
Near-Linear Query Complexity for Graph Inference

Sampath Kannan1, Claire Mathieu2,3, and Hang Zhou3

1University of Pennsylvania, United States

2CNRS, France

3École Normale Supérieure de Paris, France

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Network tomography

a

b

cd

e

f

m

k

n

g

h

i

j

l

Traceroute

(n, k): n − d − c − b − k

(f ,m): f − e − a−m

Traceroute blocked by routers

(n, k): n − ?− ?− ?− k

(f ,m): f − ?− ?−m

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Network tomography

a

b

cd

e

f

m

k

n

g

h

i

j

l

Traceroute

(n, k): n − d − c − b − k

(f ,m): f − e − a−m

Traceroute blocked by routers

(n, k): n − ?− ?− ?− k

(f ,m): f − ?− ?−m

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graph reconstruction and verification

Two Query models:

shortest path query: (u, v) ∈ V × V 7→ a shortest u-to-v path

distance query: (u, v) ∈ V × V 7→ length of a shortest u-to-v path

Connected and unweighted graph G = (V ,E), where V is known

E is unknown/guessed and must be reconstructed/verified.

Minimize the number of queries. Computation is free.

? Is it correct?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Other models

Network discovery and verification:
[Beerliova, Eberhard, Erlebach, Hall, Hoffmann, Mihal’ak, Ram, 2006]

query: u ∈ V 7→
{

(length of) a shortest u-to-v path
}
v∈V

Evolutionary tree:
[Hein 1989; King, Zhang, Zhou, 2003; Reyzin, Srivastava, 2007; etc.]

query: leaves u, v 7→ length of a shortest u-to-v path

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Warm-up: general graphs

O(n2) algorithm: exhaustive queries

Query every (u, v)

Output {(u, v) : d(u, v) = 1}

Ω(n2) lower bound [Reyzin Srivastava 2007]

V = {1, 2, . . . , n}
E = {(1, i) : 2 ≤ i ≤ n}, plus possibly one additional edge (i , j)

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graphs of bounded degree – side results

Õ(n) algorithms:

reconstructing outerplanar graphs using distance queries [MZ 2013]

reconstructing chordal graphs using distance queries

verifying bounded treewidth graphs

reconstructing bounded treewidth graphs using shortest path queries

Ω(n log n/ log log n) lower bound for reconstruction [Gavoille Zwick]

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Verification using distance queries

Input: Ĝ = (V , Ê)

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries

Question: How do we verify (a, b) /∈ Ê is a non-edge?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Verification using distance queries

Input: Ĝ = (V , Ê)

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries

1: correct

Question: How do we verify (a, b) /∈ Ê is a non-edge?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Verification using distance queries

Input: Ĝ = (V , Ê)

Output: whether Ĝ is correct

Verify edges: Query each pair in Ê .

bounded degree =⇒ O(n) queries

3: incorrect

Question: How do we verify (a, b) /∈ Ê is a non-edge?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

How to verify non-edges?

v

u

(a, b) is a non-edge if for some (u, v) ∈ V 2, d(u, v) = d̂(u, v) and

d̂(u, a) + 1 + d̂(b, v) < d̂(u, v).

For (u, v) ∈ V 2, let Su,v =
{

(a, b) /∈ Ê with this property
}
.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

How to verify non-edges?

b

a

v

u

(a, b) is a non-edge if for some (u, v) ∈ V 2, d(u, v) = d̂(u, v) and

d̂(u, a) + 1 + d̂(b, v) < d̂(u, v).

For (u, v) ∈ V 2, let Su,v =
{

(a, b) /∈ Ê with this property
}
.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

How to verify non-edges?

b

a

v

u

Greedy

(a, b) is a non-edge if for some (u, v) ∈ V 2, d(u, v) = d̂(u, v) and

d̂(u, a) + 1 + d̂(b, v) < d̂(u, v).

For (u, v) ∈ V 2, let Su,v =
{

(a, b) /∈ Ê with this property
}
.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reduction to Set-Cover

Set-Cover instance:

universe: all the non-edges of Ĝ

sets: Su,v for every pair (u, v)

Greedy Set-Cover uses O(log n) · OPT sets

Greedy non-edge verification uses O(log n) · OPT queries

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Bounding OPT by n1+o(1)

Another algorithm for non-edge verification:

1 Voronoi cell decomposition =⇒ Õ(n
√
n)

2 Recursion =⇒ n1+o(1)

Greedy is simpler

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Warm-up: bounding OPT by Õ(n
√
n)

A : set of
√
n centers

Voronoi(a) : set of vertices
closer to a than to A\{a}

a1

a2

a3

a4

a5

Incorrect algorithm

1 Pick a subset A of V

2 Compute Voronoi(a) for all a ∈ A

3 For every a ∈ A, verify G [Voronoi(a)] by exhaustive queries

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Warm-up: bounding OPT by Õ(n
√
n)

A : set of
√
n centers

Voronoi(a) : set of vertices
closer to a than to A\{a}

a1

a2

a3

a4

a5

Incorrect algorithm

1 Pick a subset A of V

2 Compute Voronoi(a) for all a ∈ A

3 For every a ∈ A, verify G [Voronoi(a)] by exhaustive queries

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Warm-up: bounding OPT by Õ(n
√
n)

A : set of
√
n centers

Da : subgraph associated to a ∈ A,
a bit larger than Voronoi(a)

Goal :

1
⋃

A G [Da] covers E

2 |Da| = O(
√
n)

a1

Da1

Da2

Da3

Da4

Da5

a2

a3

a4

a5

Correct algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Definition of Da

Goal :

1
⋃

A G [Da] covers E

2 |Da| = O(
√
n)

Notation: C (b) =
{

vertices in b’s Voronoi cell, if b was added to A
}

Definition: Da =
⋃{

C (b) : d(a, b) ≤ 2
}

Lemma [MZ 2013]:
⋃

A G [Da] covers E .

Observation: If every C (b) has size <
√
n, then |Da| = O(

√
n) for all a.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

How to compute A and {Da}?

Idea from compact routing:

Lemma (Thorup Zwick 2001)

There exists a set A of size O(
√
n · log n) such that every C (b) has size

O(
√
n). It can be computed in polynomial time when the graph is given.

Our approach:

1 In the guessed graph Ĝ , compute A and {C (b)}, thus obtaining {Da}.
2 Check whether {Da} in G and in Ĝ are the same: Õ(n

√
n) queries.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Extension: bounding OPT by n1+o(1)

Algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries recursion

a
Da

1 Allow selection of centers
outside the cell.

2 Limit the subcells to being
contained inside the cell.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Extension: bounding OPT by n1+o(1)

Algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries recursion

a
Da

1 Allow selection of centers
outside the cell.

2 Limit the subcells to being
contained inside the cell.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Extension: bounding OPT by n1+o(1)

Algorithm

1 Pick a subset A of V

2 Compute Da for all a ∈ A

3 For every a ∈ A, verify G [Da] by exhaustive queries recursion

a
Da

a′
D ′
a′

1 Allow selection of centers
outside the cell.

2 Limit the subcells to being
contained inside the cell.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

u

v

dG (u, v) 6= dH(u, v)

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

u

v

find an edge of G and update H

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

dG (u, v) = dH(u, v)

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

confirm non-edges of G

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

Suppose we know a subgraph H of G .

v

u

Greedy

confirm non-edges of G

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Reconstruction using shortest path queries

#
(
queries such that dG (u, v) 6= dH(u, v)

)
= O(n).

#
(
queries such that dG (u, v) = dH(u, v)

)
= O(log n) · OPT , where

OPT = n1+o(1) is the optimum number of queries for verification.

Overall query complexity: n1+o(1)

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Graphs of bounded degree

Reconstruction using distance queries [MZ 2013]

Õ(n
√
n) algorithm using Voronoi cell decomposition

Verification

n1+o(1) greedy algorithm

Reconstruction using shortest path queries

n1+o(1) greedy algorithm

Open question

Is there a near-linear algorithm for reconstruction using distance queries?

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Thank you!

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

Attempting a 3-level algorithm for reconstruction

1 Pick A of size Õ(n1/3)

2 Query (a, v) ∀ (a, v) ∈ A× V , and obtain cells {Da}a∈A
3 In each cell Da

4 Pick A′ ⊆ Da of size Õ(n1/3)

5 Query (a′, v) ∀ (a′, v) ∈ A′ × Da, and obtain subcells {D ′
a′}a′∈A′

6 For each subcell D ′
a′ , reconstruct G [D ′

a′] by exhaustive queries.

We might hope it’s a Õ(n4/3) algorithm.

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

What goes wrong for recursion?

To bound the size of each cell, earlier we could write

Da =
⋃{

C (b) : d(a, b) ≤ 2
}
.

Now we can write

D ′
a′ =

⋃{
C ′(b) : d(a′, b) ≤ 2

}
.

But b may be outside Da. Problem!

S. Kannan, C. Mathieu, and H. Zhou Near-Linear Query Complexity for Graph Inference

	Introduction
	Verification using distance queries
	Reconstruction using shortest path queries
	Conclusion
	Obstacle for recursion in reconstruction

