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Overview

@ root system ¢ : set of
vectors encoding the

— 7/ reflections of a Coxeter
/ group
o

General property :

® = o L (—0t),
where ®* C cone(A),
A simple roots.

@ Get a projective
version of ¢ by
constructing
normalized roots in a
cutting hyperplane H.

@ draw examples,
get amazing pictures,
try to understand
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@ Action of W on the limit roots : faithfulness, density of the
orbits

e Fractal description of the limit roots, and the hyperbolic case
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A “dynamical” construction of a root system

@ V: areal vector space, of finite dimension n
@ B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system A:
@ A is a basis for V;
@ Vae A Bla,a) =1,
@ YVa # [ e A:
e either B(«, 8) = —cos (%) for some m € Z>»,
e or B(a, ) < —1.



A “dynamical” construction of a root system

2. For each a € A, define the B-reflection s,:

Sqe: V. =V
v — v—-2B(a,v)a.

Check: s,(a) = —a, and s, fixes pointwise a*.
Notation: S = {s,, a € A}.
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A “dynamical” construction of a root system

2. For each a € A, define the B-reflection s,:

Sqe: V. =V
v — v—-2B(a,v)a.
Check: s,(a) = —a, and s, fixes pointwise a*.
Notation: S = {s,, a € A}.
3. Construct the B-reflection group W := (S).

4. Act by W on A to construct the based root system
o= W(A).

Note: if p = w(a) (with a € A), ws,w~" is the B-reflection
associated to the root p.



Coxeter group and root system

Proposition
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Coxeter group and root system

Proposition
@ (W,S) is a Coxeter system, with Coxeter presentation:

W:<s(s2:1 (Vs e S); (st)™ = 1 (VS#tGS)>,

m  if B(a, ) = — cos(w/m),
~ ifBla,B) < —1.
@ Letdt :=dncone(A). Then: d = &F LI (—dT).

where ms,, s, = {

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation of a Coxeter group [Tits].
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Infinite root systems

For finite root systems:
o is finite & W is finite
(& B is positive definite).

Example: W = x(5),

5
b = 10, —®
Sa S3

What does an infinite root system look like?

Simplest example, in rank 2:

o0 _
—o Matrix of B in the basis («, 8): { 1 1].
Sa Sp -1 1



Infinite dihedral group, case B(a, 5) = —1

P4
P3

p2 = 82(8) = B — 2B(a, B)a = B + 2a

a = pi

php=na+n+1)s ; pon=(n+1)a+ns



Observations

@ The norms of the roots tend to oo;

@ The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q:={veV, B(v,v)=0}.

(in the example the equation is v3 + v5 — 2v,Vv3 = 0, and
Q = span(a + 3).)



What if B(a, 8) < —1?
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. 1 k| . , oo(k)
@ Matrix of B: with k < —1. We write e—e
k 1 Sa Sﬁ



What if B, 8) < —1?

oo(k)
] with k < —1. We write e—e
Sa Sp
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@ Matrix of B: F
k 1

@ Then Qs the union of 2 lines.



What if B, 8) < —1?

. 1 k| . , oo(k)
@ Matrix of B: with k < —1. We write e—e
k 1 Sa Sﬁ
@ Then Qs the union of 2 lines.
pa
P3
p2
oo(—1.01)
———o
S t

o = p1




“Normalization” of the roots
Cut the directions of the roots with an affine hyperplane
~ get a picture for the projective version of ¢.

Vi={veV|) va=1}

aceA




Normalized roots in rank 2




Limit roots and isotropic cone

Theorem (Hohlweg-Labbé-R. '11)

Let ® be an infinite root system, Q its isotropic cone, and
(pn)nen an injective sequence in ®. Then:
@ ||pn|| tends to o (for any norm on V);
@ if the sequence of normalized root (pn)nen has a limit ¢,
then N
¢ € Qneconv(A).
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Limit roots and isotropic cone
Theorem (Hohlweg-Labbé-R. '11)

Let ® be an infinite root system, Q its isotropic cone, and
(pn)nen an injective sequence in ®. Then:
@ ||pn|| tends to o (for any norm on V);
@ if the sequence of normalized root (pn)nen has a limit ¢,
then N
¢ € Qneconv(A).

See also:
@ [Kac 90] for Weyl groups of Kac-Moody algebras,
@ generalized by [Dyer ’12] (work on the imaginary cone of a
Coxeter group).

~~ Problem: understand the set of possible limits, i.e., the
accumulation points of ¢:

E(¢) := Acc (6) (“limit roots”).



Zoology of root systems and limit roots

@ ¢ finite (W finite Coxeter group) :
B positive definite, Q = @, E = @.

@ ¢ of affine type :
B positive. Actually sgn B = (n—1,0) if ® irreducible.
Qis a singleton, E = Q.

@ otherwise: ¢ of indefinite type
e particular case : weakly hyperbolic type,
sgnB=(n—1,1).
Qisa sphere (if we choose well the cutting hyperplane).
E is pretty and well understood.

e other cases : still work to do!



Examples in rank 3: finite group, sgn B = (3, 0). (Hs)
Sy

N
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Examples in rank 3: case sgn B = (2,1)

4 T oo(—1.5)

Sa X s




Examples in rank 4

Ss

Sa @Sﬂ




Examples in rank 4




Dihedral limit roots

Fix 2 roots p1, po in ®+ ~ get a reflection subgroup of rank 2 of
W, and a root subsystem ¢’.
o &' lives in the line L(53, 53) ;
@ the isotropic cone of ¢’ is Q N Vect(p1, p2) ;
@ ~» we can construct limit roots of ¢’ : E(®") = QN L(p1, p2)
(0,1 or 2 points).




Outline

@ Action of W on the limit roots : faithfulness, density of the
orbits



A natural group action of W on E
Geometric action of W on a partof Vi: w- v := w(v).

Definedon D= Vyn () w(V\ Vo), where Vo = v1
weW

Proposition
@ E(®) C D and E(®) is stable under the action of W.
@ Foracdandx e E, QN L(a, x) = {X,Sq - X}.

o
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weW
Proposition
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@ we prove that E is not contained in a finite union of affine
subspaces of Vj.



A natural group action of W on E
Geometric action of W on a partof Vi: w- v := w(v).
Definedon D= Vyn 1) w(V\ V), where V = Vi.

weW
Proposition
@ E(®) C D and E(®) is stable under the action of W.
@ Forac ®andx € E, QN L(@,x) = {x, S, - X}.

Theorem (Dyer-Hohlweg-R. ’12)

If W is infinite, non-affine and irreducible, then the action of W
on E is faithful.

@ we prove that E is not contained in a finite union of affine
subspaces of Vj.

@ we use the link with the imaginary cone of ® studied by
Dyer.



Convex hull of E and imaginary cone
Definition (Kac, Hée, Dyer...)
@ K :={vecone(A)|Vaec A, B(a,v) <0}

@ the imaginary cone Z of ¢ is the W-orbit of K :
Z .= W(K).
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Minimality of the action

Relation limit roots/imaginary cone, [Dyer]
Let Z be the normalized isotropic cone Z N V;.

Then : Z = conv(E).

Theorem (Dyer-Hohlweg-R. ’12)

If W is irreducible infinite, then the action of W on E is minimal,
i.e., for all x € E, the orbit of x under the action of W is dense
inE:

W.-x=E.
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Minimality of the action

Relation limit roots/imaginary cone, [Dyer]
Let Z be the normalized isotropic cone Z N V;.

Then : Z = conv(E).

Theorem (Dyer-Hohlweg-R. ’12)

If W is irreducible infinite, then the action of W on E is minimal,
i.e., for all x € E, the orbit of x under the action of W is dense
in E:

W.-x=E.

The proof uses:
@ the properties of the action on Z = conv(E) [Dyer]:
if W is irreducible infinite, then

Vx € Z, conv <W) =Z

@ the fact that the set of extreme points of the convex set Z is
dense in E [Dyer-Hohlweg-R.].
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e Fractal description of the limit roots, and the hyperbolic case



The hyperbolic case

¢ is hyperbolic if:
@ sgnB=(n—1,1)and
@ every proper parabolic subgroup of W is finite or affine

Theorem (Dyer-Hohlweg-R.)
Let ® be irreducible of indefinite type. Then:

®is hyperbolic < Q C conv(A) < E(¢) = Q.




A hyperbolic example

Ss

Sa @'Sﬂ’




“Fractal” description of a dense subset of E

Start with the intersections of E with the faces of conv(A), and
act by W...



“Fractal” description of a dense subset of E

Start with the intersections of E with the faces of conv(A), and
act by W...

Sy

4 T oo(—1.5)

Sa X s




Fractal description from hyperbolic faces

Ss

Sy




Fractal description from hyperbolic faces
Ss

4 4
Sa S3

Sy




Describe E directly?
Conjecture
If W is irreducible, then E(®) = Q \ all the images by W of the
parts of Q which are outside conv(A), i.e. :

E(®)=Qn (] w-conv(A).

weW
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Describe E directly?

Conjecture

If W is irreducible, then E(®) = Q \ all the images by W of the
parts of Q which are outside conv(A), i.e. :

E(®) = Qn ﬂ w - conv(A).

weW

o [Dyer] = (] w(cone(A)) = Z = cone(E), s0 :
weW

conjecture <= E =conv(E)n Q.

@ Conjecture proved for the wegkly hyperbolic case, i.e.,
sgn B =(n—1,1) (because Q can be taken as a sphere).



Other questions

@ How does E behave in regards to restriction to parabolic
subgroups? Take I C A, W, its associated parabolic
subgroup, ¢, = W(A), and V; = Vect(/) N V4. Then
E(®)) # E(®) N V;in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E...
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Other questions

@ How does E behave in regards to restriction to parabolic
subgroups? Take I C A, W, its associated parabolic
subgroup, ¢, = W(A), and V; = Vect(/) N V4. Then
E(®)) # E(®) N V;in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E...

@ Explicit construction of converging sequences, links with
the dominance order on ¢.

@ What can be said about the dynamics of the projective
action of W on the whole space V (notonly ¢, E and Z) ?



The normalized imaginary cone conv(E) (an artist's impression)
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