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Abstract

How e�ciently can we �nd an unknown graph using distance queries between its vertices? We assume
that the unknown graph is connected, unweighted, and has bounded degree. The goal is to �nd every edge in
the graph. This problem admits a reconstruction algorithm based on multi-phase Voronoi-cell decomposition
and using Õ(n3/2) distance queries [27].

In our work, we analyze a simple reconstruction algorithm. We show that, on random ∆-regular graphs,
our algorithm uses Õ(n) distance queries. As by-products, with high probability, we can reconstruct those
graphs using log2 n queries to an all-distances oracle or Õ(n) queries to a betweenness oracle, and we bound
the metric dimension of those graphs by log2 n.

Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general graphs
of bounded degree, our reconstruction algorithm has subquadratic query complexity.
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1 Introduction

Discovering the topology of the Internet is a crucial step for building accurate network models and designing
e�cient algorithms for Internet applications. The topology of Internet networks is typically investigated at the
router level, using traceroute. It is a common and reasonably accurate assumption that traceroute generates
paths that are shortest in the network. Unfortunately, sometimes routers block traceroute requests due to
privacy and security concerns. As a consequence, the inference of the network topology is rather based on the
end-to-end delay information on those requests, which is roughly proportional to the shortest-path distances in
the network.

In the graph reconstruction problem, we are given the vertex set V of a hidden connected, undirected,
and unweighted graph and have access to information about the topology of the graph via an oracle, and the
goal is to �nd every edge in E. Henceforth, unless explicitly mentioned, all graphs studied are assumed to be
connected. This assumption is standard and shared by almost all references on the subject, e.g., [7, 14, 27, 39, 41].
The e�ciency of an algorithm is measured by the query complexity, i.e., the number of queries to the oracle.
Motivated by traceroute, the literature has explored several types of query oracles.

� One type consists of all-shortest-paths and all-distances queries, when querying a vertex yields either
shortest paths from that vertex to all other vertices [7, 41] or distances from that vertex to all other
vertices [14]. The latter, of course, is less informative.

� A more re�ned type of query oracles, suggested in [7, 14], consists of shortest-path and distance queries,
when querying a pair of vertices yields either a shortest path or the distance between them [27, 38, 39].
Again, the latter is less informative.

In this work, we focus on the weakest of those four query oracles, that takes as input a pair of vertices a and
b and returns the distance δ(a, b) between them. Reyzin and Srivastava [38] showed that graph reconstruction
requires Ω(n2) distance queries on general graphs, so we focus on the bounded degree case. For graphs of bounded
degree, Kannan, Mathieu, and Zhou [27] gave a reconstruction algorithm based on multi-phase Voronoi-cell
decomposition and using Õ(n3/2) distance queries, and raised an open question of whether Õ(n) is achievable.1

We provide a partial answer to that open question by analyzing a simple reconstruction algorithm (Algo-
rithm 1). We show that, on (uniformly) random ∆-regular graphs, where every vertex has the same degree ∆,
our reconstruction algorithm uses Õ(n) distance queries (Theorem 1). As by-products, with high probability, we
can reconstruct those graphs using log2 n queries to an all-distances oracle (Corollary 2) or using Õ(n) queries
to a betweenness oracle (Corollary 3), and we bound the metric dimension of those graphs by at most log2 n
(Corollary 5).

Our analysis exploits the locally tree-like property of random ∆-regular graphs, meaning that these graphs
contain a small number of short cycles. Our method might be applicable to other locally tree-like graphs, such
as Erdös-Rényi random graphs and scale-free graphs. In particular, many real world networks, such as Internet
networks, social networks, and peer-to-peer networks, are believed to have scale-free properties [6, 25, 34]. We
defer the reconstruction of those networks for future work.

Our reconstruction algorithm has a very simple structure, and is highly parallelizable (Lemma 8). On general
graphs of bounded degree, the same reconstruction algorithm has subquadratic query complexity (Theorem 6).

1.1 Related Work

The problem of reconstructing a graph using queries that reveal partial information has been extensively studied
in di�erent contexts and has many applications.

Reconstruction of Random Graphs The gist of our paper deals with random graphs. The graph re-
construction problem has already attracted much interest in the setting of random graphs. On Erdös-Rényi
random graphs, Erlebach, Hall, and Mihal'ák [15] studied the approximate network reconstruction using all-
shortest-paths queries; Anandkumar, Hassidim, and Kelner [4] used end-to-end measurements between a subset
of vertices to approximate the network structure. Experimental results to reconstruct random graphs using
shortest-path queries were given in [8, 20].

On random ∆-regular graphs, Achlioptas et al. [2] studied the bias of traceroute sampling in the context
of the network reconstruction. They showed that the structure revealed by traceroute sampling on random
∆-regular graphs admits a power-law degree distribution [2], a common phenomenon as in Erdös-Rényi random
graphs [31] and Internet networks [16].

1The notation Õ(f(n)) stands for O(f(n) · polylog f(n)).
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Metric Dimension and Related Problems Our work yields an upper bound on the metric dimension of
random ∆-regular graphs. The metric dimension problem was �rst introduced by Slater [42] and Harary and
Melter [21], see also [5, 12, 13, 23, 29, 36, 37, 40]. The metric dimension of a graph is the cardinality of a
smallest subset S of vertices such that every vertex in the graph has a unique vector of distances to the vertices
in S. On regular graphs, the metric dimension problem was studied in special cases [13, 24]. In Erdös-Rényi
random graphs, the metric dimension problem was studied by Bollobás, Mitsche, and Praªat [11]. Mitsche and
Rué [32] also considered the random forest model.

A related problem is the identifying code of a graph [28], which is a smallest subset of vertices such that
every vertex of the graph is uniquely determined by its neighbourhood within this subset. The identifying code
problem was studied on random ∆-regular graphs [17] and on Erdös-Rényi random graphs [19]. Other related
problems received attentions on random graphs as well, such as the sequential metric dimension [35] and the
seeded graph matching [33].

Betweenness Oracle There exists an oracle that is even weaker than the distance oracle: the betweenness
oracle [1], which receives three vertices u, v, and w and returns whether w lies on a shortest path between u and
v. Our work yields a reconstruction algorithm using Õ(n) betweenness queries on random ∆-regular graphs.
For graphs of bounded degree, Abrahamsen et al. [1] generalized the Õ(n3/2) result in the distance oracle model
from [27] to the betweenness oracle model.

Tree Reconstruction and Parallel Setting Our paper focuses on the distance oracle and bounded degree,
and considers the parallel setting. All of those aspects were previously raised in the special case of the tree
reconstruction. Indeed, motivated by the reconstruction of a phylogenetic tree in evolutionary biology, the
tree reconstruction problem using a distance oracle is well-studied [22, 30, 43], in particular assuming bounded
degree [22]. Afshar et al. [3] studied the tree reconstruction in the parallel setting, analyzing both the round
complexity and the query complexity in the relative distance query model [26].

1.2 Our Results

Our reconstruction algorithm, called Simple, is given in Algorithm 1. It takes as input the vertex set V of size
n and an integer parameter s ∈ [1, n].

Algorithm 1 Simple (V, s)

1: S ← sample of s vertices selected uniformly and independently at random from V
2: for u ∈ S and v ∈ V do Query(u, v)

3: Ê ← set of vertex pairs {a, b} ⊆ V such that, for all u ∈ S, |δ(u, a)− δ(u, b)| ≤ 1
4: for {a, b} ∈ Ê do Query(a, b)

5: return set of vertex pairs {a, b} ∈ Ê such that δ(a, b) = 1

Intuitively, the set Ê constructed in Simple consists of all vertex pairs {a, b} ⊆ V that might be an edge
in E. In order to obtain the edge set E, it su�ces to query uniquely the vertex pairs in Ê. We remark that
Simple correctly reconstructs the graph for any parameter s ∈ [1, n], and that choosing an appropriate s only
a�ects the query complexity, see Lemma 8.

Simple correctly reconstructs any connected graph. We analyze the expected query complexity of Simple
on random ∆-regular graphs in Theorem 1 and on bounded degree graphs in Theorem 6.

1.2.1 Random Regular Graphs

Our �rst main result shows that Simple (Algorithm 1) uses Õ(n) distance queries on random ∆-regular graphs
for an appropriately chosen s and uses 2 parallel rounds (Theorem 1). The analysis exploits the locally tree-like
property of random ∆-regular graphs. The proof of Theorem 1 consists of several technical novelties, based on
a new concept of interesting vertices (De�nition 2). See Section 3.

Theorem 1. Consider a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n. In the distance
query model, Simple (Algorithm 1) is a reconstruction algorithm using Õ(n) queries in expectation. In addition,
Simple can be parallelized using 2 rounds.

We extend Simple and its analysis to reconstruct random ∆-regular graphs in the all-distances query model
and in the betweenness query model with high probability (Corollaries 2 and 3). These extensions are based on
the observation that the set Ê constructed in Simple equals the edge set E with high probability (Lemma 17),2

see Section 4.

2This property (i.e., Ê = E with high probability) does not hold on general graphs of bounded degree.
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Corollary 2. Consider a uniformly random ∆-regular graph with ∆ = O(1). In the all-distances query model,
there is an algorithm that uses log2 n queries and reconstructs the graph with probability 1− o(1).

Corollary 3. Consider a uniformly random ∆-regular graph with ∆ = O(1). In the betweenness query model,
there is an algorithm that uses Õ(n) queries and reconstructs the graph with probability 1− o(1).

Remark 4. The algorithms in Corollaries 2 and 3 require the promise that the graph is uniformly random
∆-regular, and may output incorrect results on other graphs.

We further extend the analysis of Simple to study the metric dimension of random ∆-regular graphs
(Corollary 5), by showing (in Lemma 20) that a random subset of log2 n vertices is almost surely a resolving set
(De�nition 3) for those graphs, see Section 5.

Corollary 5. Consider a uniformly random ∆-regular graph with ∆ = O(1). With probability 1 − o(1), the
metric dimension of the graph is at most log2 n.

With extra work, the parameter s = log2 n in Theorem 1 can be reduced to log n · (log log n)2+ϵ, for any
ϵ > 0, see Remark 16. As a consequence, the query complexity in the all-distances query model (Corollary 2)
and the upper bound on the metric dimension (Corollary 5) can both be improved to O(log n · (log log n)2+ϵ).

1.2.2 Bounded-Degree Graphs

On general graphs of bounded degree, Simple (Algorithm 1) has subquadratic query complexity (Theorem 6),
see Section 6.

Theorem 6. Consider a general graph of bounded degree ∆ = O(polylog n). Let s = n2/3. In the distance query
model, Simple (Algorithm 1) is a reconstruction algorithm using Õ(n5/3) queries in expectation. In addition,
Simple can be parallelized using 2 rounds.

We note that the Multi-Phase algorithm3 from [27] also reconstructs graphs of bounded degree in the
distance query model. How does Simple compare to Multi-Phase? In terms of query complexity, on general
graphs of bounded degree, Simple uses Õ(n5/3) queries, so is not as good as Multi-Phase using Õ(n3/2)
queries; on random ∆-regular graphs, Simple is more e�cient than Multi-Phase: Õ(n) versus Õ(n3/2). In
terms of round complexity, Simple can be parallelized using 2 rounds on general graphs of bounded degree, and
even 1 + o(1) rounds on random ∆-regular graphs; while Multi-Phase requires up to 3 log n rounds due to a
multi-phase selection process for centers.4 In terms of structure, Simple is much simpler than Multi-Phase,
which is based on multi-phase Voronoi-cell decomposition.

In worst case instances of graphs of bounded degree, the query complexity of Simple is higher than linear.
For example, when the graph is a complete binary tree, Simple would require Ω(n

√
n) queries (the complexity

of Simple is minimized when s is roughly
√
n). Thus the open question from [27] of whether general graphs

of bounded degree can be reconstructed using Õ(n) distance queries remains open and answering it positively
would require further algorithmic ideas.

2 Notations and Preliminary Analysis

Let G = (V,E) be a connected, undirected, and unweighted graph, where V is the set of vertices such that
|V | = n and E is the set of edges. We say that {a, b} ⊆ V is a vertex pair if both a and b belong to V such that
a ̸= b. The distance between a vertex pair {a, b} ⊆ V , denoted by δ(a, b), is the number of edges on a shortest
a-to-b path. Throughout the paper, we use log(·) to indicate log2(·).
De�nition 1 (Distinguishing). For a vertex pair {a, b} ⊆ V , we say that a vertex u ∈ V distinguishes a and b,
or equivalently that u is a distinguisher of {a, b}, if |δ(u, a) − δ(u, b)| > 1. Let D(a, b) ⊆ V denote the set of
vertices u ∈ V distinguishing a and b.

Let s ∈ [1, n] be an integer parameter. The set S constructed in Simple consists of s vertices selected
uniformly and independently at random from V .

The set Ê constructed in Simple consists of the vertex pairs {a, b} ⊆ V such that a and b are not distin-
guished by any vertex in S, i.e., D(a, b) ∩ S = ∅, or equivalently, |δ(u, a) − δ(u, b)| ≤ 1 for all u ∈ S. For any
edge (a, b) ∈ E, it is easy to see that |δ(u, a)− δ(u, b)| ≤ 1 for all u ∈ V , which implies that {a, b} ∈ Ê. Hence
the following inclusion property.

Fact 7. E ⊆ Ê.

3Algorithm 3 in [27].
4The number of rounds in Multi-Phase is implicit in the proof of Lemma 2.3 from [27].
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We show that Simple is correct and we give a preliminary analysis on its query complexity as well as on its
round complexity, in Lemma 8.

Lemma 8. The output of Simple (Algorithm 1) equals the edge set E. The number of distance queries in
Simple is n · s+ |Ê|. In addition, Simple can be parallelized using 2 rounds.

Proof. The output of Simple consists of the vertex pairs {a, b} ∈ Ê such that {a, b} is an edge in E. Since
E ⊆ Ê (Fact 7), the output of Simple equals the edge set E.

Observe that the distance queries in Simple are performed in two stages. The number of distance queries
in the �rst stage is |V | · |S| = n · s. The number of distance queries in the second stage is |Ê|. Thus the query
complexity of Simple is n · s+ |Ê|. The distance queries in each of the two stages can be performed in parallel,
so Simple can be parallelized using 2 rounds.

From Lemma 8, in order to further study the query complexity of Simple, it su�ces to analyze |Ê|, which
equals |E| + |Ê \ E| according to Fact 7. Since |E| ≤ ∆n in a graph of bounded degree ∆, our focus in the
subsequent analysis is |Ê \ E|.

Lemma 9. Let s = ω(log n) be an integer parameter. Let B be the set of vertex pairs {a, b} ⊆ V such that
δ(a, b) ≥ 2 and |D(a, b)| ≤ 3n · (log n)/s. We have ES

[
|Ê \ E|

]
≤ |B|+ o(1).

Proof. Let Z denote the set Ê \E. Observe that |Z| ≤ |B|+ |Z \B|. Since B is independent of the random set
S, we have ES

[
|Z|
]
≤ |B|+ ES

[
|Z \B|

]
. It su�ces to show that ES

[
|Z \B|

]
= o(1).

We claim that for any vertex pair {a, b} ⊆ V such that {a, b} /∈ B, the probability that {a, b} ∈ Z is o(n−2).
To see this, �x a vertex pair {a, b} /∈ B. By de�nition of B, either δ(a, b) = 1, or |D(a, b)| > 3n · (log n)/s. In
the �rst case, {a, b} /∈ Z since Z does not contain any edge of E. In the second case, the event {a, b} ∈ Z would
imply that {a, b} ∈ Ê, hence D(a, b) ∩ S = ∅. Therefore,

PS

[
{a, b} ∈ Z | {a, b} /∈ B

]
≤PS

[
D(a, b) ∩ S = ∅ | {a, b} /∈ B

]
<

(
1− 3n · (log n)/s

n

)s

=o(n−2),

where the second inequality follows since |D(a, b)| > 3n · (log n)/s and the set S consists of s vertices selected
uniformly and independently at random, and the last step follows since s = ω(log n).

There are at most n(n− 1)/2 vertex pairs {a, b} /∈ B. By the linearity of expectation, the expected number
of vertex pairs {a, b} /∈ B such that {a, b} ∈ Z is at most o(n−2) · n(n − 1)/2 = o(1), so ES

[
|Z \ B|

]
= o(1).

Therefore, ES

[
|Z|
]
≤ |B|+ ES

[
|Z \B|

]
= |B|+ o(1).

3 Reconstruction of Random Regular Graphs (Proof of Theorem 1)

In this section, we analyze Simple (Algorithm 1) on random ∆-regular graphs in the distance query model. We
assume that ∆ ≥ 2 and that ∆n is even since otherwise those graphs do not exist.

We bound the expectation of |Ê \ E| on random ∆-regular graphs, in Lemma 10.

Lemma 10. Let G be a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n. Let S ⊆ V be a set
of s vertices selected uniformly and independently at random from V . We have EG,S

[
|Ê \ E|

]
= o(1).

Proof of Theorem 1 using Lemma 10. By Lemma 8, Simple is a reconstruction algorithm using n · s + |Ê| =
n · log2 n + |Ê| distance queries, and in addition, Simple can be parallelized using 2 rounds. From Fact 7,
|Ê| = |E| + |Ê \ E|. Since G is ∆-regular, |E| = ∆n/2. By Lemma 10, EG,S

[
|Ê \ E|

]
= o(1). Therefore, the

expected number of distance queries in Simple is n · log2 n+∆n/2 + o(1), which is Õ(n) since ∆ = O(1).

It remains to prove Lemma 10 in the rest of this section.

3.1 Con�guration Model and the Structural Lemma

We consider a random ∆-regular graph generated according to the con�guration model [9, 44]. Given a partition
of a set of ∆n points into n cells v1, v2, . . . , vn of ∆ points, a con�guration is a perfect matching of the points
into ∆n/2 pairs. It corresponds to a (not necessarily connected) multigraph G′ in which the cells are regarded
as vertices and the pairs as edges: a pair of points {x, y} in the con�guration corresponds to an edge (vi, vj)
of G′ where x ∈ vi and y ∈ vj . Since each ∆-regular graph has exactly (∆!)n corresponding con�gurations, a
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∆-regular graph can be generated uniformly at random by rejection sampling: choose a con�guration uniformly
at random,5 and reject the result if the corresponding multigraph G′ is not simple or not connected. The
con�guration model enables us to show properties of a random ∆-regular graph by analyzing a multigraph G′

corresponding to a random con�guration.
Based on the con�guration model, we are ready to state the following Structural Lemma, which is central in

our analysis.

Lemma 11 (Structural Lemma). Let ∆ = O(1) be such that ∆ ≥ 3. Let G′ be a multigraph corresponding to
a uniformly random con�guration. Let {v, w} be a vertex pair in G′ such that δ(v, w) ≥ 2. With probability
1− o(n−2), we have |D(v, w)| > 3n/ log n.

In Section 3.2, we prove the Structural Lemma, and in Section 3.3, we show Lemma 10 using the Structural
Lemma.

3.2 Proof of the Structural Lemma (Lemma 11)

Let G′ be a multigraph corresponding to a uniformly random con�guration, and let V be the vertex set of G′.
Let {v, w} ⊆ V be a vertex pair such that δ(v, w) ≥ 2. For a vertex x ∈ V , let ℓ(x) ∈ Z denote the distance in
G′ between x and the vertex pair {v, w}, i.e., ℓ(x) = min(δ(x, v), δ(x,w)). For any integer k ≥ 0, let Uk ⊆ V
denote the set of vertices x ∈ V such that ℓ(x) = k. Let U≤k denote

⋃
j≤k Uj .

To construct the multigraph G′ from a random con�guration, we borrow the approach from [10], which
proceeds in n phases to construct the edges in G′, exploring vertices x ∈ V in non-decreasing order of ℓ(x).
We start at the vertices of U0 = {v, w}. Initially, i.e., in the 0-th phase, we construct all the edges incident to
v or incident to w. Suppose at the beginning of the k-th phase, for each k ∈ [1, n − 1], we have constructed
all the edges with at least one endpoint belonging to U≤k−1. During the k-th phase, we construct the edges
incident to the vertices in Uk one by one, till the degree of all the vertices in Uk reaches ∆. The ordering of
the edge construction within the same phase is arbitrary. Let G′ be the resulting multigraph in the end of the
construction.6 The ordering of the edges in G′ is de�ned according to the above edge construction.

An edge (a, b) in G′ is indispensable if it explores either the vertex a or the vertex b for the �rst time in the
edge construction. In the �rst case, b is the predecessor of a; and in the second case, a is the predecessor of b.
An edge is dispensable if it is not indispensable, in other words, if each of its endpoints either belongs to {v, w}
or is an endpoint of an edge constructed previously.

Fact 12. Neither v or w has a predecessor. For any vertex in V , its predecessor, if exists, is unique. If vertex
a is the predecessor of vertex b, then ℓ(b) = ℓ(a) + 1.

We introduce the concept of interesting vertices, which is a key idea in the analysis.

De�nition 2 (Interesting Vertices). A vertex x ∈ V is v-interesting if, for all vertices z ∈ V \ {v} with
δ(v, z) + δ(z, x) = δ(v, x), the edges incident to z are indispensable. Similarly, a vertex x ∈ V is w-interesting
if, for all vertices z ∈ V \ {w} with δ(w, z) + δ(z, x) = δ(w, x), the edges incident to z are indispensable.

For any �nite integer k ≥ 1, let Ik(v) ⊆ V denote the set of v-interesting vertices x ∈ V such that δ(v, x) = k,
and let Ik(w) ⊆ V denote the set of w-interesting vertices x ∈ V such that δ(w, x) = k.

We show in Lemma 13 that interesting vertices distinguish the vertex pair {v, w}, and we provide a lower
bound on the number of interesting vertices in Lemma 14. These two lemmas are main technical novelties in
our work. Their proofs are in Sections 3.2.1 and 3.2.2, respectively.

Lemma 13. For any �nite integer k ≥ 1, we have Ik(v) ∪ Ik(w) ⊆ D(v, w).

Lemma 14. Let ∆ = O(1) be such that ∆ ≥ 3. Let k be any positive integer such that k ≤ ⌈log∆−1(3n/ log n)⌉+
2. With probability 1− o(n−2), we have |Ik(v) ∪ Ik(w)| > (∆− 2− o(1))(∆− 1)k−1.

The Structural Lemma (Lemma 11) follows easily from Lemmas 13 and 14, see Section 3.2.3.

3.2.1 Proof of Lemma 13

Fix a �nite integer k ≥ 1. From the symmetry of v and w, it su�ces to prove Ik(v) ⊆ D(v, w).
Let x be any vertex in Ik(v). By de�nition, x is v-interesting and δ(v, x) = k. Let a0 = v, a1, . . . , ak = x be

any shortest v-to-x path. For any vertex ai with i ∈ [1, k], the edges incident to ai are indispensable according
to De�nition 2.

5To generate a random con�guration, the points in a pair can be chosen sequentially: the �rst point can be selected using any
rule, as long as the second point in that pair is chosen uniformly from the remaining points.

6When a multigraph corresponding to a random con�guration is not connected, the resulting G′ consists of the union of the
components of v and of w, respectively, in that multigraph. Note that any vertex x ∈ V outside those two components cannot
distinguish v and w (i.e., x /∈ D(v, w)), thus x is irrelevant to |D(v, w)| in the statement of Lemma 11.
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z(= ak−i∗ = bk′−i∗) x(= ak = bk′)

v(= a0)
a1

a2

ak−i∗−1

w(= b0)
b1

b2

y(= bk′−i∗−1)

Figure 1: a0, a1, . . . , ak is a shortest v-to-x path, and b0, b1, . . . , bk′ is a shortest w-to-x path. The vertex z
represents the branching point of these two paths. Since the vertex x is v-interesting, the highlighted edges are
indispensable.

We claim that, for any i ∈ [1, k], ai−1 is the predecessor of ai, and in addition, ℓ(ai) = i. The proof
is by induction. First, consider the case when i = 1. The edge (a0, a1) is incident to the vertex a1, so is
indispensable. Thus either a0 is the predecessor of a1, or a1 is the predecessor of a0. Since a0 (= v) has no
predecessor (Fact 12), a1 cannot be the predecessor of a0, so a0 is the predecessor of a1. Again using Fact 12,
we have ℓ(a1) = ℓ(a0) + 1. Since ℓ(a0) = ℓ(v) = 0, we have ℓ(a1) = 1. Next, consider the case when i ≥ 2,
and assume that the claim holds already for 1, . . . , i − 1. The edge (ai−1, ai) is incident to the vertex ai, so is
indispensable. Thus either ai−1 is the predecessor of ai, or ai is the predecessor of ai−1. By induction, ai−2 is
the predecessor of ai−1. Since the predecessor of ai−1 is unique (Fact 12), ai cannot be the predecessor of ai−1,
so ai−1 is the predecessor of ai. Again using Fact 12, we have ℓ(ai) = ℓ(ai−1) + 1. Since ℓ(ai−1) = i − 1 by
induction, we have ℓ(ai) = i.

In order to show that x ∈ D(v, w), we prove in the following that δ(w, x) ≥ k+2. Indeed, since δ(v, x) = k,
the event δ(w, x) ≥ k + 2 implies that x ∈ D(v, w) by De�nition 1.7

Let b0 = w, b1, . . . , bk′ = x be any shortest w-to-x path, for some integer k′. See Fig. 1. Let i∗ ∈ [0, k] be
the largest integer such that ak−j = bk′−j for all j ∈ [0, i∗]. Let z denote the vertex ak−i∗ , which equals bk′−i∗ .
If i∗ = k, the v-to-x path a0, a1, . . . , ak is a subpath of the w-to-x path b0, b1, . . . , bk′ . Since δ(w, v) ≥ 2, we
have δ(w, x) = δ(w, v) + δ(v, x) ≥ 2 + k, which implies that x ∈ D(v, w). From now on, it su�ces to consider
the case when i∗ < k.

Let y denote the vertex bk′−i∗−1. Since y is on a shortest w-to-x path, we have

δ(w, x) = δ(w, y) + δ(y, x) = δ(w, y) + (i∗ + 1) ≥ ℓ(y) + (i∗ + 1), (1)

where the inequality follows from the de�nition of ℓ(y). It remains to analyze the value of ℓ(y).
The edge (z, y) is incident to the vertex z (= ak−i∗), so is indispensable. Thus either y is the predecessor of

z, or z is the predecessor of y. From the previous claim, ak−i∗−1 is the predecessor of z. Since the predecessor
of z is unique (Fact 12) and y ̸= ak−i∗−1 (by de�nition of i∗), y cannot be the predecessor of z, so z is the
predecessor of y. Again by Fact 12, ℓ(y) = ℓ(z) + 1. Since ℓ(z) = ℓ(ak−i∗) = k − i∗ by the previous claim, we
have ℓ(y) = k − i∗ + 1. We conclude from Eq. (1) that

δ(w, x) ≥ (k − i∗ + 1) + (i∗ + 1) = k + 2,

which implies that x ∈ D(v, w).
We proved that Ik(v) ⊆ D(v, w). Similarly, Ik(w) ⊆ D(v, w). Therefore, Ik(v) ∪ Ik(w) ⊆ D(v, w).
We complete the proof of Lemma 13.

3.2.2 Proof of Lemma 14

To begin with, we show that there are relatively few dispensable edges within a neighborhood of {v, w}. This
property, also called the locally tree-like property, was previously exploited by Bollobás [10] for three levels of
neighborhoods on random ∆-regular graphs in the context of automorphisms of those graphs. In Lemma 15, we
extend the analysis from [10] to show the locally tree-like property for M = ⌈log log n⌉ levels of neighborhoods.

7When δ(w, x) is in�nite (i.e., w and x are not connected in G′), it is trivial that x ∈ D(v, w), since δ(v, x) is �nite. Therefore,
it su�ces to consider the case when δ(w, x) is �nite in the rest of the proof.
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Lemma 15. Let M = ⌈log log n⌉. We can construct two non-decreasing sequences {gi}1≤i≤M and {Li}1≤i≤M ,
such that all of the following properties hold when n is large enough:

1. g1 = 3; and for any i ∈ [2,M ], gi = o
(
(∆− 1)Li−1/M

)
;

2. LM ≥ ⌈log∆−1(3n/ log n)⌉+ 2;

3. With probability 1− o(n−2), for all i ∈ [1,M ], strictly less than gi edges are dispensable among the edges
incident to vertices in U≤Li

.

Proof of Lemma 15. First, we de�ne two sequences {gi}1≤i≤M and {fi}1≤i≤M as follows: g1 = 3, f1 =
⌈
n1/8

⌉
,

and for each i ∈ [2,M ], let

gi =
⌈
n1−7/2i+1

/(log n)1/2
⌉
,

fi =
⌈
n1−7/2i+2

/(log n)1/3
⌉
.

Next, we de�ne the sequence {Li}1≤i≤M as follows: for each i ∈ [1,M ], let

Li =
⌈
log∆−1 fi

⌉
− 6.

It is easy to see that all of the three sequences {gi}1≤i≤M , {fi}1≤i≤M , and {Li}1≤i≤M are non-decreasing.
To show Property 1 of the statement, observe that for any i ∈ [2,M ],

gi ·M =
⌈
n1−7/2i+1

/(log n)1/2
⌉
· ⌈log log n⌉ = o

(
n1−7/2i+1

/(log n)1/3
)
.

Thus gi ·M = o(fi−1) by de�nition of fi−1. From the de�nition of Li−1 and the fact that ∆ = O(1), we have
fi−1 = Θ

(
(∆− 1)Li−1

)
. Therefore, gi ·M = o

(
(∆− 1)Li−1

)
, hence gi = o

(
(∆− 1)Li−1/M

)
.

To show Property 2 of the statement, observe that

fM ≥ n1−7/2(log log n)+2

/(log n)1/3 = 2−7/4 · n/(log n)1/3 > (∆− 1)8 · 3n/ log n,

where the last inequality follows since ∆ = O(1) and n is large enough. Therefore, LM = ⌈log∆−1 fM⌉ − 6 ≥
⌈log∆−1(3n/ log n)⌉+ 2.

It remains to show Property 3 of the statement. Consider any integer i ∈ [1,M ]. Since the graph is∆-regular,
the number of vertices in U≤Li

is at most

2 + 2∆ ·
Li−1∑
j=0

(∆− 1)j = 2 +
2∆(∆− 1)Li − 2∆

∆− 2
<

2∆(∆− 1)Li

∆− 2
.

Let ni be the number of edges incident to vertices in U≤Li
. Since each vertex is incident to ∆ edges, we have

ni <
2∆2(∆−1)Li

∆−2 . Since Li =
⌈
log∆−1 fi

⌉
− 6 <

(
log∆−1 fi

)
− 5, we have ni <

2∆2

(∆−2)(∆−1)5 · fi, which is less

than fi since ∆ ≥ 3.
In order to bound the number of dispensable edges incident to vertices in U≤Li

, it su�ces to bound the
number of dispensable edges among the �rst fi edges in the ordering of edge construction.

For any integer t ∈ [1,∆n/2], let p(t) denote the probability that the t-th edge in the construction is
dispensable. We use the argument of Bollobás [10] to bound p(t) as follows. Before constructing the t-th edge,
the previously constructed t − 1 edges are incident to at most t + 1 vertices. For each of these t + 1 vertices,

at most ∆− 1 incident edges are not yet constructed. Thus p(t) ≤ (∆−1)(t+1)
∆n−2(t−1) , which is less than 2t

n as soon as

t = o(n).
From the de�nition of fi, we have fi ≤ n/(log n)1/3 = o(n), thus p(fi) < 2fi

n . The probability that there
exist gi dispensable edges among the �rst fi edges is at most(

fi
gi

)
·
(
2fi
n

)gi

<

(
e · fi
gi

)gi

·
(
2fi
n

)gi

,

where the inequality follows from Stirling's formula. When i = 1, we have(
e · f1
g1

)g1

·
(
2f1
n

)g1

=

(
2e ·

(
⌈n1/8⌉

)2
3n

)3

= o(n−17/8),

and when i ≥ 2, we have (
e · fi
gi

)gi

·
(
2fi
n

)gi

= O

((
2e

(log n)1/6

)gi)
= o(n−17/8),
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by de�nition of gi and fi and by observing that gi ≥ n1/8/(log n)1/2 for any i ≥ 2.
Thus for any i ∈ [1,M ], with probability 1−o(n−17/8), strictly less than gi edges are dispensable among the

�rst fi edges, hence strictly less than gi edges are dispensable among the edges incident to vertices in U≤Li
.

Therefore, with probability 1 − o(M · n−17/8) = 1 − o(n−2), for all i ∈ [1,M ], strictly less than gi edges
are dispensable among the edges incident to vertices in U≤Li . This completes the proof for Property 3 of the
statement.

We condition on the occurrence of the high probability event in Property 3 of Lemma 15. Let E denote this
event.

We say that a dispensable edge is trivial if it is incident to v or incident to w, and non-trivial otherwise. Let
E0 be the set of trivial dispensable edges. Let E1 be the set of non-trivial dispensable edges that are incident
to vertices in U≤L1 . The event E implies that strictly less than g1(= 3) edges are dispensable among the edges
incident to vertices in U≤L1

. Hence |E0|+ |E1| ≤ 2.
Let F0 ⊆ U1 be the set of vertices u ∈ U1 such that u is not incident to any trivial dispensable edge. We

claim that |F0| ≥ 2∆ − 2|E0|. If E0 = ∅, it is clear that |F0| = 2∆. If E0 ̸= ∅, there are three cases for each
trivial dispensable edge in E0: (1) a self-loop at v or at w, (2) a parallel edge incident to v or incident to
w, and (3) an edge (v, u) when u is a neighbor of w, or an edge (w, u) when u is a neighbor of v. In all the
three cases, the existence of each trivial dispensable edge in E0 decreases the size of F0 by at most 2. Hence
|F0| ≥ 2∆− 2|E0|.

For each u ∈ F0, de�ne
T (u) = {x ∈ U≤L1

| ℓ(x) = δ(x, u) + 1}.
Let F ⊆ F0 be the set of vertices u ∈ F0 such that T (u) contains no vertex incident to a dispensable edge in
E1. Since each dispensable edge in E1 is incident to two vertices, we have

|F | ≥ |F0| − 2|E1| ≥ 2∆− 2|E0| − 2|E1| ≥ 2(∆− 2).

Since F ⊆ F0 ⊆ U1, one of v and w has at least |F |/2 ≥ ∆− 2 neighbors in F .
Without loss of generality, we assume that v has at least ∆ − 2 neighbors in F . We show that, under this

assumption, |Ik(v)| ≥ (∆− 2− o(1))(∆− 1)k−1.
Our proof proceeds in increasing order on k ≥ 1.
First, consider any integer k ∈ [1, L1]. Let u be any neighbor of v in F . Since T (u) contains no vertex

incident to a dispensable edge, T (u) corresponds to a complete (∆− 1)-ary tree. Consider any vertex x ∈ T (u)
such that δ(v, x) = k. Any vertex z ∈ V \ {v} such that δ(v, z) + δ(z, x) = δ(v, x) belongs to the (unique)
shortest x-to-u path. Since the shortest x-to-u path is completely within T (u), we have z ∈ T (u), thus the
edges incident to z are indispensable. Hence x is v-interesting according to De�nition 2. Since δ(v, x) = k, we
have x ∈ Ik(v). There are at least ∆ − 2 choices of u, and for a �xed u, there are (∆ − 1)k−1 choices of x.
Therefore, the size of Ik(v) is at least (∆− 2)(∆− 1)k−1.

Next, consider any integer k ∈ [L1 + 1, L2]. For any vertex x ∈ IL1(v), de�ne

T ′(x) = {y ∈ U≤L2
| ℓ(y) = δ(y, x) + L1}.

Let F ′ ⊆ IL1
(v) be the set of vertices x ∈ IL1

(v) such that T ′(x) contains no vertex incident to a dispensable
edge. The event E implies that strictly less than g2 dispensable edges are incident to vertices in U≤L2

. Since each
dispensable edge is incident to two vertices, we have |F ′| > |IL1(v)|−2g2. Let x be any vertex in F ′. Since T ′(x)
contains no vertex incident to a dispensable edge, T ′(x) corresponds to a complete (∆− 1)-ary tree. Consider
any vertex y ∈ T ′(x) such that δ(v, y) = k. Any vertex z ∈ V \ {v} such that δ(v, z) + δ(z, y) = δ(v, y) belongs
either to the (unique) shortest x-to-v path or to the (unique) shortest y-to-x path. In the �rst case, since x is
v-interesting, the edges incident to z are indispensable by De�nition 2. In the second case, since the shortest
y-to-x path is completely within T ′(x), we have z ∈ T ′(x), thus the edges incident to z are indispensable. Hence
y is v-interesting according to De�nition 2. Since δ(v, y) = k, we have y ∈ Ik(v). There are |F ′| > |IL1(v)|−2g2
choices of x, and for a �xed x, there are (∆− 1)k−L1 choices of y. Therefore,

|Ik(v)| > (|IL1(v)| − 2g2) · (∆− 1)k−L1

≥ ((∆− 2)(∆− 1)L1−1 − 2g2) · (∆− 1)k−L1

= (∆− 2− o(1/M))(∆− 1)k−1,

where the equality follows because g2 = o((∆− 1)L1/M) from Lemma 15 and since ∆ = O(1).
We move on to larger values of k. Let i be any integer in [3,M ]. From Lemma 15, strictly less than gi edges

are dispensable among the edges incident to vertices in U≤Li
and gi = o

(
(∆− 1)Li−1/M

)
. For any integer

k ∈ [Li−1 + 1, Li], by extending the previous argument, we have

|Ik(v)| > (∆− 2− i · o(1/M))(∆− 1)k−1 = (∆− 2− o(1))(∆− 1)k−1.
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We conclude that for any k ∈ [1, LM ], we have |Ik(v)| ≥ (∆ − 2 − o(1))(∆ − 1)k−1. In the other case
that w has at least ∆ − 2 neighbors in F , similarly, we have |Ik(w)| ≥ (∆ − 2 − o(1))(∆ − 1)k−1. Hence
|Ik(v) ∪ Ik(w)| ≥ (∆ − 2 − o(1))(∆ − 1)k−1. The event E , on which the above analysis is conditioned, occurs
with probability 1− o(n−2) according to Lemma 15. Therefore, with probability 1− o(n−2), we have

|Ik(v) ∪ Ik(w)| ≥ (∆− 2− o(1))(∆− 1)k−1, for any k ∈ [1, LM ].

Again by Lemma 15, we have LM ≥ ⌈log∆−1(3n/ log n)⌉+ 2. Thus the above inequality holds for any positive
integer k ≤ ⌈log∆−1(3n/ log n)⌉+ 2.

We complete the proof of Lemma 14.

3.2.3 Proof of the Structural Lemma (Lemma 11) using Lemmas 13 and 14

We set k = ⌈log∆−1(3n/ log n)⌉+2. By Lemma 13, |D(v, w)| ≥ |Ik(v)∪ Ik(w)|. By Lemma 14, with probability
1− o(n−2), we have

|Ik(v) ∪ Ik(w)| > (∆− 2− o(1))(∆− 1)k−1 ≥ (∆− 2− o(1))(∆− 1) · (3n/ log n),
where the last inequality follows from the de�nition of k. Since ∆ ≥ 3, we have (∆ − 2 − o(1))(∆ − 1) > 1.
Thus with probability 1− o(n−2), we have |Ik(v)∪ Ik(w)| > 3n/ log n, which implies that |D(v, w)| > 3n/ log n.

We complete the proof of Lemma 11.

3.3 Proof of Lemma 10 using the Structural Lemma

Let G be a random graph and let S be a random subset of vertices, both de�ned in the statement of Lemma 10.
According to Lemma 9, EG,S

[
|Ê \ E|

]
≤ EG

[
|B|
]
+ o(1). It su�ces to prove that EG

[
|B|
]
= o(1).

First, we consider the case when ∆ = O(1) is such that ∆ ≥ 3. Our analysis is based on the con�guration
model. Let G′ be a multigraph corresponding to a uniformly random con�guration. Let EG′

[
|B|
]
denote the

expected size of the set B de�ned on G′. Since each ∆-regular graph corresponds to the same number of
con�gurations and because the probability spaces of con�gurations and of ∆-regular graphs, respectively, are
uniform, we have EG

[
|B|
]
≤ EG′

[
|B|
]
/p, where p is the probability that G′ is both simple and connected.

According to [44], when ∆ ≥ 3, p ∼ e(1−∆2)/4, which is constant since ∆ = O(1). Thus EG

[
|B|
]
= O(EG′

[
|B|
]
).

In order to bound EG′
[
|B|
]
, consider any vertex pair {v, w} in G′ such that δ(v, w) ≥ 2. From the Structural

Lemma (Lemma 11), the event |D(v, w)| ≤ 3n/ log n occurs with probability o(n−2). Equivalently, the event
|D(v, w)| ≤ 3n·(log n)/s occurs with probability o(n−2), since s = log2 n. Thus the event {v, w} ∈ B occurs with
probability o(n−2) according to the de�nition of B in Lemma 9. There are n(n− 1)/2 vertex pairs {v, w} in G′.
By linearity of expectation, EG′

[
|B|
]
is at most o(n−2)·n(n−1)/2 = o(1). Hence EG

[
|B|
]
= O(EG′

[
|B|
]
) = o(1).

In the special case when ∆ = 2, a 2-regular graph G is a ring. Consider any vertex pair {v, w} in G such
that δ(v, w) ≥ 2. It is easy to see that at least n−4 vertices u in the ring G are such that |δ(u, v)− δ(u,w)| > 1,
so |D(v, w)| ≥ n − 4 by De�nition 1. When n is large enough, n − 4 > 3n/ log n, so |D(v, w)| > 3n/ log n.
Equivalently, we have |D(v, w)| > 3n · (log n)/s, since s = log2 n. Thus {v, w} /∈ B according to the de�nition
of B in Lemma 9. Therefore, B = ∅ and EG

[
|B|
]
= 0.

We conclude that EG

[
|B|
]
= o(1) for any ∆ = O(1). Thus EG,S

[
|Ê \ E|

]
≤ EG

[
|B|
]
+ o(1) = o(1).

We complete the proof of Lemma 10.

Remark 16. With more care in the construction of the sequences in Lemma 15, we can improve the bound in
Property 2 of Lemma 15 by LM ≥ ⌈log∆−1(3n/(log log n)

2+ϵ)⌉ + 2, for any ϵ > 0. As a result, the range of k
in Lemma 14 can be extended to k ≤ ⌈log∆−1(3n/(log log n)

2+ϵ)⌉+2, and consequently, the event in Lemma 11
can be replaced by |D(v, w)| > 3n/(log log n)2+ϵ. Therefore, Lemma 10 holds for s = log n · (log log n)2+ϵ. This
implies that the parameter s in Theorem 1 can be reduced to log n · (log log n)2+ϵ.

4 Other Reconstruction Models (Proofs of Corollaries 2 and 3)

In this section, we study the reconstruction of random ∆-regular graphs in the all-distances query model and
in the betweenness query model.

We start by presenting another reconstruction algorithm for uniformly random ∆-regular graphs in the
distance query model, called Simple-Modified (see Algorithm 2). On a uniformly random ∆-regular graph,
with high probability, Simple-Modified succeeds the reconstruction and returns the set of edges of the graph;
otherwise it returns �failure�. On other graphs, Simple-Modified may output incorrect results. The �rst three
lines in Simple-Modified are the same as in Simple, by setting the parameter s to log2 n. The di�erences
with Simple are in the last two lines of the algorithm.

By extending the analysis from Section 3, we observe that the set Ê constructed in Simple-Modified equals
the edge set E with high probability, in Lemma 17.
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Algorithm 2 Simple-Modified (V )

1: S ← sample of s = log2 n vertices selected uniformly and independently at random from V
2: for u ∈ S and v ∈ V do Query(u, v)

3: Ê ← set of vertex pairs {a, b} ⊆ V such that, for all u ∈ S, |δ(u, a)− δ(u, b)| ≤ 1
4: if |Ê| = ∆n/2 then return Ê
5: else return �failure�

Lemma 17. Let G be a uniformly random ∆-regular graph with ∆ = O(1). Let s = log2 n. Let S ⊆ V be a set
of s vertices selected uniformly and independently at random from V . With probability 1 − o(1), |Ê| = ∆n/2.
In addition, the event |Ê| = ∆n/2 implies Ê = E.

Proof. From Lemma 10, EG,S

[
|Ê \ E|

]
= o(1). By Markov's inequality, the event that |Ê \ E| ≥ 1 occurs with

probability o(1). Thus with probability 1 − o(1), we have Ê ⊆ E. On the other hand, E ⊆ Ê by Fact 7.
Therefore, the event that Ê = E occurs with probability 1− o(1), and this event occurs if and only if |Ê| = |E|.
The statement follows since |E| = ∆n/2 in a ∆-regular graph.

From Lemma 17, if Simple-Modified returns a set of edges Ê, then the output is correct, i.e., equals E.

Corollary 18. Let G be a uniformly random ∆-regular graph with ∆ = O(1). In the distance query model,
Simple-Modified (Algorithm 2) uses Õ(n) queries and reconstructs the graph with probability 1− o(1).

4.1 All-Distances Query Model (Proof of Corollary 2)

We extend Simple-Modified from the distance query model to the all-distances query model. Observe that in
Simple-Modified, the distance queries are performed between each sampled vertex u ∈ S and all vertices in
the graph. This is equivalent to a single query at each sampled vertex u ∈ S in the all-distances query model.
Hence the distance queries in Simple-Modified correspond to |S| = log2 n all-distances queries. Therefore,
in the all-distances query model, an algorithm equivalent to Simple-Modified uses log2 n all-distances queries
and reconstructs the graph with probability 1− o(1).

4.2 Betweenness Query Model (Proof of Corollary 3)

In the betweenness query model, Abrahamsen et al. [1] showed that Õ(∆2 · n) betweenness queries su�ce to
compute the distances from a given vertex to all vertices in the graph (it is implicit in Lemma 16 from [1]), so
an all-distances query can be simulated by Õ(∆2 · n) betweenness queries, where ∆ = O(1). As a consequence
of Corollary 2, there is an algorithm that uses Õ(∆2 · n · log2 n) = Õ(n) betweenness queries and reconstructs
the graph with probability 1− o(1).

5 Metric Dimension (Proof of Corollary 5)

In this section, we study the metric dimension of random ∆-regular graphs. To begin with, we show an
elementary structural property of random ∆-regular graphs, in Lemma 19, based on a classical result on those
graphs.

Lemma 19. Let G = (V,E) be a uniformly random ∆-regular graph with ∆ = O(1). With probability 1− o(1),
for any edge (a, b) of the graph G, there exists a vertex c ∈ V \ {a, b} that is adjacent to b but is not adjacent to
a.

Proof. First, consider the case when ∆ = 2. A 2-regular graph is a ring. Let (a, b) be any edge of the graph.
The vertex b has two neighbors, the vertex a and another vertex, let it be c. We have c ∈ V \ {a, b} and c is
not adjacent to a (as soon as n > 3). The statement of the lemma follows.

Next, consider the case when ∆ = O(1) is such that ∆ ≥ 3. Let E denote the event that, for any edge (a, b)
of G, there do not exist two vertices c1 and c2 in G, such that all of the 4 edges (a, c1), (a, c2), (b, c1), (b, c2)
belong to G. We show that E occurs with probability 1 − o(1). Indeed, if for some edge (a, b) of G, there
exist two vertices c1 and c2 such that (a, c1), (a, c2), (b, c1), (b, c2) are edges of G, then the induced subgraph
on {a, b, c1, c2} consists of at least 5 edges. A classical result on random ∆-regular graphs shows that, for any
constant integer k, the probability that there exists an induced subgraph of k vertices with at least k+ 1 edges
is o(1), see, e.g., Lemma 11.12 in [18]. Therefore, E occurs with probability 1− o(1).

We condition on the occurrence of E . For any edge (a, b) of G, let N(a) be the set of ∆− 1 neighbors of a
that are di�erent from b, and let N(b) be the set of ∆− 1 neighbors of b that are di�erent from a. Since ∆ ≥ 3,
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we have |N(a)| = |N(b)| ≥ 2. The event E implies that N(a) ̸= N(b), so there exists a vertex c ∈ N(b) \N(a).
By de�nition, c is adjacent to b but is not adjacent to a, and c ∈ V \ {a, b}. Since E occurs with probability
1 − o(1), we conclude that, with probability 1 − o(1), for any edge (a, b) of the graph G, there exists a vertex
c ∈ V \ {a, b} that is adjacent to b but is not adjacent to a.

De�nition 3 (e.g., [5, 13]). A subset of vertices S ⊆ V is a resolving set for a graph G = (V,E) if, for any
pair of vertices {a, b} ⊆ V , there is a vertex u ∈ S such that δ(u, a) ̸= δ(u, b). The metric dimension of G is
the smallest size of a resolving set for G.

Based on the analysis of Simple from Lemma 17 and the structural property from Lemma 19, we show
that, with high probability, a random subset of log2 n vertices is a resolving set for a random ∆-regular graph,
in Lemma 20.

Lemma 20. Let G = (V,E) be a uniformly random ∆-regular graph with ∆ = O(1). Let S ⊆ V be a sample of
s = log2 n vertices selected uniformly and independently at random from V . With probability 1− o(1), the set S
is a resolving set for the graph G.

Proof. Let E1 denote the event that, for any edge (a, b) of the graph G, there exists a vertex c ∈ V \ {a, b} that
is adjacent to b but is not adjacent to a. By Lemma 19, the event E1 occurs with probability 1− o(1). Let E2
denote the event Ê = E. By Lemma 17, the event E2 occurs with probability 1 − o(1). Thus with probability
1 − o(1), both events E1 and E2 occur simultaneously. We condition on the occurrences of both events E1 and
E2 in the subsequent analysis.

First, consider any vertex pair {a, b} ⊆ V such that δ(a, b) ≥ 2. The event E2 implies that {a, b} /∈ Ê. By
de�nition, there exists some vertex u ∈ S such that |δ(u, a)− δ(u, b)| ≥ 2, which implies that δ(u, a) ̸= δ(u, b).

Next, consider any vertex pair {a, b} ⊆ V such that δ(a, b) = 1. The event E1 implies that there exists a
vertex c ∈ V \ {a, b} that is adjacent to b but is not adjacent to a. Since δ(a, c) ≥ 2, the event E2 implies that
{a, c} /∈ Ê. By de�nition, there exists some vertex u ∈ S such that |δ(u, a)− δ(u, c)| ≥ 2. Using an elementary
inequality of |x− y|+ |y − z| ≥ |x− z| for any three real numbers x, y, and z, we have

|δ(u, a)− δ(u, b)| ≥ |δ(u, a)− δ(u, c)| − |δ(u, b)− δ(u, c)|
≥ |δ(u, a)− δ(u, c)| − δ(b, c) (by the triangle inequality)

≥ 2− δ(b, c) (by the de�nition of u)

≥ 1 (since (b, c) is an edge in G).

Thus δ(u, a) ̸= δ(u, b).
Therefore, conditioned on the occurrences of both events E1 and E2, for any vertex pair {a, b} ⊆ V , there

exists a vertex u ∈ S such that δ(u, a) ̸= δ(u, b).
We conclude that, with probability 1− o(1), the set S is a resolving set for G.

From Lemma 20, with probability 1 − o(1), the metric dimension of a random ∆-regular graph is at most
log2 n. This completes the proof of Corollary 5.

6 Reconstruction of Bounded-Degree Graphs (Proof of Theorem 6)

In this section, we analyze Simple (Algorithm 1) on general graphs of bounded degree in the distance query
model. Recall that a set B of vertex pairs {a, b} ⊆ V is de�ned in Lemma 9. For every vertex a ∈ V , we de�ne
the set of vertices B(a) ⊆ V as

B(a) =
{
b ∈ V | {a, b} ∈ B

}
.

Intuitively, B(a) consists of the vertices b ∈ V that has few distinguishers with a. We bound the size of the set
B(a) for any vertex a, in Lemma 21.

Lemma 21. Let G be a general graph of bounded degree ∆. For any vertex a ∈ V , |B(a)| ≤ 9∆3 ·n2 ·(log2 n)/s2.

We defer the proof of Lemma 21 for the moment and �rst show how it implies Theorem 6.

Proof of Theorem 6 using Lemma 21. By Lemma 8, Simple is a reconstruction algorithm using n · s + |Ê|
distance queries, and in addition, Simple can be parallelized using 2 rounds. It remains to further analyze the
query complexity.

From Fact 7, |Ê| = |E| + |Ê \ E|. Since the graph has bounded degree ∆, |E| ≤ ∆n. From Lemma 9,
ES

[
|Ê \E|

]
≤ |B|+ o(1). Therefore, the expected number of distance queries in Simple is at most n · s+∆n+

|B|+ o(1). It su�ces to analyze |B|.
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Observe that |B| ≤∑a∈V |B(a)| by de�nition of {B(a)}a∈V . From Lemma 21, |B(a)| ≤ 9∆3 ·n2 ·(log2 n)/s2,
for any vertex a ∈ V . Hence |B| ≤ (9∆3 · n2 · (log2 n)/s2) · n. Thus the expected number of distance queries
in Simple is at most n · s + ∆n + (9∆3 · n2 · (log2 n)/s2) · n + o(1), which is Õ(n5/3) since s = n2/3 and
∆ = O(polylog n).

The rest of the section is dedicated to prove Lemma 21.
Let a be any vertex in V . Let T be an (arbitrary) shortest-path tree rooted at a and spanning all vertices

in V . For any vertex b ∈ V , let the shortest a-to-b path denote the path between a and b in the tree T . To
simplify the presentation, we assume that, for any b ∈ B(a), δ(a, b) is even, so that the midpoint vertex of the
shortest a-to-b path is uniquely de�ned. We extend our analysis to the general setting in the end of the section.

For any vertex m ∈ V , de�ne the set B(a,m) ⊆ B(a) as

B(a,m) =
{
b ∈ B(a) | the midpoint vertex of the shortest a-to-b path is m

}
.

De�ne the set M(a) ⊆ V as
M(a) =

{
m ∈ V | B(a,m) ̸= ∅

}
.

In other words, M(a) consists of the vertices m ∈ V such that m is the midpoint vertex of the shortest a-to-b
path for some b ∈ B(a). From the construction, we have

B(a) =
⋃

m∈M(a)

B(a,m). (2)

In order to bound the size of B(a), �rst we bound the size of B(a,m) for any midpoint m ∈ M(a), in
Lemma 22, and then we bound the number of distinct midpoints, in Lemma 23.

Lemma 22. For any m ∈M(a), |B(a,m)| ≤ 3∆ · n · (log n)/s.

Proof. For any b ∈ B(a,m), the vertex m is the midpoint vertex of the shortest a-to-b path by de�nition. From
the assumption, δ(a, b) is even for any b ∈ B(a,m), so there exists some positive integer ℓ, such that δ(m, a) = ℓ
and δ(m, b) = ℓ for any b ∈ B(a,m).

For every neighbor m′ of m such that δ(a,m′) = δ(a,m) + 1, de�ne a set Y (m′) ⊆ B(a,m) that consists
of the vertices b ∈ B(a,m) such that m′ is on the shortest a-to-b path. Let m̂ be a neighbor of m such that
δ(a, m̂) = δ(a,m) + 1 and that |Y (m̂)| is maximized, see Fig. 2. Since the graph has bounded degree ∆, we
have |B(a,m)| ≤ ∆ · |Y (m̂)|. It su�ces to bound |Y (m̂)|.

The main observation is that any vertex of Y (m̂) distinguishes a and any other vertex of Y (m̂). To see this,
let b0 be any vertex in Y (m̂). By de�nition, δ(a, m̂) = δ(a,m) + 1 = ℓ + 1. Since m̂ is on the shortest a-to-b0
path, we have δ(m̂, b0) = δ(a, b0) − δ(a, m̂) = ℓ − 1, thus δ(m̂, b0) = δ(m̂, a) − 2. For any vertex b1 ∈ Y (m̂),
from the triangle inequalities on δ, we have

δ(b1, b0) ≤ δ(b1, m̂) + δ(m̂, b0) = δ(b1, m̂) + δ(m̂, a)− 2 = δ(b1, a)− 2.

According to De�nition 1, the vertex b1 distinguishes a and b0, and equivalently, b1 ∈ D(a, b0). Thus we have
Y (m̂) ⊆ D(a, b0), hence |Y (m̂)| ≤ |D(a, b0)| ≤ 3n · (log n)/s using the fact that b0 ∈ Y (m̂) ⊆ B(a) and the
de�nition of B in Lemma 9.

We conclude that |B(a,m)| ≤ ∆ · |Y (m̂)| ≤ 3∆ · n · (log n)/s.

Lemma 23. |M(a)| ≤ 3∆ · n · (log n)/s.

Proof. For each vertex m ∈ M(a), let xm denote the second-to-last vertex on the shortest a-to-m path. Let
X(a) ⊆ V denote the set of vertices xm for all m ∈M(a). See Fig. 3. Since G has bounded degree ∆, we have
|M(a)| ≤ ∆ · |X(a)|. It su�ces to bound |X(a)|.

Let b∗ be a vertex in B(a) such that δ(a, b∗) is maximized. From the assumption, δ(a, b∗) is even. Let ℓ be
a positive integer such that δ(a, b∗) = 2ℓ.

The main observation is that any vertex of X(a) distinguishes a and b∗. To see this, let x be any vertex in
X(a). Let m be any vertex in M(a) such that x is the second-to-last vertex on the shortest a-to-m path.8 We
have δ(a,m) ≤ ℓ and δ(a, x) = δ(a,m)−1 ≤ ℓ−1. By the triangle inequality on the distances, δ(b∗, x) ≥ δ(a, b∗)−
δ(a, x) ≥ 2ℓ− (ℓ− 1) = ℓ+ 1. Thus δ(b∗, x)− δ(a, x) ≥ 2. According to De�nition 1, the vertex x distinguishes
a and b∗, and equivalently, x ∈ D(a, b∗). Thus X(a) ⊆ D(a, b∗), hence |X(a)| ≤ |D(a, b∗)| ≤ 3n · (log n)/s using
the fact that b∗ ∈ B(a) and the de�nition of B in Lemma 9.

We conclude that |M(a)| ≤ ∆ · |X(a)| ≤ 3∆ · n · (log n)/s.
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Y (m̂)

B(a,m)

m

a

m̂

b1b0

Figure 2: The vertex m is the midpoint of the shortest path between a and any vertex in B(a,m). The vertex
m̂ is a well-chosen neighbor of m. Consider any vertex b0 ∈ Y (m̂). We can show that any vertex b1 ∈ Y (m̂)
distinguishes a and b0.

a

x

m

b∗

Figure 3: Solid circular nodes represent the vertices m ∈ M(a). Solid curves represent the shortest a-to-m
paths. Solid square nodes represent the vertices in X(a). Let b∗ denote a vertex in B(a) that is farthest from
a. We can show that any vertex x ∈ X(a) distinguishes a and b∗.

From Eq. (2), |B(a)| ≤ ∑
m∈M(a) |B(a,m)|. From Lemma 22, |B(a,m)| ≤ 3∆ · n · (log n)/s for every

m ∈M(a). From Lemma 23, |M(a)| ≤ 3∆ · n · (log n)/s. Therefore, |B(a)| ≤ 9∆2 · n2 · (log2 n)/s2.
Finally, consider the general setting in which δ(a, b) is not necessarily even for any b ∈ B(a). For a vertex

m on the shortest a-to-b path, we say that m is the midpoint vertex of that path if δ(a,m) = ⌊δ(a, b)/2⌋. The
de�nitions of B(a,m) and M(a) remain the same. Lemma 23 holds in the same way. In Lemma 22, the upper
bound of |B(a,m)| is replaced by 3∆2 · n · (log n)/s. Indeed, to extend the proof of Lemma 22, instead of
considering vertex m′ (resp., vertex m̂) that is a neighbor of m, we consider m′ (resp., m̂) that is at distance 2
from m. We have |B(a,m)| ≤ ∆2 · |Y (m̂)|. The bound |Y (m̂)| ≤ 3n · (log n)/s remains the same, so we have
|B(a,m)| ≤ 3∆2 · n · (log n)/s. Hence |B(a)| ≤ 9∆3 · n2 · (log2 n)/s2.

We complete the proof of Lemma 21. Therefore, we obtain Theorem 6.
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