Intégrales doubles, Courbes paramétrées

Exercice 1 — Calculer l'aire du domaine $D = \{(x,y) \in \mathbb{R}^2 \mid x \geq 1, y \geq 1, \text{ et } x+y \leq 3\}$ et l'inégrale $\iint_D \frac{1}{(x+y)^3} dx dy$.

Exercice 2 — Calculer l'aire du domaine $D=\{(x,y)\in\mathbb{R}^2, -1\leq x\leq 1\ ,\ x^2\leq y\leq 4-x^3\}.$

Exercice 3 — Soit un nombre a > 1 et $D = \{(x,y) \in \mathbb{R}^2, 1 \le x \le a \ , \ 0 \le y \le x\}$. Calculer $\iint_D \frac{1}{x^2 + y^2} dx dy$.

Exercice 4 — Soient a et b des nombres strictement positifs. Calculer l'intégrale double $\iint_D (x^2 - y^2) dx dy \text{ avec } D \text{ le domaine borné délimité par l'ellipse d'équation } x^2/a^2 + y^2/b^2 = 1.$

Exercice 5 —

1. Calculer l'aire du domaine suivant :

$$P = \{(x,y) \in \mathbb{R}^2 \ / \ 1 \le x + y \le 2 \text{ et } -1 \le x - y \le 3\}.$$

2. Soit

$$D = \{(x, y) \in \mathbb{R}^2 / 1 \le x^2 + y^2 \le 2 \}.$$

Calculer l'intégrale double suivante :

$$\iint_D xy \ dxdy.$$

Exercice 6 — Intégrale de Gauss $I = \int_0^{+\infty} e^{-x^2} dx$

1. Soit a > 0 et $I_a = \int_0^a e^{-x^2} dx$. Montrer que $\lim_{a \to +\infty} I_a = I$.

2. Montrer Soit $P_a = [0, a] \times [0, a]$. Montrer que

$$I_a^2 = \iint_{P_a} e^{-x^2 - y^2} dx dy.$$

3. Soit D_a et $D_{\sqrt{2}a}$ les disques de centre (0,0) et de rayos a et $\sqrt{2}a$ respectivement. Montrer que :

$$\iint_{D_a} e^{-x^2 - y^2} dx dy \le I_a^2 \le \iint_{D_{\sqrt{2}a}} e^{-x^2 - y^2} dx dy.$$

4. En dduire la valeur de I.

Exercice 7 — Soit $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 - 2x \le 0\}$. Montrez que D est un disque et calculer $\iint_D \sqrt{x^2 + y^2} dx dy$.

Exercice 8 — Soit $D = \{(x,y) \in \mathbb{R}^2 \ / x^2 + y^2 - 2y \ge 0 \ , x^2 + y^2 - 1 \le 0 \ , x \ge 0 \ \text{ et } y \ge 0 \}.$ Calculer $\iint_D \sqrt{x^2 + y^2} dx dy$.

Exercice 9 — Soit
$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 - x \le 0\}$$
. Calculer $\iint_D (x^2 + y^2 + 1) dx dy$.

Exercice 10 — Dans le plan yOz, on considère la branche d'hyperbole \mathcal{C} définie par yz = 1 et z > 0, et on note \mathcal{S} la surface de révolution obtenue en faisant tourner \mathcal{C} autour de l'axe Oz.

- 1. Pour tout nombre a>1, calculez le volume V_a limité par $\mathcal S$ et les plans z=1 et z=a
- 2. Montrer que V_a admet une limite lorsque a tend vers $+\infty$.

Exercice 11 — Pour $t \in D$, étudiez la courbe paramétrée définie par $t \mapsto f(t) \in \mathbb{R}^2$

1.
$$D = \mathbb{R} - \{-1, 1\}$$
 et $f(t) = \left(\frac{t^2 + 1}{t^2 - 1}, \frac{t^2}{t - 1}\right)$;

2. $D = \mathbb{R} \text{ et } f(t) = (\cos t, \sin(t/3));$

3.
$$D = \mathbb{R} \text{ et } f(t) = \left(\cos t, \frac{(\sin t)^2}{2 + \sin(t)}\right);$$

4.
$$D = \mathbb{R}$$
 et $f(t) = (t + t^2, t - t^2)$.