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Capacitated Vehicle Routing Problem (CVRP)

Input:

depot

set of terminals

capacity k

Minimize total length of tours

O O

Fundamental problem in operations research



Unit Demand Unsplittable Demand

1985 Haimovich and Rinnooy Kan

1990 Altinkemer and Gavish

1997 Asano, Katoh, Tamaki, and Tokuyama

1998 Hamaguchi and Katoh

2001 Asano, Katoh, and Kawashima

2006 Bompadre, Dror, and Orlin

2010 Adamaszek, Czumaj, and Lingas

2010 Das and Mathieu

2017 Becker, Klein, and Saulpic

2018 Becker, Klein, and Saulpic

2018 Becker

2019 Becker, Klein, and Schild

2019 Becker and Paul

2020 Cohen-Addad, Filtser, Klein, and Le

2022 Blauth, Traub, and Vygen

2022 Jayaprakash and Salavatipour

2022 Jayaprakash and Salavatipour

2022 Mathieu and Z.

2023 Mömke and Z.

2023 Mathieu and Z.

2023 Dufay, Mathieu, and Z.

2024 Nie and Z.

1981 Golden and Wong

1987 Altinkemer and Gavish

1991 Labbé, Laporte, and Mercure

2021 Blauth, Traub, and Vygen

2022 Friggstad, Mousavi, Rahgoshay, and Salavatipour

2023 Grandoni, Mathieu, and Z.

2023 Mathieu and Z.

general metrics

Euclidean plane

trees

planar graphs

graphs of bounded treewidth

graphs of bounded highway dimension

graphic metrics



Random Setting in the Euclidean Plane

Terminals: independent, identically distributed random points in [0, 1]2



CVRP in the Random Setting

Previous results

2-approximation [Haimovich and Rinnooy Kan 1985]

1.995-approximation [Bompadre, Dror, and Orlin 2007]

1.915-approximation [Mathieu and Z. 2022]

New results

1.55-approximation [this work]



CVRP in the Random Setting: Our Results

Theorem

Sweep algorithm is at most 1.55-approximation.

Sweep algorithm
1 Sort terminals according to the polar angle w.r.t. the depot O

2 Partition terminals into groups, each of k/ε consecutive terminals

3 For each group, compute a (1 + ε)-approximate solution

Conjecture

Sweep algorithm is (1 + ε)-approximation.



Analysis: Warm Up [Haimovich and Rinnooy Kan 1985]

Two factors in the solution cost:

1 traveling salesman tour cost TSP

2 radial cost rad := 2
k
·
∑∑∑

v δ(O,v)

O

Properties on the optimal cost OPT:

OPT ≥ rad

OPT ≥ TSP

Implication: 2-approximation algorithm



Analysis: Our Approach in High Level

Generalization of radial cost and TSP cost

For a real value R:

rad(R) := 2
k

∑∑∑
v min {δ(O, v), R}

TSP(R) := TSP cost on {v : δ(O, v) ≥ R}

Structure Theorem

OPT ≥ rad(R) + TSP(R).

Implications:

R = 0 =⇒ OPT ≥ TSP

R = ∞ =⇒ OPT ≥ rad

R well chosen:

Theorem

Sweep algorithm is at most 1.55-approximation.



Proof of the Structure Theorem

Structure Lemma

Consider a tour S. Let VS denote the set of points visited by S. Let C be
the circle centered at O and with radius R. Let T denote the intersection
between S and the exterior of C. Then

length(S) ≥ 2

k

∑
v∈VS

min {δ(O, v), R}+ length(T ).

summing over all tours
in an optimal solution

Structure Theorem

OPT ≥ rad(R) + TSP(R).



Proof of the Structure Lemma (1/2)

Case 1: T ̸= ∅.

C

O

R

S: in red
T : in green

We have
length(S) ≥ 2R+ length(T ),

where

2R =
2

|VS |
∑
v∈VS

R ≥ 2

k

∑
v∈VS

min {δ(O, v), R} .



Proof of the Structure Lemma (2/2)

Case 2: T = ∅.

C

O

R

S: in red

We have

length(S) ≥ 2·max
v∈VS

δ(O, v) ≥ 2

|VS |
∑
v∈VS

δ(O, v) ≥ 2

k

∑
v∈VS

min {δ(O, v), R} .



Cost of Sweep Algorithm: Sol

Sweep algorithm
1 Sort terminals according to the polar angle w.r.t. the depot O

2 Partition terminals into groups, each of k/ε consecutive terminals

3 For each group, compute a (1 + ε)-approximate solution

Remark

If optimal cost of CVRP is linear with respect to angular partitioning,
then the sweep algorithm provides a (1 + ε)-approximation.



Upper bound [Haimovich and Rinnooy Kan 1985] for CVRP:

OPT ≤ rad+ TSP.

TSP is linear with respect to angular partitioning, as a corollary of
Richard Karp’s result, so we have:

Upper Bound on Sol

Sol =
∑∑∑

OPTi ≤
∑

radi +
∑

TSPi ≈ rad+ TSP.



Main Theorem: 1.55-Approximation

New Upper Bound on Approximation Ratio

Sol

OPT
≤ 1.55.

Proof:

Sol

OPT
≤min

R

rad+ TSP

rad(R) + TSP(R)

≤min
R

max

(
rad

rad(R)
,

TSP

TSP(R)

)
≤1.55.



Converting to Continuous Form

Let v be a uniformly random point in the unit square.

Discrete Continuous

rad 2n
k E(δ(O, v))

rad(R) 2n
k E(min(δ(O, v), R))

TSP β
√
n

TSP(R) β
√
n P(δ(O, v) ≥ R)

We choose

R =
3

4
E(δ(O, v)).



Two-variable inequalities

Lemma

Let R = 3
4 E(δ(O, v)), then

E(δ(O, v)) < 1.55 E(min(δ(O, v), R)),

1 < 1.55 P(δ(O, v) ≥ R).

Linear in the distribution of v → Partition the square and the disk
{p : δ(O, p) ≤ R} into disk sectors and triangles.

Closed-Form Formula [Stone 1991]

∫ a

0

∫ bx
a

0

√
x2 + y2 dy dx =

a3

6
log

(
b

|a|
+

√
1 +

b2

a2

)
+

ab

6

√
a2 + b2.



Thank you!


