Graph Reconstruction via Distance Oracles

Claire Mathieu and Hang Zhou

École Normale Supérieure de Paris, France

July 9, 2013

Claire Mathieu and Hang Zhou

Graph Reconstruction via Distance Oracles

Network tomography and graph reconstruction

traceroute(n,k): $n - \star - \star - \star - k$ traceroute(f,m): $f - \star - \star - m$

Network tomography and graph reconstruction

Network tomography and graph reconstruction

- Hidden: G = (V, E)
- QUERY oracle: $\{u, v\} \mapsto \text{distance } d_{uv}$
- Output E
- Complexity: # queries

traceroute(n,k): $n - \star - \star - \star - k$ traceroute(f,m): $f - \star - \star - m$ O(n²) algorithm: Query every {u, v}. Output {{u, v} : d_{uv} = 1}
Ω(n²) lower bound [Reyzin Srivastava 07]

- Randomized $\tilde{O}(n^2/f)$ algorithm for approximate reconstruction: $\widehat{d_{uv}} \leq d_{uv} \leq f \cdot \widehat{d_{uv}}$, for every u and v
- $\Omega(n^2/f)$ lower bound for approximate reconstruction

Randomized $\tilde{O}(n\sqrt{n})$ algorithm

Outerplanar graphs of bounded degree

Randomized $\tilde{O}(n)$ algorithm

Randomized $\tilde{O}(n\sqrt{n})$ algorithm

Outerplanar graphs of bounded degree

Randomized $\tilde{O}(n)$ algorithm

A: set of centers $Voronoi_A(a)$: set of vertices closer to a than to $A \setminus \{a\}$

Defective Algorithm

- Construct A
- **2** Reconstruct $G[Voronoi_A(a)]$ for all $a \in A$
- Return $\bigcup_A G[Voronoi_A(a)]$

A: set of centers $Voronoi_A(a)$: set of vertices closer to a than to $A \setminus \{a\}$

Defective Algorithm

- Construct A
- **2** Reconstruct $G[Voronoi_A(a)]$ for all $a \in A$
- Return $\bigcup_A G[Voronoi_A(a)]$

Graphs of bounded degree: $\tilde{O}(n\sqrt{n})$ algorithm

- A : set of centers
- D_a : region associated to $a \in A$ including $Voronoi_A(a)$
- Goal : $\bigcup_A G[D_a]$ covers E

- **O** Construct A of expected size $O(\sqrt{n})$ such that $\max_A |D_a| = O(\sqrt{n})$
- **2** For every $a \in A$, reconstruct $G[D_a]$ by querying $D_a \times D_a$
- **③** Return $\bigcup_a G[D_a]$

Graphs of bounded degree: $\tilde{O}(n\sqrt{n})$ algorithm

Definition:
$$D_a = \bigcup_b Voronoi_{A \cup \{b\}}(b)$$
.
 \uparrow
a, neighbor of *a*, or neighbor of neighbor of *a*

```
Lemma: \bigcup_A G[D_a] covers E.
```


- Construct A of expected size $\tilde{O}(\sqrt{n})$ such that $\max_A |D_a| = O(\sqrt{n})$
- **2** For every $a \in A$, reconstruct $G[D_a]$ by querying $D_a \times D_a$
- **③** Return $\bigcup_{a} G[D_{a}]$

Idea [Thorup Zwick 2001]: keep adding to A random vertices b such that $|Voronoi_{A\cup\{b\}}(b)| \ge \sqrt{n}$, until every vertex b of V has $|Voronoi_{A\cup\{b\}}(b)| < \sqrt{n}$

Invariant: if $b \notin L$ then $|Voronoi_{A \cup \{b\}}(b)| < \sqrt{n}$

- $A \leftarrow \emptyset$ and $L \leftarrow V$
- While $L \neq \emptyset$:
 - $R \leftarrow \text{sample from } L \text{ of size } \tilde{O}(\sqrt{n})$
 - add R to A and query R imes V
 - for every $b \in L$, estimate $|Voronoi_{A \cup \{b\}}(b)|$ using $\tilde{O}(\sqrt{n})$ queries
 - remove from L vertices with estimates less than $\sqrt{n}/10$

Query complexity: $(\#iterations) \times \tilde{O}(n\sqrt{n}) = \tilde{O}(n\sqrt{n})$

Randomized $\tilde{O}(n\sqrt{n})$ algorithm

Outerplanar graphs of bounded degree

Randomized $\tilde{O}(n)$ algorithm

An outerplanar graph

Outerplanar graphs of bounded degree: $\tilde{O}(n)$ algorithm

- Use a well-chosen node x to decompose V into components
- If a component has size > 0.99n, decompose it into subcomponents
- 8 Recurse on each piece

Outerplanar graphs of bounded degree: $\tilde{O}(n)$ algorithm

Main Algorithm

- Use a well-chosen node x to decompose V into components
- **2** If a component has size > 0.99n, decompose it into subcomponents

Recurse on each piece

Outerplanar graphs of bounded degree: $\tilde{O}(n)$ algorithm

- Use a well-chosen node x to decompose V into components
- 2 If a component has size > 0.99n, decompose it into subcomponents
- 8 Recurse on each piece

Why no subcomponent is huge (> 0.99n)?

Definition: x is well-chosen if at least $0.02n^2$ u-to-v shortest paths go through x.

Lemma: If x is well-chosen then no subcomponent is huge.

 $ilde{O}(n)$ queries for decomposition, then divide-and-conquer. Above lemma $\implies ilde{O}(n)$ queries overall

How do we find a well-chosen vertex in $\tilde{O}(n)$ queries?

Definition: x is well-chosen if at least $0.02n^2$ *u*-to-*v* shortest paths go through x.

Fact: There exists some well-chosen vertex.

Algorithm to find a well-chosen vertex

- $R \leftarrow \text{sample of } \log(n) \text{ pairs } (u, v) \text{ from } V^2$
- For each $(u, v) \in R$, compute the *u*-to-*v* shortest paths
- Select the vertex that belongs to the most shortest paths

Thank you!