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Network tomography and graph reconstruction
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Network tomography and graph reconstruction
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Hidden: G = (V ,E )

Query oracle:
{u, v} 7→ distance duv

Output E

Complexity: # queries
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Results on general graphs

O(n2) algorithm: Query every {u, v}. Output {{u, v} : duv = 1}
Ω(n2) lower bound [Reyzin Srivastava 07]

Randomized Õ(n2/f ) algorithm for approximate reconstruction:

d̂uv ≤ duv ≤ f · d̂uv , for every u and v

Ω(n2/f ) lower bound for approximate reconstruction
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Main results

Graphs of bounded degree

Randomized Õ(n
√
n) algorithm

Outerplanar graphs of bounded degree

Randomized Õ(n) algorithm
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Graphs of bounded degree

A : set of centers

VoronoiA(a) : set of vertices
closer to a than to A\{a}

a1

a2

a3

a4

a5

Defective Algorithm

1 Construct A

2 Reconstruct G [VoronoiA(a)] for all a ∈ A

3 Return
⋃

A G [VoronoiA(a)]
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Graphs of bounded degree: Õ(n
√
n) algorithm

A : set of centers

Da : region associated to a ∈ A
including VoronoiA(a)

Goal :
⋃

A G [Da] covers E

a1

Da1

Da2

Da3

Da4

Da5

a2

a3

a4

a5

Main Algorithm

1 Construct A of expected size Õ(
√
n) such that maxA |Da| = O(

√
n)

2 For every a ∈ A, reconstruct G [Da] by querying Da × Da

3 Return
⋃

a G [Da]
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Graphs of bounded degree: Õ(n
√
n) algorithm

Definition: Da =
⋃

b VoronoiA∪{b}(b).
⇑

a, neighbor of a, or neighbor of neighbor of a

Lemma:
⋃

A G [Da] covers E .

a1 a2

u v

9 10b

Main Algorithm

1 Construct A of expected size Õ(
√
n) such that maxA |Da| = O(

√
n)

2 For every a ∈ A, reconstruct G [Da] by querying Da × Da

3 Return
⋃

a G [Da]
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Õ(n
√
n) algorithm: how to construct A

Idea [Thorup Zwick 2001]: keep adding to A
random vertices b such that |VoronoiA∪{b}(b)| ≥

√
n, until

every vertex b of V has |VoronoiA∪{b}(b)| <
√
n

Invariant: if b /∈ L then |VoronoiA∪{b}(b)| <
√
n

A← ∅ and L← V

While L 6= ∅:
R ← sample from L of size Õ(

√
n)

add R to A and query R × V
for every b ∈ L, estimate |VoronoiA∪{b}(b)| using Õ

(√
n
)

queries
remove from L vertices with estimates less than

√
n/10

Query complexity: (#iterations)× Õ
(
n
√
n
)

= Õ(n
√
n)

Claire Mathieu and Hang Zhou Graph Reconstruction via Distance Oracles



Main results

Graphs of bounded degree

Randomized Õ(n
√
n) algorithm

Outerplanar graphs of bounded degree

Randomized Õ(n) algorithm
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An outerplanar graph
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Outerplanar graphs of bounded degree: Õ(n) algorithm

Main Algorithm

1 Use a well-chosen node x to decompose V into components

2 If a component has size > 0.99n, decompose it into subcomponents

3 Recurse on each piece

x
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Why no subcomponent is huge (> 0.99n)?

Definition: x is well-chosen if at least 0.02n2 u-to-v shortest paths go
through x .

Lemma: If x is well-chosen then no subcomponent is huge.

x

B

> 0.98n2 pairs {u, v} inside B

Õ(n) queries for decomposition, then divide-and-conquer.

Above lemma =⇒ Õ(n) queries overall
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How do we find a well-chosen vertex in Õ(n) queries?

Definition: x is well-chosen if at least 0.02n2 u-to-v shortest paths go
through x .

Fact: There exists some well-chosen vertex.

Algorithm to find a well-chosen vertex

R ← sample of log(n) pairs (u, v) from V 2

For each (u, v) ∈ R, compute the u-to-v shortest paths

Select the vertex that belongs to the most shortest paths

Claire Mathieu and Hang Zhou Graph Reconstruction via Distance Oracles



Thank you!
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