A Simple Algorithm for Graph Reconstruction

Claire Mathieu

CNRS Paris, France

Hang Zhou

École Polytechnique, France

European Symposium on Algorithms (ESA) 2021

Graph reconstruction problem

- $\bullet\,$ vertex set V is known and edge set E is unknown
- goal: find every edge in E
- assumption: connected and unweighted graph

Graph reconstruction problem

Traceroute			
(n,k):	$n - \star - \star - \star - k$	î	

$$(f,m):\ f-\bigstar-\bigstar-m$$

- distance query: $\{u, v\} \mapsto \text{distance } \delta(u, v)$
- efficiency measure: number of queries

Our results

Uniformly random $\Delta\text{-regular graphs, }\Delta=O(1)$

Reconstruction

query oracle	complexity
distance	$\tilde{O}(n)$ [Main Theorem]
all-distances	$O(\log^2 n)$
betweenness	$ ilde{O}(n)$
parallel distance	$\tilde{O}(n)$ queries, $1 + o(1)$ rounds
	- 0

• Metric dimension $\leq \log^2 n$

General graphs of bounded degree

Reconstruction

query oraclecomplexityparallel distance $ilde{O}(n^{5/3})$ queries, 2 rounds

SIMPLE algorithm

Preliminary observations

- $\delta(v,w) = 1 \implies (v,w)$ is an edge
- $\bullet \ \delta(v,w) > 1 \quad \Longrightarrow \quad (v,w) \text{ is not an edge}$
- $\bullet \ |\delta(u,v)-\delta(u,w)|>1 \quad \Longrightarrow \quad (v,w) \text{ is not an edge}$

Idea: take multiple vertices u to confirm many non-edges

Potential edges: pairs not confirmed as non-edges by any vertex u

The SIMPLE algorithm

Input parameter $s \in [1, n]$.

 $\textbf{0} \ \ \text{Take a sample } S \subseteq V \ \text{uniformly at random such that } |S| = s \\$

 $\textcircled{Output the potential edges } \{v,w\} \text{ such that } \delta(v,w) = 1$

Overall query complexity: $\underbrace{s \cdot n}_{\textcircled{O}}$ + <u>number of potential edges</u>

Let v, w be any non-adjacent pair of vertices.

- Breadth First Search (BFS) from v and w simultaneously
- An edge is exploring: one endpoint is explored for the first time

Interesting vertices

A vertex x is *v*-interesting (resp. *w*-interesting) if all of the following:

- the shortest path from v (resp. w) to x is unique
- all edges on that path are exploring
- all edges incident to that path are exploring.

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x,v) - \delta(x,w)| > 1$.

- a shortest x-to-v path
- a shortest x-to-w path
- \bullet branching point z
- suffices to show:
 - $|\delta(z,v) \delta(z,w)| > 1.$

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x, v) - \delta(x, w)| > 1$.

Let $\ell(\cdot) = \min\{\delta(\cdot, v), \delta(\cdot, w)\}$ • $\ell(v_1) = 1$ • $\ell(v_2) = 2$

•
$$\ell(v_3) = 3$$

•
$$\ell(v_4) = 4$$

•
$$\ell(z) = 5$$

•
$$\ell(y) = 6$$

$$\label{eq:started_s$$

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x,v) - \delta(x,w)| > 1$.

Lemma 2

With probability $1 - o(n^{-2})$, number of interesting vertices $\geq 3n/\log n$.

Proof of the Main Theorem:

• Let v, w be a non-adjacent pair of vertices.

$$s = \log^2 n$$
 sampled vertices
 \downarrow Lemma 2
 \exists an interesting vertex x in the sample, w.h.p.
 \downarrow Lemma 1
 (v,w) is not a potential edge, w.h.p.

- Number of potential edges = |E| + o(1)
- Query complexity: $s \cdot n + ($ number of potential edges $) = \tilde{O}(n)$.

All-distances query model

- Querying $S \times V$ takes $|S| = \log^2 n$ all-distances queries
- Query complexity for graph reconstruction: $O(\log^2 n)$

Betweenness query model

- $\tilde{O}(n)$ betweenness queries simulate an all-distances query [Abrahamsen, Bodwin, Rotenberg, Stöckel, STACS 2016]
- Query complexity for graph reconstruction: $\tilde{O}(n)$

Parallel setting

Take a sample S ⊆ V uniformly at random such that |S| = s
Query S × V
δ =? • v ∈ V

 $\textcircled{Output the potential edges } \{v,w\} \text{ such that } \delta(v,w) = 1$

Number of rounds

- Two rounds on general graphs
- 1 + o(1) rounds on random Δ -regular graphs

Metric dimension

Resolving set $S \subseteq V$ for a graph: for any pair of vertices v and w, there is a vertex $u \in S$ such that $\delta(u, v) \neq \delta(u, w)$.

Metric dimension of a graph: cardinality of a smallest resolving set.

Lemma

A random subset S of $\log^2 n$ vertices is a resolving set for a random Δ -regular graph w.h.p.

Proof:

Case 1: $\delta(v, w) \ge 2$: arguments from graph reconstruction Case 2: $\delta(v, w) = 1$:

• \exists vertex x adjacent to w but not adjacent to v w.h.p.

• $\delta(v, x) \ge 2 \implies \exists u \in S \text{ with } |\delta(u, v) - (u, x)| \ge 2$ • $|\delta(u, v) - (u, w)| \ge 1 \text{ w.h.p.}$

Conclusion: metric dimension of a random Δ -regular graph $\leq \log^2 n$ w.h.p.