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Factorisations in a generated group

Group G, generated by A ~- length function /7, on G.

Definition (A-factorisations)

(91,-..,9p) is an A-factorisation of g € G if
©01...0p=G;
® (a(g1) + -+ La(gp) = La(9)-

Example: (G, A) = (W, S) finite Coxeter system

Strict maximal factorisations of wy «— galleries connecting a
chamber to its opposite. [Deligne]

Definition (Divisibility order <4)
g <a hifand only if g is a (left) “A-factor” of h.

[1, hl<, = {divisors of hfor <4} ~ {2-factorisations of h}.
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Prototype: noncrossing partitions of an n-gon

@ G := &), with generating set T := {all transpositions}
@ c:=n-cycle(12 ... n)
@ {T-divisors of ¢} «+— {noncrossing partitions of an n-gon}

9 1’ ‘2\ | 2\
)

3
4

6 5 6 5
T=(145)(23)(679)

noncrossing
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Complex reflection groups

V . complex vector space (finite dimension).
Definition
A (finite) complex reflection group is a finite subgroup of GL( V)

generated by complex reflections.
A complex reflection is an element s € GL(V) of finite order, s.t.

Ker(s — Idy) is a hyperplane:

S <E> matrix Diag(¢, 1,...,1) , with ¢ root of unity.

@ includes finite (complexified) real reflection groups (aka

finite Coxeter groups);
@ Shephard-Todd’s classification (1954): an infinite series
with 3 parameters G(de, e, r), and 34 exceptional groups.
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Noncrossing partitions of type W

Now suppose that W C GL(V) is a complex reflection group,
irreducible and well-generated (i.e. can be generated by
n = dim V reflections).

@ generating set R := {all reflections of W}.
(~ length /g, R-factorisations, order <R)

@ c: a Coxeter elementin W.

Definition (Noncrossing partitions of type W)

NCPy(c) :={we W|w=gc}

@ NCPy/(c) ~ {2-factorisations of c};

@ the structure does not depend on the choice of the Coxeter
element (conjugacy).



Fuss-Catalan numbers

Kreweras’s formula
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The number of T-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number

n .
cat®(n) =[] +I,p” .
=2




Fuss-Catalan numbers of type W

Chapoton’s formula

o W =G,

@ c: an n-cycle.
The number of T-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number

n .
Cat(p)(n) - H H_# .
i=2




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W = anirreducible, well-generated c.r.gp., of rank n;
@ c: an n-cycle.
The number of T-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number

(p) Ti+Pn
Cat?(n) =] —
=2




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W = anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.
The number of T-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number

(p) Ti+Pn
Cat?(n) =] —
=2




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.
The number of R-factorisations of ¢ in p 4 1 blocks is the
Fuss-Catalan number

(p) Ti+Pn
Cat?(n) =] —
=2




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.

The number of R-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number of type W




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.

The number of R-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number of type W

CatP) (W) = f[

i=1

di+ ph
d




Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.

The number of R-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number of type W

d; + ph
d

n
cat?(w) =]
i=1

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!



Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.

The number of R-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number of type W

n
cat®(w) = [ 4P
i=1 !

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(®) (W) counts also the number of maximal faces
in the “p-divisible cluster complex of type W” (generalization of
the simplicial associahedron) [Fomin-Reading].



Fuss-Catalan numbers of type W

Chapoton’s formula
@ W :=anirreducible, well-generated c.r.gp., of rank n;
@ c: a Coxeter element.

The number of R-factorisations of ¢ in p + 1 blocks is the
Fuss-Catalan number of type W

n
cat®(w) = % Z'ph .
i=1 !

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(®) (W) counts also the number of maximal faces
in the “p-divisible cluster complex of type W” (generalization of
the simplicial associahedron) [Fomin-Reading]. Related to
cluster algebras of finite type if W is a Wey! group.
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The quotient-space V/W

W C GL(V) a complex reflection group. W acts on C[V].

Chevalley-Shephard-Todd’s theorem: there exist invariant
polynomials fi, ..., fr, homogeneous and algebraically

independent, s.t. C[V]" = C[fy, ..., f].

~ isomorphism: V/W = C"
v o= (A(V),.. . Ta(V))

Definition
The degrees dy < --- < d,=hoffy,...,f, do not depend on
the choice of fi, ..., fy. They are called the invariant degrees of

w.




o A:={Ker(r—1)|reR}
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Discriminant of W

o A:={Ker(r—1)|reR}
(arrangement of hyperplanes of W)
@ discriminant hypersurface (in V/W ~ C"):

H::<UH>/W

HeA



Discriminant of W

o A:={Ker(r—1)|reR}
(arrangement of hyperplanes of W)
@ discriminant hypersurface (in V/W ~ C"):

)

@ discriminant Ay : equation of the hypersurface # in
Clfi,.. ., fal- (Aw =TIpeavr € CIVIY)
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Example W = As: discriminant (“swallowtail”

hypersurface # (discriminant) € W\ V ~ C3



Example W = As: discriminant (“swallowtail”

H={Aw=0}C W\V~C?

Aw(f1, fg7 f3) = DiSC(T4 + fi T2 — LT + f3 ; T)
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Lyashko-Looijenga map of type W
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Lyashko-Looijenga map of type W

V/W=Y xC.
LL: Y — E,:= {multisets of npoints in C}
y +— {roots, with multiplicities, of Ay (y, f,) in f,}
Ay =+ afl 2+ asf] 2+ + ap_1fy + an.
Definition (LL as an algebraic (homogeneous) morphism)
LL : = — cn-1
(f1,...,fn_1) — (32,...,3,7)

facto : Y — FACT(c) := {strict R-factorisations of c}
Geometrical compatibilities:

@ length of the factors («» multiplicities in the multiset LL(y));
@ conjugacy classes of the factors (« parabolic strata in H).
> Detals ]
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Fibers of LL and strict factorisations of ¢

Let w be a multiset in Ej,.

Compatibility = Vy € LL™"(w), the distribution of lengths of
factors of facto(y) is the same (composition of n).

Theorem (Bessis’07)

The map facto induces a bijection between the fiber LL ™" ()
and the set of strict factorisations of same “composition” as w.

Equivalently, the product map:

LL x facto

Y En, x FACT(c)

is injective, and its image is the set of “compatible” pairs.
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An unramified covering

Bifurcation locus: 4

K = LL7Y(E,— E®)
= {yeY|Aw(y,fn) has multiple roots w.r.t. f,}
= {yeY|[Duly) =0}

where

D|_|_ = DiSC(Aw(y, fn) ; fn)

Proposition (Bessis)
@ LL: Y - K — E;® is a topological covering, of degree
n kW
® |FACTh(c)| =nt A"/ |W]|.

Can we compute | FACT,_1(c)| ?
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Want to study the restriction of LL : K — E, — E,*.

Proposition
There are (canonical) bijections between:
@ the set of irreducible components of K (or irreducible
factors of Dy );
@ the set of conjugacy classes of elements of NCPy, of length
2:
@ the set of conjugacy classes of parabolic subgroups of W
of rank 2.
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Irreducible components of

Want to study the restriction of LL : K — E, — E,*.

Proposition
There are (canonical) bijections between:

@ the set of irreducible components of K (or irreducible
factors of Dy );

@ the set of conjugacy classes of elements of NCPy, of length

2;
@ the set of conjugacy classes of parabolic subgroups of W
of rank 2.
Denote “this” setby £,. Thus: Dy = H D

NeLy
(irreducible factors in Cl[fy, ..., f1_1]).
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»_1(c) := set of factorisations of ¢ in n — 1 factors, with:

@ n — 2 reflections; and

@ 1 element of length 2 and conjugacy class A.
Remark: FACT) . (c) = facto({“generic” points in {Dx = 0}}).
The restriction LL : Ko — E, — E;® corresponds to the
extension Clap, ..., an]/(D) € C[f,...,fr_1]/(Da).
Theorem (R.)
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Submaximal factorisations of type A

»_1(c) := set of factorisations of ¢ in n — 1 factors, with:
@ n — 2 reflections; and
@ 1 element of length 2 and conjugacy class A.
Remark: FACT) . (c) = facto({“generic” points in {Dx = 0}}).
The restriction LL : Ko — E, — E;® corresponds to the
extension Clap, ..., an]/(D) € C[f,...,fr_1]/(Da).
Theorem (R.)
Forany A\ in L5,
@ LL, is a finite morphism of degree % deg Dp;

@ the number of factorisations of ¢ of type A is

FACTA

n—1) -1
| FACT] 4(c)| = (M)/deg Dy .
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Submaximal factorisations

Problem: find a general computation of Z/\GE_Z deg Dp.

Recall that D = H/\GZQ D/r\/\

Proposition (Saito; R.)
SetJ,| :=Jdac((az,...,an)/(f1,...,fh_1)). Then:

J = H D/r\/\_1

/\EEQ

So, Y degDp =deg D —degd =...
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Submaximal factorisations

Corollary

Let W be an irreducible, well-generated complex reflection

group, of rank n. The number of strict factorisations of a
Coxeter element c in n — 1 factors is:

@ We recover what is predicted by Chapoton’s formula;

@ but the proof is more satisfactory and enlightening: we
travelled from the numerology of FACT,(c) (non-ramified

part of LL) to that of FACT,_1(c), without adding any
case-by-case analysis.
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Stratifications

Stratification of V with the “flats” (intersection lattice):
L:={Npea H| BC A}.

Bijections [Steinberg]:
stratification £L = L/W <+ p.sg.(W)/conj. < NCPy/con;.
codim(A) = rank( W) = Cr(wWp)

Remark: # is the union of strata of £ of codim. 1.

Conjugacy classes of factors of facto(y) «» strata containing the
intersection points.
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Irreducible components of IC, details

Lo := {strata of £ of codim. 2}.

Steinberg’s theorem = £, is in bijection with:
@ {conjugacy classes of parabolic subgroups of W of rank 2}
@ {conjugacy classes of elements of NCPy, of length 2}

Proposition

The (M), for \ € Lo, are the irreducible components of K
(where ¢ is the projection V/W — Y).

< Return to Irreducible components of



Reflection group vs. Lyashko-Looijenga extension

Reflection group W

Extension LL

V- V/W Y - !
Clfy,....f =C[V]" CCIV] | Claz...., an] C Clfy,..., foi]
degree |W/| degree n! h"/ |W|

yvreg _, Vreg/W
Generic fiber ~ W

ramified on Jyca H — H
Aw = HHeA O‘I?/H

Jw = HO‘ZH_1
en = |Whyl

Y - K — EX®
~ Red,q(c)

K =Upez, ¢(N) = En — E*
DiL = [Tpez, DR
Jqo=T100""

rn = pseudo-order of
elements of NCPy of type A
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