime} \subseteq D_{a}$ of size $\tilde{O}\left(n^{1 / 3}\right)$
(3) Query $\left(a^{\prime}, v\right) \forall\left(a^{\prime}, v\right) \in A^{\prime} \times D_{a}$, and obtain subcells $\left\{D_{a^{\prime}}^{\prime}\right\}_{a^{\prime} \in A^{\prime}}$

- For each subcell $D_{a^{\prime}}^{\prime}$, reconstruct $G\left[D_{a^{\prime}}^{\prime}\right]$ by exhaustive queries.

We might hope it's a $\tilde{O}\left(n^{4 / 3}\right)$ algorithm.

What goes wrong for recursion?

To bound the size of each cell, earlier we could write

$$
D_{a}=\bigcup\{C(b): d(a, b) \leq 2\}
$$

Now we can write

$$
D_{a^{\prime}}^{\prime}=\bigcup\left\{C^{\prime}(b): d\left(a^{\prime}, b\right) \leq 2\right\}
$$

But b may be outside D_{a}. Problem!

