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Network tomography
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Graph reconstruction and verification

Two Query models:

shortest path query: (u, v) ∈ V × V 7→ a shortest u-to-v path

distance query: (u, v) ∈ V × V 7→ length of a shortest u-to-v path

Connected and unweighted graph G = (V ,E ), where V is known

E is unknown/guessed and must be reconstructed/verified.

Minimize the number of queries. Computation is free.

? Is it correct?
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Other models

Network discovery and verification:
[Beerliova, Eberhard, Erlebach, Hall, Hoffmann, Mihal’ak, Ram, 2006]

query: u ∈ V 7→
{

(length of) a shortest u-to-v path
}
v∈V

Evolutionary tree:
[Hein 1989; King, Zhang, Zhou, 2003; Reyzin, Srivastava, 2007; etc.]

query: leaves u, v 7→ length of a shortest u-to-v path
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Warm-up: general graphs

O(n2) algorithm: exhaustive queries

Query every (u, v)

Output {(u, v) : d(u, v) = 1}

Ω(n2) lower bound [Reyzin Srivastava 2007]

V = {1, 2, . . . , n}
E = {(1, i) : 2 ≤ i ≤ n}, plus possibly one additional edge (i , j)
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Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?
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Graphs of bounded degree – side results

Õ(n) algorithms:

reconstructing outerplanar graphs using distance queries [MZ 2013]

reconstructing chordal graphs using distance queries

verifying bounded treewidth graphs

reconstructing bounded treewidth graphs using shortest path queries

Ω(n log n/ log log n) lower bound for reconstruction [Gavoille Zwick]
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Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference



Verification using distance queries

Input: Ĝ = (V , Ê )

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries

Question: How do we verify (a, b) /∈ Ê is a non-edge?
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Verification using distance queries

Input: Ĝ = (V , Ê )

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries
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Question: How do we verify (a, b) /∈ Ê is a non-edge?
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Verification using distance queries

Input: Ĝ = (V , Ê )

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries

3: incorrect

Question: How do we verify (a, b) /∈ Ê is a non-edge?
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How to verify non-edges?

v

u

(a, b) is a non-edge if for some (u, v) ∈ V 2, d(u, v) = d̂(u, v) and

d̂(u, a) + 1 + d̂(b, v) < d̂(u, v).

For (u, v) ∈ V 2, let Su,v =
{

(a, b) /∈ Ê with this property
}
.
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How to verify non-edges?

b

a

v

u

Greedy

(a, b) is a non-edge if for some (u, v) ∈ V 2, d(u, v) = d̂(u, v) and

d̂(u, a) + 1 + d̂(b, v) < d̂(u, v).

For (u, v) ∈ V 2, let Su,v =
{

(a, b) /∈ Ê with this property
}
.
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Reduction to Set-Cover

Set-Cover instance:

universe: all the non-edges of Ĝ

sets: Su,v for every pair (u, v)

Greedy Set-Cover uses O(log n) · OPT sets

Greedy non-edge verification uses O(log n) · OPT queries

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference



Bounding OPT by n1+o(1)

Another algorithm for non-edge verification:

1 Voronoi cell decomposition =⇒ Õ(n
√
n)

2 Recursion =⇒ n1+o(1)

Greedy is simpler
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Warm-up: bounding OPT by Õ(n
√
n)

A : set of
√
n centers

Voronoi(a) : set of vertices
closer to a than to A\{a}

a1

a2

a3

a4

a5

Incorrect algorithm

1 Pick a subset A of V

2 Compute Voronoi(a) for all a ∈ A

3 For every a ∈ A, verify G [Voronoi(a)] by exhaustive queries
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Warm-up: bounding OPT by Õ(n
√
n)

A : set of
√
n centers

Da : subgraph associated to a ∈ A,
a bit larger than Voronoi(a)

Goal :

1
⋃

A G [Da] covers E

2 |Da| = O(
√
n)

a1

Da1

Da2

Da3

Da4

Da5

a2

a3

a4

a5

Correct algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries
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Definition of Da

Goal :

1
⋃

A G [Da] covers E

2 |Da| = O(
√
n)

Notation: C (b) =
{

vertices in b’s Voronoi cell, if b was added to A
}

Definition: Da =
⋃{

C (b) : d(a, b) ≤ 2
}

Lemma [MZ 2013]:
⋃

A G [Da] covers E .

Observation: If every C (b) has size <
√
n, then |Da| = O(

√
n) for all a.
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How to compute A and {Da}?

Idea from compact routing:

Lemma (Thorup Zwick 2001)

There exists a set A of size O(
√
n · log n) such that every C (b) has size

O(
√
n). It can be computed in polynomial time when the graph is given.

Our approach:

1 In the guessed graph Ĝ , compute A and {C (b)}, thus obtaining {Da}.
2 Check whether {Da} in G and in Ĝ are the same: Õ(n

√
n) queries.
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Extension: bounding OPT by n1+o(1)

Algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries recursion

a
Da

1 Allow selection of centers
outside the cell.

2 Limit the subcells to being
contained inside the cell.
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Extension: bounding OPT by n1+o(1)

Algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries recursion

a
Da

a′
D ′
a′

1 Allow selection of centers
outside the cell.

2 Limit the subcells to being
contained inside the cell.
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Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

u

v

dG (u, v) 6= dH(u, v)
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

u

v

find an edge of G and update H
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

dG (u, v) = dH(u, v)
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

confirm non-edges of G
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Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

Greedy

confirm non-edges of G
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Reconstruction using shortest path queries

#
(
queries such that dG (u, v) 6= dH(u, v)

)
= O(n).

#
(
queries such that dG (u, v) = dH(u, v)

)
= O(log n) · OPT , where

OPT = n1+o(1) is the optimum number of queries for verification.

Overall query complexity: n1+o(1)
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Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?
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Thank you!
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Attempting a 3-level algorithm for reconstruction

1 Pick A of size Õ(n1/3)

2 Query (a, v) ∀ (a, v) ∈ A× V , and obtain cells {Da}a∈A
3 In each cell Da

4 Pick A′ ⊆ Da of size Õ(n1/3)

5 Query (a′, v) ∀ (a′, v) ∈ A′ × Da, and obtain subcells {D ′
a′}a′∈A′

6 For each subcell D ′
a′ , reconstruct G [D ′

a′ ] by exhaustive queries.

We might hope it’s a Õ(n4/3) algorithm.
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What goes wrong for recursion?

To bound the size of each cell, earlier we could write

Da =
⋃{

C (b) : d(a, b) ≤ 2
}
.

Now we can write

D ′
a′ =

⋃{
C ′(b) : d(a′, b) ≤ 2

}
.

But b may be outside Da. Problem!
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