Euclidean Capacitated Vehicle Routing in the Random Setting: A 1.55-Approximation Algorithm

Zipei Nie^{1,2} Hang Zhou³

¹Lagrange Mathematics and Computing Research Center, Huawei, France ²Institut des Hautes Études Scientifiques, France ³École Polytechnique, Institut Polytechnique de Paris, France

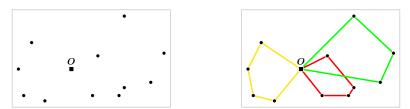
European Symposium on Algorithms 2024

Capacitated Vehicle Routing Problem (CVRP)

Input:

- depot
- set of terminals
- capacity k

Minimize total length of tours



Fundamental problem in operations research

Unit Demand

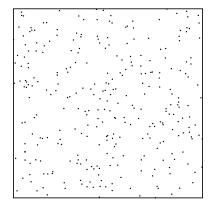
1985 🌒	Haimovich and Rinnooy Kan	
1990 🔶	Altinkemer and Gavish	
1997 🔶	Asano, Katoh, Tamaki, and Tokuyama	
1998 🔶	Hamaguchi and Katoh	
2001	Asano, Katoh, and Kawashima	
2006	Bompadre, Dror, and Orlin	
2010	Adamaszek, Czumaj, and Lingas	
2010	Das and Mathieu	
2017	Becker, Klein, and Saulpic	
2018 🔶	Becker, Klein, and Saulpic	
2018 🔶	Becker	
2019 🔶	Becker, Klein, and Schild	
2019 🔶	Becker and Paul	
2020 🔶	Cohen-Addad, Filtser, Klein, and Le	
2022	Blauth, Traub, and Vygen	
2022 🔶	Jayaprakash and Salavatipour	
2022 🔶	Jayaprakash and Salavatipour	
2022	Mathieu and Z.	
2023 🔶	Mömke and Z.	
2023 🔶	Mathieu and Z.	
2023 🔶	Dufay, Mathieu, and Z.	
2024	Nie and Z.	

Unsplittable Demand

1981	Golden and Wong	
1987	Altinkemer and Gavish	
1991	Labbé, Laporte, and Mercure	
2021	Blauth, Traub, and Vygen	
2022	Friggstad, Mousavi, Rahgoshay, and Salavatipour	
2023	• Grandoni, Mathieu, and Z.	
2023	Mathieu and Z.	

general metrics
Euclidean plane
trees
planar graphs
graphs of bounded treewidth
graphs of bounded highway dimension
graphic metrics

Terminals: independent, identically distributed random points in $[0,1]^2$



Previous results

- 2-approximation [Haimovich and Rinnooy Kan 1985]
- 1.995-approximation [Bompadre, Dror, and Orlin 2007]
- 1.915-approximation [Mathieu and Z. 2022]

New results

• 1.55-approximation [this work]

Theorem

Sweep algorithm is at most 1.55-approximation.

Sweep algorithm

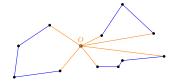
- **9** Sort terminals according to the polar angle w.r.t. the depot O
- **②** Partition terminals into groups, each of k/ε consecutive terminals
- **③** For each group, compute a $(1 + \varepsilon)$ -approximate solution

Conjecture

Sweep algorithm is $(1 + \varepsilon)$ -approximation.

Two factors in the solution cost:

- traveling salesman tour cost TSP
- 2 radial cost rad := $\frac{2}{k} \cdot \sum_{v} \delta(O, v)$



Properties on the optimal cost **OPT**:

- OPT \geq rad
- OPT \geq TSP

Implication: 2-approximation algorithm

Analysis: Our Approach in High Level

Generalization of radial cost and TSP cost

For a real value R:

- rad $(\mathbf{R}) := \frac{2}{k} \sum_{v} \min \left\{ \delta(O, v), R \right\}$
- $\mathsf{TSP}(R) := \mathsf{TSP} \text{ cost on } \{v : \delta(O, v) \geq R\}$

Structure Theorem

 $\mathsf{OPT} \ge \mathsf{rad}(R) + \mathsf{TSP}(R).$

Implications:

- $R = 0 \implies \text{OPT} \ge \text{TSP}$
- $R = \infty \implies \mathsf{OPT} \ge \mathsf{rad}$
- R well chosen:

Theorem

Sweep algorithm is at most 1.55-approximation.

Structure Lemma

Consider a tour S. Let V_S denote the set of points visited by S. Let C be the circle centered at O and with radius R. Let T denote the intersection between S and the exterior of C. Then

$$\operatorname{length}(S) \geq \frac{2}{k} \sum_{v \in V_S} \min \left\{ \delta(O, v), R \right\} + \operatorname{length}(T).$$

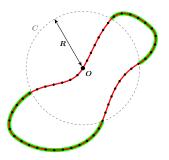
summing over all tours in an optimal solution

Structure Theorem

 $\mathsf{OPT} \ge \mathsf{rad}(R) + \mathsf{TSP}(R).$

Proof of the Structure Lemma (1/2)

Case 1: $T \neq \emptyset$.



S: in red T: in green

We have

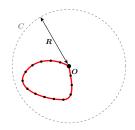
$$\operatorname{length}(S) \ge 2R + \operatorname{length}(T),$$

where

$$2R = \frac{2}{|V_S|} \sum_{v \in V_S} R \ge \frac{2}{k} \sum_{v \in V_S} \min\left\{\delta(O, v), R\right\}.$$

Proof of the Structure Lemma (2/2)

Case 2: $T = \emptyset$.



S: in red

We have

$$\mathsf{length}(S) \geq 2 \cdot \max_{v \in V_S} \delta(O, v) \geq \frac{2}{|V_S|} \sum_{v \in V_S} \delta(O, v) \geq \frac{2}{k} \sum_{v \in V_S} \min\left\{\delta(O, v), R\right\}.$$

Sweep algorithm

- **9** Sort terminals according to the polar angle w.r.t. the depot O
- **2** Partition terminals into groups, each of k/ε consecutive terminals
- **③** For each group, compute a $(1 + \varepsilon)$ -approximate solution

Remark

If optimal cost of CVRP is linear with respect to **angular partitioning**, then the sweep algorithm provides a $(1 + \varepsilon)$ -approximation.

Upper bound [Haimovich and Rinnooy Kan 1985] for CVRP:

$OPT \leq rad + TSP$.

TSP is linear with respect to **angular partitioning**, as a corollary of Richard Karp's result, so we have:

Upper Bound on Sol

$$\mathsf{Sol} = \sum \mathsf{OPT}_i \leq \sum \mathsf{rad}_i + \sum \mathsf{TSP}_i \approx \mathsf{rad} + \mathsf{TSP}.$$

New Upper Bound on Approximation Ratio

$$\frac{\text{Sol}}{\text{OPT}} \le 1.55.$$

Proof:

$$\begin{split} \frac{\mathsf{Sol}}{\mathsf{OPT}} &\leq \min_{R} \frac{\mathsf{rad} + \mathsf{TSP}}{\mathsf{rad}(R) + \mathsf{TSP}(R)} \\ &\leq \min_{R} \max\left(\frac{\mathsf{rad}}{\mathsf{rad}(R)}, \frac{\mathsf{TSP}}{\mathsf{TSP}(R)}\right) \\ &\leq & 1.55. \end{split}$$

Let v be a uniformly random point in the unit square.

Discrete	Continuous
rad	$\frac{2n}{k} \mathbb{E}(\delta(O, v))$
rad(R)	$\frac{2n}{k} \mathbb{E}(\min(\delta(O, v), R))$
TSP	$\beta\sqrt{n}$
TSP(R)	$\beta \sqrt{n} \ \mathbb{P}(\delta(O, v) \ge R)$

We choose

$$\boldsymbol{R} = \frac{3}{4} \mathbb{E}(\delta(O, v)).$$

Lemma

Let $R = \frac{3}{4} \mathbb{E}(\delta(O, v))$, then

 $\mathbb{E}(\delta(O,v)) < 1.55 \; \mathbb{E}(\min(\delta(O,v),R)),$

 $1 < 1.55 \mathbb{P}(\delta(O, v) \ge R).$

Linear in the distribution of $v \rightarrow$ Partition the square and the disk $\{p : \delta(O, p) \leq R\}$ into **disk sectors** and **triangles**.

Closed-Form Formula [Stone 1991]

$$\int_0^a \int_0^{\frac{bx}{a}} \sqrt{x^2 + y^2} \, dy \, dx = \frac{a^3}{6} \log\left(\frac{b}{|a|} + \sqrt{1 + \frac{b^2}{a^2}}\right) + \frac{ab}{6}\sqrt{a^2 + b^2}.$$

Thank you!