Discriminant of a reflection group and factorisations of a Coxeter element

Vivien RIPOLL

Laboratoire de Combinatoire et d’Informatique de Montréal (LaCIM)
Université du Québec à Montréal (UQAM)

Colloque Surfaces et Représentations
Sherbrooke
9 octobre 2010
Outline

1. Fuss-Catalan numbers of type W

2. Factorisations as fibers of a Lyashko-Looijenga covering

3. Maximal and submaximal factorisations of a Coxeter element
Outline

1. Fuss-Catalan numbers of type W
2. Factorisations as fibers of a Lyashko-Looijenga covering
3. Maximal and submaximal factorisations of a Coxeter element
Factorisations in a generated group

Group G, generated by A
Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ **length function** ℓ_A on G.

Definition (A-factorisations) (g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if
\[g_1 \cdots g_p = g; \]
\[\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g). \]

Example: $(G, A) = (W, S)$ finite Coxeter system.

Strict maximal factorisations of $w_0 \leftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \lesssim_A) $g \lesssim_A h$ if and only if g is a (left) "A-factor" of h.

$[1, h] \lesssim_A = \{ \text{divisors of } h \text{ for } \lesssim_A \} \simeq \{ \text{2-factorisations of } h \}$.

\[\begin{align*}
\text{Group } G, \text{ generated by } A & \rightsquigarrow \textbf{length function } \ell_A \text{ on } G. \\
\text{**Definition** (A-factorisations)} & (g_1, \ldots, g_p) \text{ is an A-factorisation of } g \in G \text{ if } \\
& g_1 \cdots g_p = g; \\
& \ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g). \\
\text{**Example:** } (G, A) = (W, S) \text{ finite Coxeter system. } \\
\text{Strict maximal factorisations of } w_0 & \leftrightarrow \text{galleries connecting a chamber to its opposite. [Deligne]} \\
\text{**Definition** (Divisibility order } \lesssim_A & \text{) } g \lesssim_A h \text{ if and only if } g \text{ is a (left) "A-factor" of } h. \\
\text{[1, h]} & \lesssim_A = \{ \text{divisors of } h \text{ for } \lesssim_A \} \simeq \{ \text{2-factorisations of } h \}. \\
\end{align*} \]
Factorisations in a generated group

Group G, generated by $A \leadsto$ length function ℓ_A on G.

Definition (A-factorisations)

(g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if
- $g_1 \cdots g_p = g$;
Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_A on G.

Definition (A-factorisations)

(g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if

- $g_1 \cdots g_p = g$;
- $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: $(G, A) = (W, S)$ finite Coxeter system

Strict maximal factorisations of $w_0 \leftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \bowtie_A)

$g \bowtie_A h$ if and only if g is a (left) "A-factor" of h.

$[1, h] \bowtie_A = \{\text{divisors of } h \text{ for } \bowtie_A\} \cong \{2\text{-factorisations of } h\}$.

Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_A on G.

Definition (A-factorisations)

(g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if

- $g_1 \cdots g_p = g$;
- $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: $(G, A) = (W, S)$ finite Coxeter system

Strict maximal factorisations of $w_0 \leftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]
Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_A on G.

Definition (A-factorisations)

(g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if
- $g_1 \cdots g_p = g$;
- $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: $(G, A) = (\mathcal{W}, S)$ finite Coxeter system

Strict maximal factorisations of $w_0 \longleftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preceq_A)

$g \preceq_A h$ if and only if g is a (left) “A-factor” of h.
Factorisations in a generated group

Group G, generated by $A \rightsquigarrow$ length function ℓ_A on G.

Definition (A-factorisations)

(g_1, \ldots, g_p) is an A-factorisation of $g \in G$ if

- $g_1 \cdots g_p = g$;
- $\ell_A(g_1) + \cdots + \ell_A(g_p) = \ell_A(g)$.

Example: $(G, A) = (W, S)$ finite Coxeter system

Strict maximal factorisations of $w_0 \longleftrightarrow$ galleries connecting a chamber to its opposite. [Deligne]

Definition (Divisibility order \preceq_A)

$g \preceq_A h$ if and only if g is a (left) “A-factor” of h.

$[1, h] \preceq_A = \{\text{divisors of } h \text{ for } \preceq_A\} \simeq \{2\text{-factorisations of } h\}$.
Prototype: noncrossing partitions of an n-gon

- $G := S_n$, with generating set $T := \{\text{all transpositions}\}$
Prototype: noncrossing partitions of an n-gon

- $G := S_n$, with generating set $T := \{\text{all transpositions}\}$
- $c := n$-cycle $(1 \ 2 \ \ldots \ \ n)$
Prototype: noncrossing partitions of an n-gon

- $G := \mathfrak{S}_n$, with generating set $T := \{\text{all transpositions}\}$
- $c := n$-cycle $(1 \ 2 \ \ldots \ n)$
- $\{T\text{-divisors of } c\} \leftrightarrow \{\text{noncrossing partitions of an } n\text{-gon}\}$
Prototype: noncrossing partitions of an n-gon

- $G := \mathfrak{S}_n$, with generating set $T := \{\text{all transpositions}\}$
- $c := n$-cycle $(1 \ 2 \ldots \ n)$
- $\{T\text{-divisors of } c\} \leftrightarrow \{\text{noncrossing partitions of an } n\text{-gon}\}$

\[\sigma = (2\ 4\ 6)(3\ 7\ 8\ 9)\]

\[\tau = (1\ 4\ 5)(2\ 3)(6\ 7\ 9)\]
Prototype: noncrossing partitions of an n-gon

- $G := \mathfrak{S}_n$, with generating set $T := \{\text{all transpositions}\}$
- $c := n$-cycle $(1 \, 2 \, \ldots \, n)$
- $\{T\text{-divisors of } c\} \leftrightarrow \{\text{noncrossing partitions of an } n\text{-gon}\}$

$\sigma = (2 \, 4 \, 6)(3 \, 7 \, 8 \, 9)$

crossing

$\tau = (1 \, 4 \, 5)(2 \, 3)(6 \, 7 \, 9)$
Prototype: noncrossing partitions of an n-gon

- $G := \mathfrak{S}_n$, with generating set $T := \{\text{all transpositions}\}$
- $c := n$-cycle $(1 \ 2 \ \ldots \ n)$
- $\{T$-divisors of $c\} \longleftrightarrow \{\text{noncrossing partitions of an } n\text{-gon}\}$

$\sigma = (2 \ 4 \ 6)(3 \ 7 \ 8 \ 9)$
crossing

$\tau = (1 \ 4 \ 5)(2 \ 3)(6 \ 7 \ 9)$
noncrossing
A (finite) complex reflection group is a finite subgroup of $\text{GL}(V)$ generated by complex reflections. A complex reflection is an element $s \in \text{GL}(V)$ of finite order, s.t. $\text{Ker}(s - \text{Id}_V)$ is a hyperplane:

$$s \leftrightarrow \text{matrix } \text{Diag}(\zeta, 1, \ldots, 1), \text{ with } \zeta \text{ root of unity.}$$
A (finite) **complex reflection group** is a finite subgroup of $GL(V)$ generated by complex reflections.

A **complex reflection** is an element $s \in GL(V)$ of finite order, s.t. $\text{Ker}(s - \text{Id}_V)$ is a hyperplane:

$$s \leftrightarrow \text{matrix } \text{Diag}(\zeta, 1, \ldots, 1)$$, with ζ root of unity.

- includes finite (complexified) real reflection groups (aka *finite Coxeter groups*);
Complex reflection groups

\(V \): complex vector space (finite dimension).

Definition

A (finite) complex reflection group is a finite subgroup of \(\text{GL}(V) \) generated by complex reflections. A complex reflection is an element \(s \in \text{GL}(V) \) of finite order, s.t. \(\text{Ker}(s - \text{Id}_V) \) is a hyperplane:

\[
s \leftrightarrow \begin{pmatrix} \zeta & 1 & \ldots & 1 \\ B \end{pmatrix}, \text{ with } \zeta \text{ root of unity.}
\]

- includes finite (complexified) real reflection groups (aka *finite Coxeter groups*);
- Shephard-Todd’s classification (1954): an infinite series with 3 parameters \(G(de, e, r) \), and 34 exceptional groups.
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \dim V$ reflections).
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \dim V$ reflections).

- generating set $R := \{\text{all reflections of } W\}$.
 ($\leadsto \text{length } \ell_R$, R-factorisations, order \preceq_R)
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \dim V$ reflections).

- generating set $R := \{\text{all reflections of } W\}$.
 (\Rightarrow length ℓ_R, R-factorisations, order \preceq_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W) $\text{NCP}_W(c) := \{w \in W | w \preceq_R c\}$; the structure does not depend on the choice of the Coxeter element (conjugacy).
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \dim V$ reflections).

- generating set $R := \{\text{all reflections of } W\}$.
 (\leadsto length ℓ_R, R-factorisations, order \preceq_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$\text{NCP}_W(c) := \{w \in W \mid w \preceq_R c\}$$
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \text{dim } V$ reflections).

- generating set $R := \{\text{all reflections of } W\}$.
 (\sim length ℓ_R, R-factorisations, order \preceq_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$\text{NCP}_W(c) := \{ w \in W \mid w \preceq_R c \}$$

- $\text{NCP}_W(c) \simeq \{2\text{-factorisations of } c\}$;
Noncrossing partitions of type W

Now suppose that $W \subseteq \text{GL}(V)$ is a complex reflection group, irreducible and well-generated (i.e. can be generated by $n = \dim V$ reflections).

- generating set $R := \{\text{all reflections of } W\}$. ($\leadsto$ length ℓ_R, R-factorisations, order \preceq_R)
- c : a Coxeter element in W.

Definition (Noncrossing partitions of type W)

$$\text{NCP}_W(c) := \{ w \in W \mid w \preceq_R c \}$$

- $\text{NCP}_W(c) \simeq \{2\text{-factorisations of } c\}$;
- the structure does not depend on the choice of the Coxeter element (conjugacy).
Fuss-Catalan numbers

Kreweras’s formula

- \(W := S_n \);
- \(c : \) an \(n \)-cycle.

The number of \(T \)-factorisations of \(c \) in \(p + 1 \) blocks is the Fuss-Catalan number

\[
\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}.
\]

Proof: [Athanasiadis, Reiner, Bessis...]

Remark: \(\text{Cat}^{(p)}(W) \) counts also the number of maximal faces in the "\(p \)-divisible cluster complex of type \(W \)" (generalization of the simplicial associahedron) [Fomin-Reading].

Related to cluster algebras of finite type if \(W \) is a Weyl group.
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W := \mathfrak{S}_n$;
- c : an n-cycle.

The number of T-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number

$$\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}.$$
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W :=$ an irreducible, well-generated c.r.gp., of rank n;
- $c :$ an n-cycle.

The number of T-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number

$$\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}.$$
Fuss-Catalan numbers of type \mathcal{W}

Chapoton’s formula

- $\mathcal{W} :=$ an irreducible, well-generated c.r.gp., of rank n;
- $c :$ a Coxeter element.

The number of T-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number

$$\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i}.$$
Fuss-Catalan numbers of type \(W \)

Chapoton’s formula

- \(W := \) an irreducible, well-generated c.r.gp., of rank \(n \);
- \(c : \) a Coxeter element.

The number of \(R \)-factorisations of \(c \) in \(p + 1 \) blocks is the Fuss-Catalan number

\[
\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i} .
\]
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W :=$ an irreducible, well-generated c.r gp., of rank n;
- c : a Coxeter element.

The number of R-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number of type W

$$
\text{Cat}^{(p)}(n) = \prod_{i=2}^{n} \frac{i + pn}{i} .
$$

Proof: [Athanasiadis, Reiner, Bessis...]

Remark: $\text{Cat}^{(p)}(n)$ counts also the number of maximal faces in the "p-divisible cluster complex of type W" (generalization of the simplicial associahedron) [Fomin-Reading].

Related to cluster algebras of finite type if W is a Weyl group.
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W :=$ an irreducible, well-generated c.r.gp., of rank n;
- $c :$ a Coxeter element.

The number of R-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number of type W

$$\text{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W :=$ an irreducible, well-generated c.r.gp., of rank n;
- $c :$ a Coxeter element.

The number of R-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number of type W

$$\text{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Fuss-Catalan numbers of type W

Chapoton’s formula

- $W :=$ an irreducible, well-generated c.r.gp., of rank n;
- $c :$ a Coxeter element.

The number of R-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number of type W

$$\text{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!

Remark: $\text{Cat}^{(p)}(W)$ counts also the number of maximal faces in the “p-divisible cluster complex of type W” (generalization of the simplicial associahedron) [Fomin-Reading].
Fuss-Catalan numbers of type W

Chapoton's formula

- $W :=$ an irreducible, well-generated c.r gp., of rank n;
- $c :$ a Coxeter element.

The number of R-factorisations of c in $p + 1$ blocks is the Fuss-Catalan number of type W

$$\text{Cat}^{(p)}(W) = \prod_{i=1}^{n} \frac{d_i + ph}{d_i}.$$

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!

Remark: $\text{Cat}^{(p)}(W)$ counts also the number of maximal faces in the “p-divisible cluster complex of type W” (generalization of the simplicial associahedron) [Fomin-Reading]. Related to cluster algebras of finite type if W is a Weyl group.
Outline

1. Fuss-Catalan numbers of type W
2. Factorisations as fibers of a Lyashko-Looijenga covering
3. Maximal and submaximal factorisations of a Coxeter element
The quotient-space V/W

$W \subseteq \text{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.

\Rightarrow isomorphism: $V/W \sim \rightarrow \mathbb{C}^n \bar{v} \mapsto (f_1(v), \ldots, f_n(v))$.
The quotient-space V/W

$W \subseteq \text{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.

Chevalley-Shephard-Todd’s theorem: there exist invariant polynomials f_1, \ldots, f_n, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

Definition

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n do not depend on the choice of f_1, \ldots, f_n. They are called the invariant degrees of W.

\mapsto isomorphism: $V/W \sim \mathbb{C}^n \quad \bar{v} \mapsto (f_1(v), \ldots, f_n(v))$.

The quotient-space V/W

$W \subseteq \text{GL}(V)$ a complex reflection group. W acts on $\mathbb{C}[V]$.

Chevalley-Shephard-Todd’s theorem: there exist invariant polynomials f_1, \ldots, f_n, homogeneous and algebraically independent, s.t. $\mathbb{C}[V]^W = \mathbb{C}[f_1, \ldots, f_n]$.

\sim isomorphism: $V/W \sim \mathbb{C}^n$

$\bar{v} \mapsto (f_1(v), \ldots, f_n(v))$.

Definition

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n do not depend on the choice of f_1, \ldots, f_n. They are called the invariant degrees of W.

The quotient-space \mathcal{V}/\mathcal{W}

$\mathcal{W} \subseteq \text{GL}(\mathcal{V})$ a complex reflection group. \mathcal{W} acts on $\mathbb{C}[\mathcal{V}]$.

Chevalley-Shephard-Todd’s theorem: there exist invariant polynomials f_1, \ldots, f_n, homogeneous and algebraically independent, s.t. $\mathbb{C}[\mathcal{V}]^\mathcal{W} = \mathbb{C}[f_1, \ldots, f_n]$.

\sim isomorphism : $\mathcal{V}/\mathcal{W} \xrightarrow{\sim} \mathbb{C}^n$

$\bar{v} \mapsto (f_1(v), \ldots, f_n(v))$.

Definition

The degrees $d_1 \leq \cdots \leq d_n = h$ of f_1, \ldots, f_n do not depend on the choice of f_1, \ldots, f_n. They are called the **invariant degrees of \mathcal{W}**.
Discriminant of W

\[\mathcal{A} := \{ \ker(r - 1) \mid r \in \mathcal{R} \} \]

(arrangement of hyperplanes of W)
Discriminant of W

- $\mathcal{A} := \{\text{Ker}(r - 1) \mid r \in \mathcal{R}\}$
 (arrangement of hyperplanes of W)
- discriminant hypersurface (in $V/W \cong \mathbb{C}^n$):

$$\mathcal{H} := \left(\bigcup_{H \in \mathcal{A}} H \right) \mod W$$
Discriminant of W

- $\mathcal{A} := \{\text{Ker}(r - 1) \mid r \in \mathcal{R}\}$
 (arrangement of hyperplanes of W)
- discriminant hypersurface (in $V/W \simeq \mathbb{C}^n$):
 $$\mathcal{H} := \left(\bigcup_{H \in \mathcal{A}} H \right) / W$$
- discriminant Δ_W: equation of the hypersurface \mathcal{H} in $\mathbb{C}[f_1, \ldots, f_n]$.
 ($\Delta_W = \prod_{H \in \mathcal{A}} \varphi_H^e \in \mathbb{C}[V]^W$)
Example $W = A_3$: discriminant ("swallowtail")

$$\bigcup_{H \in A} H \subseteq V$$
Example $W = A_3$: discriminant ("swallowtail")
Example $W = A_3$: discriminant ("swallowtail")

$$\bigcup_{H \in A} H \subseteq V$$

hypersurface \mathcal{H} (discriminant) $\subseteq W \setminus V \cong \mathbb{C}^3$
Example $W = A_3$: discriminant ("swallowtail")

$\bigcup_{H \in A} H \subseteq V$

$\mathcal{H} = \{ \Delta_W = 0 \} \subseteq W \setminus V \cong \mathbb{C}^3$

$\Delta_W(f_1, f_2, f_3) = \text{Disc}(T^4 + f_1 T^2 - f_2 T + f_3 ; T)$
Lyashko-Looijenga map and geometric factorisations

\[H \subseteq W \setminus V \sim \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

\[\mathcal{H} \subseteq W \setminus V \cong \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

\[\mathcal{H} \subseteq W \setminus V \simeq \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

\[\mathcal{H} \subseteq W \setminus V \simeq \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

\[\mathcal{H} \subseteq W \setminus V \cong \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

$\mathcal{H} \subseteq W \setminus V \cong \mathbb{C}^3$
Lyashko-Looijenga map and geometric factorisations

\[\mathcal{H} \subseteq W \setminus V \cong \mathbb{C}^3 \]
Lyashko-Looijenga map and geometric factorisations

\[\{x_1, \ldots, x_n\} \in E_n \]
Lyashko-Looijenga map and geometric factorisations

\[\{x_1, \ldots, x_n\} \in E_n \]

\[\varphi^{-1}(y) \cong \mathbb{C} \]

\[f_n \]

\[\varphi \]

\[y \in Y \]

\[y \in Y \]
Lyashko-Looijenga map and geometric factorisations
Lyashko-Looijenga map and geometric factorisations

\[\{x_1, \ldots, x_n\} \in E_n \]

\[(w_1, \ldots, w_p) \in \text{FACT}(c) \]

\[\varphi^{-1}(y) \simeq \mathbb{C} \]

\[y \in Y \]

\[f_n \]

\[\varphi \]
Lyashko-Looijenga map and geometric factorisations

\[\{x_1, \ldots, x_n\} \in E_n \]

\[(w_1, \ldots, w_p) \in \text{FACT}(c) \]

\[y \in Y \]
Lyashko-Looijenga map and geometric factorisations

\[
\{x_1, \ldots, x_n\} \in E_n
\]

\[
(w_1, \ldots, w_p) \in \text{FACT}(c)
\]

\[
y \in Y
\]
Lyashko-Looijenga map and geometric factorisations

\[\{x_1, \ldots, x_n\} \in E_n \]

\[(w_1, \ldots, w_\rho) \in \text{FACT}(c) \]

\[y \in \text{Y} \]

\[\varphi \]

\[f_n \]
Lyashko-Looijenga map and geometric factorisations

\[
\{x_1, \ldots, x_n\} \in E_n
\]

\[
(w_1, \ldots, w_p) \in \text{FACT}(c)
\]

\[
y \in Y
\]
Lyashko-Looijenga map of type W

\[V/W = Y \times \mathbb{C}. \]
Lyashko-Looijenga map of type W

$$V/W = Y \times \mathbb{C}.$$

$$\text{LL} : \quad Y \rightarrow E_n := \{\text{multisets of } n \text{ points in } \mathbb{C}\}$$

$$y \mapsto \{\text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n\}$$
Lyashko-Looijenga map of type W

$$V/W = Y \times \mathbb{C}.$$

LL : $Y \rightarrow E_n := \{\text{multisets of } n \text{ points in } \mathbb{C}\}$

$y \mapsto \{\text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n\}$

$$\Delta_W = f_n^n + a_2f_n^{n-2} + a_3f_n^{n-3} + \cdots + a_{n-1}f_n + a_n.$$

Definition (LL as an algebraic (homogeneous) morphism)

$$\text{LL} : \quad \mathbb{C}^{n-1} \quad \rightarrow \quad \mathbb{C}^{n-1}$$

$$(f_1, \ldots, f_{n-1}) \quad \mapsto \quad (a_2, \ldots, a_n)$$
Lyashko-Looijenga map of type W

$V/W = Y \times \mathbb{C}$.

$LL : Y \rightarrow E_n := \{\text{multisets of } n \text{ points in } \mathbb{C}\}$

$y \mapsto \{\text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n\}$

$\Delta_W = f_n^2 + a_2 f_n^{n-2} + a_3 f_n^{n-3} + \cdots + a_{n-1} f_n + a_n.$

Definition (LL as an algebraic (homogeneous) morphism)

$LL : \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1}$

$(f_1, \ldots, f_{n-1}) \mapsto (a_2, \ldots, a_n)$

$\text{facto} : Y \rightarrow \text{FACT}(c) := \{\text{strict } R\text{-factorisations of } c\}$
Lyashko-Looijenga map of type W

\[V/W = Y \times \mathbb{C}. \]

\[LL : \quad Y \rightarrow E_n := \{ \text{multisets of } n \text{ points in } \mathbb{C} \} \]

\[y \mapsto \{ \text{roots, with multiplicities, of } \Delta_W(y, f_n) \text{ in } f_n \} \]

\[\Delta_W = f_n^2 + a_2f_n^{n-2} + a_3f_n^{n-3} + \cdots + a_{n-1}f_n + a_n. \]

Definition (LL as an algebraic (homogeneous) morphism)

\[LL : \quad \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1} \]

\[(f_1, \ldots, f_{n-1}) \mapsto (a_2, \ldots, a_n) \]

facto : $Y \rightarrow \text{FACT}(c) := \{ \text{strict } R\text{-factorisations of } c \}$

Geometrical compatibilities:

- length of the factors (\leftrightarrow multiplicities in the multiset $LL(y)$);
- conjugacy classes of the factors (\leftrightarrow parabolic strata in \mathcal{H}).
Fibers of LL and strict factorisations of c

Let ω be a multiset in E_n.

Compatibility $\Rightarrow \forall y \in \text{LL}^{-1}(\omega)$, the distribution of lengths of factors of $\text{facto}(y)$ is the same (composition of n).
Fibers of LL and strict factorisations of c

Let ω be a multiset in E_n.

Compatibility $\Rightarrow \forall y \in LL^{-1}(\omega)$, the distribution of lengths of factors of $\text{facto}(y)$ is the same (composition of n).

Theorem (Bessis’07)

The map facto induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of *strict factorisations* of same “composition” as ω.
Fibers of LL and strict factorisations of c

Let ω be a multiset in E_n.

Compatibility $\Rightarrow \forall y \in LL^{-1}(\omega)$, the distribution of lengths of factors of $\text{facto}(y)$ is the same (composition of n).

Theorem (Bessis’07)

The map facto induces a bijection between the fiber $LL^{-1}(\omega)$ and the set of strict factorisations of same “composition” as ω.

Equivalently, the product map:

$$Y \xrightarrow{LL \times \text{facto}} E_n \times \text{FACT}(c)$$

is injective, and its image is the set of “compatible” pairs.
Outline

1. Fuss-Catalan numbers of type W
2. Factorisations as fibers of a Lyashko-Looijenga covering
3. Maximal and submaximal factorisations of a Coxeter element
Bifurcation locus \((\mathcal{K})\) of LL

\[
\{x_1, \ldots, x_n\} \in E_n
\]

\[
(w_1, \ldots, w_p) \in \text{FACT}(c)
\]

\[
y \in Y
\]
Bifurcation locus (\mathcal{K}) of LL

\[
\{x_1, \ldots, x_n\} \in E_n
\]

\[
(w_1, \ldots, w_p) \in \text{FACT}(c)
\]

\[
y \in Y
\]
An unramified covering

Bifurcation locus:

\[\mathcal{K} := LL^{-1} (E_n - E_{\text{reg}}) \]
\[= \{ y \in Y \mid \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n \} \]
\[= \{ y \in Y \mid D_{LL}(y) = 0 \} \]
An unramified covering

Bifurcation locus:
\[\mathcal{K} := LL^{-1}(E_n - E_n^\text{reg}) \]
\[= \{ y \in Y | \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n \} \]
\[= \{ y \in Y | D_{LL}(y) = 0 \} \]

where
\[D_{LL} := \text{Disc}(\Delta_W(y, f_n) ; f_n). \]
An unramified covering

Bifurcation locus:
\[K := LL^{-1}(E_n - E_n^{\text{reg}}) \]
\[= \{ y \in Y \mid \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n \} \]
\[= \{ y \in Y \mid D_{LL}(y) = 0 \} \]
where
\[D_{LL} := \text{Disc}(\Delta_W(y, f_n) ; f_n). \]

Proposition (Bessis)
- LL : \(Y \rightarrow K \) \(\rightarrow E_n^{\text{reg}} \) is a topological covering, of degree \(n! \ h^n / |W| \).
An unramified covering

Bifurcation locus:
\[\mathcal{K} := LL^{-1}(E_n - E_n^{\text{reg}}) \]
\[= \{ y \in Y \mid \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n \} \]
\[= \{ y \in Y \mid D_{LL}(y) = 0 \} \]

where
\[D_{LL} := \text{Disc}(\Delta_W(y, f_n) ; f_n). \]

Proposition (Bessis)

- \(LL : Y - \mathcal{K} \to E_n^{\text{reg}} \) is a topological covering, of degree \(n! \ h^n / |W| \);
- \(|\text{FACT}_n(c)| = n! \ h^n / |W| \).
An unramified covering

Bifurcation locus:
\[\mathcal{K} := \text{LL}^{-1}(E_n - E_{\text{reg}}) \]
\[= \{ y \in Y \mid \Delta_W(y, f_n) \text{ has multiple roots w.r.t. } f_n \} \]
\[= \{ y \in Y \mid D_{\text{LL}}(y) = 0 \} \]

where
\[D_{\text{LL}} := \text{Disc}(\Delta_W(y, f_n) ; f_n). \]

Proposition (Bessis)

LL : \(Y - \mathcal{K} \rightarrow E_n^{\text{reg}} \) is a topological covering, of degree
\[n! \ h^n / |W|; \]
\[|\text{FACT}_n(c)| = n! \ h^n / |W|. \]

Can we compute \(|\text{FACT}_{n-1}(c)|\)?
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \to E_n - E_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

Explanations

Denote "this" set by \bar{L}_2.

Thus:

$D_{\text{LL}} = \prod_{\Lambda \in \bar{L}_2} D_{\text{r} \Lambda \Lambda}$ (irreducible factors in $C[f_1, \ldots, f_{n-1}]$).
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \rightarrow E_n - E_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of D_{LL});

Explanations

Denote "this" set by \bar{L}_2.

Thus:

$D_{\text{LL}} = \prod_{\Lambda \in \bar{L}_2} D_{r_{\Lambda}}$.
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \to E_n - E_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of *irreducible components of \mathcal{K}* (or irreducible factors of D_{LL});
- the set of *conjugacy classes of elements of NCP_W of length 2*;

Explanations

Denote "this" set by \bar{L}_2.

Thus:

$$D_{\text{LL}} = \prod_{\Lambda \in \bar{L}_2} D_\Lambda.$$
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \rightarrow E_n - E_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

Explanations

Denote “this” set by \bar{L}_2.

Thus:

$$D_{\text{LL}} = \prod_{\Lambda \in \bar{L}_2} D_{r_{\Lambda}} \Lambda (\text{irreducible factors in } \mathbb{C}[[f_1, \ldots, f_{n-1}]]).$$
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \rightarrow E_n - E_n^{\text{reg}}$.

Proposition

There are (canonical) bijections between:

- the set of *irreducible components of \mathcal{K}* (or irreducible factors of D_{LL});
- the set of *conjugacy classes of elements of NCP_W of length 2*;
- the set of *conjugacy classes of parabolic subgroups of W of rank 2*.

Explanations

Denote “this” set by \mathcal{L}_2.
Irreducible components of \mathcal{K}

Want to study the restriction of $\text{LL} : \mathcal{K} \to E_n - E_n^\text{reg}$.

Proposition

There are (canonical) bijections between:

- the set of irreducible components of \mathcal{K} (or irreducible factors of D_{LL});
- the set of conjugacy classes of elements of NCP_W of length 2;
- the set of conjugacy classes of parabolic subgroups of W of rank 2.

Explanations

Denote “this” set by $\bar{\mathcal{L}}_2$. Thus: $D_{\text{LL}} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_r^{\Lambda}$

(irreducible factors in $\mathbb{C}[f_1, \ldots, f_{n-1}]$).
Irreducible components of \mathcal{K}
Irreducible components of \mathcal{K}

$\mathcal{H} \subseteq W \setminus V \simeq \mathbb{C}^3$
Irreducible components of \mathcal{K}

$\mathcal{H} \subseteq W \setminus V \cong \mathbb{C}^3$
Submaximal factorisations of type \(\Lambda \)

\[\text{FACT}^\Lambda_{n-1}(c) := \text{set of factorisations of } c \text{ in } n - 1 \text{ factors, with:} \]

- \(n - 2 \) reflections; and
- \(1 \) element of length 2 and conjugacy class \(\Lambda \).
Submaximal factorisations of type Λ

$\text{FACT}^\Lambda_{n-1}(c) :=$ set of factorisations of c in $n - 1$ factors, with:
- $n - 2$ reflections; and
- 1 element of length 2 and conjugacy class Λ.

Remark: $\text{FACT}^\Lambda_{n-1}(c) = \text{facto} \left(\{ \text{“generic” points in } \{ D_\Lambda = 0 \} \} \right)$.
Submaximal factorisations of type Λ

$\text{FACT}^\Lambda_{n-1}(c) :=$ set of factorisations of c in $n - 1$ factors, with:
- $n - 2$ reflections; and
- 1 element of length 2 and conjugacy class Λ.

Remark: $\text{FACT}^\Lambda_{n-1}(c) = \text{facto}(\{\text{“generic” points in } \{D_\Lambda = 0\}\})$.

The restriction $LL_\Lambda : \mathcal{K}_\Lambda \to E_n - E_n^{\text{reg}}$
Submaximal factorisations of type Λ

\[\text{FACT}^\Lambda_{n-1}(c) := \text{set of factorisations of } c \text{ in } n-1 \text{ factors, with:} \]
- \(n-2\) reflections; and
- 1 element of length 2 and conjugacy class Λ.

Remark: \(\text{FACT}^\Lambda_{n-1}(c) = \text{facto}(\{ \text{“generic” points in } \{D_\Lambda = 0\} \}) \).

The restriction \(\text{LL}_\Lambda : \mathcal{K}_\Lambda \to E_n - E_n^{\text{reg}} \) corresponds to the extension \(\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_\Lambda) \).
Submaximal factorisations of type Λ

$\text{FACT}^\Lambda_{n-1}(c) :=$ set of factorisations of c in $n - 1$ factors, with:
- $n - 2$ reflections; and
- 1 element of length 2 and conjugacy class Λ.

Remark: $\text{FACT}^\Lambda_{n-1}(c) = \text{facto}(\{\text{“generic” points in } \{D_\Lambda = 0\}\})$.

The restriction $LL_\Lambda : K_\Lambda \to E_n - E_{n}^{\text{reg}}$ corresponds to the extension $\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_\Lambda)$.

Theorem (R.)

For any Λ in \tilde{L}_2,
- LL_Λ is a finite morphism of degree $\frac{(n-2)! \cdot h^{n-1}}{|W|} \deg D_\Lambda$;
Submaximal factorisations of type Λ

$\text{FACT}^\Lambda_{n-1}(c) :=$ set of factorisations of c in $n - 1$ factors, with:

- $n - 2$ reflections; and
- 1 element of length 2 and conjugacy class Λ.

Remark: $\text{FACT}^\Lambda_{n-1}(c) = \text{facto}(\{\text{“generic” points in } \{D_\Lambda = 0\}\})$.

The restriction $\text{LL}_\Lambda : K_\Lambda \rightarrow E_n - E_n^{\text{reg}}$ corresponds to the extension $\mathbb{C}[a_2, \ldots, a_n]/(D) \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]/(D_\Lambda)$.

Theorem (R.)

For any Λ in \bar{L}_2,

- LL_Λ is a finite morphism of degree $\frac{(n-2)!}{|W|} \frac{h^{n-1}}{\text{deg } D_\Lambda}$; and
- the number of factorisations of c of type Λ is

$$|\text{FACT}^\Lambda_{n-1}(c)| = \frac{(n - 1)!}{|W|} \frac{h^{n-1}}{\text{deg } D_\Lambda}.$$
Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_{\Lambda}$.
Problem: find a general computation of $\sum_{\Lambda \in \bar{\mathcal{L}}_2} \deg D_\Lambda$.

Recall that $D_{LL} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_\Lambda^{r_\Lambda}$.

Proposition (Saito; R.)

Set $J_{LL} := \text{Jac} \left(\left(a_2, \ldots, a_n \right) / (f_1, \ldots, f_{n-1}) \right)$. Then:

$J_{LL} = \prod_{\Lambda \in \bar{\mathcal{L}}_2} D_\Lambda^{r_\Lambda - 1}$.

Virtual reflection groups?
Problem: find a general computation of $\sum_{\Lambda \in \tilde{L}_2} \deg D_\Lambda$.

Recall that $D_{LL} = \prod_{\Lambda \in \tilde{L}_2} D^r_\Lambda$.

Proposition (Saito; R.)

Set $J_{LL} := \text{Jac}((a_2, \ldots, a_n)/(f_1, \ldots, f_{n-1}))$. Then:

$$J_{LL} = \prod_{\Lambda \in \tilde{L}_2} D^{r_\Lambda - 1}_\Lambda$$
Submaximal factorisations

Problem: find a general computation of $\sum_{\Lambda \in \bar{L}_2} \deg D_{\Lambda}$.

Recall that $D_{LL} = \prod_{\Lambda \in \bar{L}_2} D_{\Lambda}^{r_{\Lambda}}$.

Proposition (Saito; R.)

Set $J_{LL} := \text{Jac}((a_2, \ldots, a_n)/(f_1, \ldots, f_{n-1}))$. Then:

$$J_{LL} \equiv \prod_{\Lambda \in \bar{L}_2} D_{\Lambda}^{r_{\Lambda}-1}$$

Virtual reflection groups?

So, $\sum \deg D_{\Lambda} = \deg D_{LL} - \deg J_{LL} = \ldots$
Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of \textbf{strict factorisations of a Coxeter element c in $n - 1$ factors} is:
Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n - 1$ factors is:

$$|\text{FACT}_{n-1}(c)| = \frac{(n-1)! h^{n-1}}{|W|} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right).$$
Corollary

Let \(W \) be an irreducible, well-generated complex reflection group, of rank \(n \). The number of strict factorisations of a Coxeter element \(c \) in \(n - 1 \) factors is:

\[
| \text{FACT}_{n-1}(c) | = \frac{(n - 1)! \ h^{n-1}}{|W|} \left(\frac{(n - 1)(n - 2)}{2} h + \sum_{i=1}^{n-1} d_i \right).
\]

We recover what is predicted by Chapoton’s formula;
Corollary

Let W be an irreducible, well-generated complex reflection group, of rank n. The number of strict factorisations of a Coxeter element c in $n − 1$ factors is:

$$| \text{FACT}_{n-1}(c)| = \frac{(n-1)!}{|W|} h^{n-1} \left(\frac{(n-1)(n-2)}{2} h + \sum_{i=1}^{n-1} d_i \right).$$

- We recover what is predicted by Chapoton’s formula;
- but the proof is more satisfactory and enlightening: we travelled from the numerology of $\text{FACT}_n(c)$ (non-ramified part of LL) to that of $\text{FACT}_{n-1}(c)$, without adding any case-by-case analysis.
Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Can we go further (compute the $|\text{FACT}_k(c)|$)? Can we interpret Chapoton’s formula as a ramification formula for LL?

Merci!
Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $|\text{FACT}_k(c)|$) ? Can we interpret Chapoton’s formula as a ramification formula for LL ?
We recover geometrically some combinatorial results known in the real case [Krattenthaler].
Can we go further (compute the $|\text{FACT}_k(c)|$)? Can we interpret Chapoton’s formula as a ramification formula for LL?
Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $|\text{FACT}_k(c)|$)? Can we interpret Chapoton’s formula as a ramification formula for LL?

Merci!
We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Can we go further (compute the $|\text{FACT}_k(c)|$) ? Can we interpret Chapoton’s formula as a ramification formula for LL ?

Merci !
Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $|\text{FACT}_k(c)|$)? Can we interpret Chapoton’s formula as a ramification formula for LL?

Merci !
We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Can we go further (compute the $|\text{FACT}_k(c)|$) ? Can we interpret Chapoton’s formula as a ramification formula for LL ?

Merci !
We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Can we go further (compute the $|FACT_k(c)|$)? Can we interpret Chapoton’s formula as a ramification formula for LL?

Merci!
Conclusion, questions

- We recover geometrically some combinatorial results known in the real case [Krattenthaler].
- Can we go further (compute the $| \text{FACT}_k(c)|$) ? Can we interpret Chapoton’s formula as a ramification formula for LL ?

Merci !
We recover geometrically some combinatorial results known in the real case [Krattenthaler].

Can we go further (compute the $|\text{FACT}_k(c)|$) ? Can we interpret Chapoton’s formula as a ramification formula for LL ?

Merci !
Outline

Appendix
- Stratifications
- Comparison reflection groups / LL extensions
Stratification of V with the “flats” (intersection lattice):

$$\mathcal{L} := \{ \bigcap_{H \in A} H \mid B \subseteq A \}.$$
Stratifications

Stratification of V with the “flats” (intersection lattice):
\[\mathcal{L} := \left\{ \bigcap_{H \in \mathcal{A}} H \mid B \subseteq \mathcal{A} \right\}. \]

Bijections [Steinberg]:
stratification \mathcal{L} \iff \{parabolic subgroups of W\}

Remark: H is the union of strata of $\bar{\mathcal{L}}$ of codim. 1.

Conjugacy classes of factors of facto \((y) \) \iff strata containing the intersection points.
Stratifications

Stratification of V with the “flats” (intersection lattice):

$$\mathcal{L} := \{ \bigcap_{H \in A} H \mid B \subseteq A \}.$$

Bijectons [Steinberg]:

stratification $\tilde{\mathcal{L}} = \mathcal{L} / W \iff \text{p.sg.}(W)/\text{conj.}$
Stratifications

Stratification of V with the “flats” (intersection lattice):
$$\mathcal{L} := \{ \bigcap_{H \in A} H \mid B \subseteq A \}.$$

Bijections [Steinberg]:
- stratification $\tilde{\mathcal{L}} = \mathcal{L}/W \iff \text{p.sg.}(W)/\text{conj.} \iff \text{NCP}_{W/\text{conj}}.

Remark: H is the union of strata of $\tilde{\mathcal{L}}$ of codim. 1.
Stratification of \mathcal{V} with the “flats” (intersection lattice):

$$\mathcal{L} := \{ \bigcap_{H \in \mathcal{A}} H \mid \mathcal{B} \subseteq \mathcal{A} \}.$$

Bijections [Steinberg]:

- **stratification** $\tilde{\mathcal{L}} = \mathcal{L}/\mathcal{W}$
- $\text{codim}(\Lambda) = \text{rank}(\mathcal{W}_\Lambda) = \ell_R(w_\Lambda)$
- $\leftrightarrow \ p.sg.(\mathcal{W})/\text{conj.}$
- $\leftrightarrow \ NCP_{\mathcal{W}}/\text{conj.}$

Remark:

H is the union of strata of $\tilde{\mathcal{L}}$ of codim. 1.

Conjugacy classes of factors of \mathcal{Y} \leftrightarrow strata containing the intersection points.
Stratification of V with the “flats” (intersection lattice):

$\mathcal{L} := \{\bigcap_{H \in \mathcal{A}} H \mid B \subseteq \mathcal{A}\}$.

Bijections [Steinberg]:

- Stratification $\bar{\mathcal{L}} = \mathcal{L} / W$ \iff p.sg.(W)/conj. \iff NCP$_W$/conj.
- $\text{codim}(\Lambda) = \text{rank}(W_\Lambda) = \ell_R(w_\Lambda)$

Remark: \mathcal{H} is the union of strata of $\bar{\mathcal{L}}$ of codim. 1.
Stratification of V with the “flats” (intersection lattice):
\[\mathcal{L} := \{ \bigcap_{H \in \mathcal{A}} H \mid B \subseteq \mathcal{A} \}. \]

Bijections [Steinberg]:

- Stratification $\bar{\mathcal{L}} = \mathcal{L} / W \leftrightarrow \text{p.sg.}(W) / \text{conj.} \leftrightarrow \text{NCP}_W / \text{conj.}$
- $\text{codim}(\Lambda) = \text{rank}(W_\Lambda) = \ell_R(w_\Lambda)$

Remark: H is the union of strata of $\bar{\mathcal{L}}$ of codim. 1.

Conjugacy classes of factors of $\text{facto}(y) \leftrightarrow$ strata containing the intersection points.
Example of $\mathcal{W} = A_3$: stratification of the discriminant

\[\bigcup_{H \in \mathcal{A}} H \subseteq V \]

\[\mathcal{H} = \{ \Delta_{\mathcal{W}} = 0 \} \subseteq \mathcal{W} \setminus V \cong \mathbb{C}^3 \]

\[\Delta_{\mathcal{W}}(f_1, f_2, f_3) = \text{Disc} \left(T^4 + f_1 T^2 - f_2 T + f_3 ; T \right) \]
Example of $W = A_3$: stratification of the discriminant

$$\bigcup_{H \in A} H \subseteq V$$

$H = \{ \Delta_W = 0 \} \subseteq W \setminus V \simeq \mathbb{C}^3$

$$\Delta_W(f_1, f_2, f_3) = \text{Disc}(T^4 + f_1T^2 - f_2T + f_3; T)$$
Example of $\mathcal{W} = A_3$: stratification of the discriminant

\[
\bigcup_{H \in \mathcal{A}} H \subseteq \mathcal{V}
\]

\[
\mathcal{H} = \{\Delta_{\mathcal{W}} = 0\} \subseteq \mathcal{W} \setminus \mathcal{V} \cong \mathbb{C}^3
\]

\[
\Delta_{\mathcal{W}}(f_1, f_2, f_3) = \text{Disc}(T^4 + f_1 T^2 - f_2 T + f_3 ; T)
\]
Example of $W = A_3$: stratification of the discriminant

\[\mathcal{H} = \{ \Delta_W = 0 \} \subseteq W \setminus V \cong \mathbb{C}^3 \]

\[\Delta_W(f_1, f_2, f_3) = \text{Disc}(T^4 + f_1 T^2 - f_2 T + f_3 ; T) \]
Example of $W = A_3$: stratification of the discriminant

$\bigcup_{H \in A} H \subseteq V$

$\mathcal{H} = \{ \Delta_W = 0 \} \subseteq W \setminus V \simeq \mathbb{C}^3$

$\Delta_W(f_1, f_2, f_3) = \text{Disc}(T^4 + f_1 T^2 - f_2 T + f_3 ; T)$
Irreducible components of \mathcal{K}, details

$$\bar{\mathcal{L}}_2 := \{ \text{strata of } \bar{\mathcal{L}} \text{ of codim. 2} \}.$$
Irreducible components of \mathcal{K}, details

$\mathcal{L}_2 := \{\text{strata of } \mathcal{L} \text{ of codim. } 2\}$.

Steinberg’s theorem $\Rightarrow \mathcal{L}_2$ is in bijection with:

- $\{\text{conjugacy classes of parabolic subgroups of } W \text{ of rank } 2\}$
- $\{\text{conjugacy classes of elements of } N_{CPW} \text{ of length } 2\}$
Irreducible components of \mathcal{K}, details

$\bar{L}_2 := \{\text{strata of } \bar{L} \text{ of codim. 2}\}$.

Steinberg’s theorem $\Rightarrow \bar{L}_2$ is in bijection with:

- $\{\text{conjugacy classes of parabolic subgroups of } W \text{ of rank 2}\}$
- $\{\text{conjugacy classes of elements of } NCP_W \text{ of length 2}\}$

Proposition

The $\phi(\Lambda)$, for $\Lambda \in \bar{L}_2$, are the irreducible components of \mathcal{K} (where ϕ is the projection $V/W \rightarrow Y$).
Reflection group vs. Lyashko-Looijenga extension

<table>
<thead>
<tr>
<th>Reflection group W</th>
<th>Extension LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V \rightarrow V/W$</td>
<td>$Y \rightarrow \mathbb{C}^{n-1}$</td>
</tr>
<tr>
<td>$\mathbb{C}[f_1, \ldots, f_n] = \mathbb{C}[V]^W \subseteq \mathbb{C}[V]$</td>
<td>$\mathbb{C}[a_2, \ldots, a_n] \subseteq \mathbb{C}[f_1, \ldots, f_{n-1}]$</td>
</tr>
<tr>
<td>degree $</td>
<td>W</td>
</tr>
<tr>
<td>$V^{\text{reg}} \rightarrow V^{\text{reg}}/W$</td>
<td>$Y - \mathcal{K} \rightarrow E_n^{\text{reg}}$</td>
</tr>
<tr>
<td>Generic fiber $\simeq W$</td>
<td>$\simeq \text{Red}_R(c)$</td>
</tr>
<tr>
<td>ramified on $\bigcup_{H \in A} H \rightarrow \mathcal{H}$</td>
<td>$\mathcal{K} = \bigcup_{\Lambda \in \bar{L}_2} \varphi(\Lambda) \rightarrow E_n - E_n^{\text{reg}}$</td>
</tr>
<tr>
<td>$\Delta_W = \prod_{H \in A} \alpha_H^{e_H}$</td>
<td>$D_{LL} = \prod_{\Lambda \in \bar{L}2} D{\Lambda}^{r_{\Lambda}}$</td>
</tr>
<tr>
<td>$J_W = \prod \alpha_H^{e_H-1}$</td>
<td>$J_{LL} = \prod D_{\Lambda}^{r_{\Lambda}-1}$</td>
</tr>
<tr>
<td>$e_H =</td>
<td>W_H</td>
</tr>
</tbody>
</table>