A Simple Algorithm for Graph Reconstruction

Claire Mathieu
CNRS Paris, France

Hang Zhou
École Polytechnique, France

European Symposium on Algorithms (ESA) 2021

Graph reconstruction problem

- vertex set V is known and edge set E is unknown
- goal: find every edge in E
- assumption: connected and unweighted graph

Graph reconstruction problem

Traceroute

$$
\begin{aligned}
& (n, k): n-\star-\star-\star-k \\
& (f, m): f-\star-\star-m
\end{aligned}
$$

- distance query: $\{u, v\} \mapsto$ distance $\delta(u, v)$
- efficiency measure: number of queries

Our results

Uniformly random Δ-regular graphs, $\Delta=O(1)$

- Reconstruction

query oracle	complexity
distance	$\tilde{O}(n) \quad$ [Main Theorem]
all-distances	$O\left(\log ^{2} n\right)$
betweenness	$\tilde{O}(n)$
parallel distance	$\tilde{O}(n)$ queries, $1+o(1)$ rounds

- Metric dimension $\leq \log ^{2} n$

General graphs of bounded degree

- Reconstruction

query oracle	complexity
parallel distance	$\tilde{O}\left(n^{5 / 3}\right)$ queries, 2 rounds

Preliminary observations

- $\delta(v, w)=1 \quad \Longrightarrow \quad(v, w)$ is an edge
- $\delta(v, w)>1 \Longrightarrow(v, w)$ is not an edge
- $|\delta(u, v)-\delta(u, w)|>1 \quad \Longrightarrow \quad(v, w)$ is not an edge

Idea: take multiple vertices u to confirm many non-edges
Potential edges: pairs not confirmed as non-edges by any vertex u

The Simple algorithm

Input parameter $s \in[1, n]$.
(1) Take a sample $S \subseteq V$ uniformly at random such that $|S|=s$
(2) Query $S \times V$

(3) Query every potential edge $\{v, w\}$

(9) Output the potential edges $\{v, w\}$ such that $\delta(v, w)=1$

Overall query complexity:

Let v, w be any non-adjacent pair of vertices.

- Breadth First Search (BFS) from v and w simultaneously
- An edge is exploring: one endpoint is explored for the first time

Interesting vertices

A vertex x is v-interesting (resp. w-interesting) if all of the following:

- the shortest path from v (resp. w) to x is unique
- all edges on that path are exploring
- all edges incident to that path are exploring.

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x, v)-\delta(x, w)|>1$.

Proof:

- a shortest x-to- v path
- a shortest x-to- w path
- branching point z
- suffices to show:

$$
|\delta(z, v)-\delta(z, w)|>1
$$

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x, v)-\delta(x, w)|>1$.

Proof:

Let $\ell(\cdot)=\min \{\delta(\cdot, v), \delta(\cdot, w)\}$

- $\ell\left(v_{1}\right)=1$
- $\ell\left(v_{2}\right)=2$
- $\ell\left(v_{3}\right)=3$
- $\ell\left(v_{4}\right)=4$
- $\ell(z)=5$
- $\ell(y)=6$
- $\delta(y, w) \geq 6$
- $\delta(z, w) \geq 7=\delta(z, v)+2$ \square

Lemma 1

If x is v-interesting or w-interesting, then $|\delta(x, v)-\delta(x, w)|>1$.

Lemma 2

With probability $1-o\left(n^{-2}\right)$, number of interesting vertices $\geq 3 n / \log n$.

Proof of the Main Theorem:

- Let v, w be a non-adjacent pair of vertices.

$$
s=\log ^{2} n \text { sampled vertices }
$$

\Downarrow Lemma 2
\exists an interesting vertex x in the sample, w.h.p.
\Downarrow Lemma 1
(v, w) is not a potential edge, w.h.p.

- Number of potential edges $=|E|+o(1)$
- Query complexity: $s \cdot n+$ (number of potential edges) $=\tilde{O}(n)$.

Other query models

All-distances query model

- Querying $S \times V$ takes $|S|=\log ^{2} n$ all-distances queries
- Query complexity for graph reconstruction: $O\left(\log ^{2} n\right)$

Betweenness query model

- $\tilde{O}(n)$ betweenness queries simulate an all-distances query [Abrahamsen, Bodwin, Rotenberg, Stöckel, STACS 2016]
- Query complexity for graph reconstruction: $\tilde{O}(n)$

Parallel setting

(1) Take a sample $S \subseteq V$ uniformly at random such that $|S|=s$
(2) Query $S \times V$

(3) Query every potential edge $\{v, w\}$

(9) Output the potential edges $\{v, w\}$ such that $\delta(v, w)=1$

Number of rounds

- Two rounds on general graphs
- $1+o(1)$ rounds on random Δ-regular graphs

Metric dimension

Resolving set $S \subseteq V$ for a graph: for any pair of vertices v and w, there is a vertex $u \in S$ such that $\delta(u, v) \neq \delta(u, w)$.
Metric dimension of a graph: cardinality of a smallest resolving set.

Lemma

A random subset S of $\log ^{2} n$ vertices is a resolving set for a random Δ-regular graph w.h.p.

Proof:
Case 1: $\delta(v, w) \geq 2$: arguments from graph reconstruction
Case 2: $\delta(v, w)=1$:

- \exists vertex x adjacent to w but not adjacent to v w.h.p.
- $\delta(v, x) \geq 2 \Longrightarrow \exists u \in S$ with $|\delta(u, v)-(u, x)| \geq 2$
- $|\delta(u, v)-(u, w)| \geq 1$ w.h.p.

Conclusion: metric dimension of a random Δ-regular graph $\leq \log ^{2} n$ w.h.p.

