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of the following:

(in blue) the isotropic cone of a 
symmetric bilinear form    on a 
vector space V;

(in red) the first few thousands 
roots of an infinite root system 
related to    .

What do we see?

An affine picture built with 

infinite root system

Motivation: to 
understand how 

roots are distributed 
over the space

isotropic cone

B

B



Why study

b b

?

From Coxeter groups to other structures (e.g. Lie 
algebras, Kac-Moody algebras, cluster algebras).

Very useful and powerful 
tool to study Coxeter groups; 
Little is known for non affine 
root systems of infinite Coxeter 
groups (see Brink-Howlett, Dyer); 

Original motivation of this work: weak order and convexity of 
subsets of roots, to extend Reading’s Cambrian fan.

And because the pictures we obtain are nice and intriguing ... 

infinite root systems



  root systemWhat is a ?

   f.d. vector space,    a symmetric bilinear form
The simple roots: start with a set    of vectors in    
(usually a basis), such that 
For each          , define a    -reflection

Construct the B-reflection group 

Act by    on    , construct the root system

s↵(v) = v � 2B(v, ↵)↵

BV

� V
8↵ 2 �, B(↵,↵) = 1.

↵ 2 � B s↵

W = hs↵ |↵ 2 �i ✓ OB(V )

W �

� = W (�)

Basic construction:



 Isotropic cone of B: Q = {v 2 V |B(v, v) = 0}

Examples
Finite (Euclidean) reflection 
groups (when B is positive definite)

Affine root systems 
(when B is positive 
semidefinite)

↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,�) = �1

infinite dihedral group

What is a ? root system



↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,�) = �1

= s↵(�)
= � + 2↵

s�(↵) =
↵ + 2� =

= s↵s�(↵)
= 3↵ + 2�

⇢n = (n + 1)↵ + n�⇢0
n = n↵ + (n + 1)�

s↵(v) = v � 2B(v, ↵)↵.

What is a ? root system



More examples
Affine root systems (when 
B is positive semidefinite)

Q� = {v 2 V |B(v, v)  0}

Non-affine root sytems 

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,�) = �1

infinite dihedral groupinfinite dihedral group

What is a ? root system



A B-reflection group    generated 
by                    . 

W
S := {s↵ |↵ 2 �}

Root system: � = W (�)

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

W infinite dihedral group

What is a ? (in this talk) root system

• � is a basis for V ;

• B(↵,↵) = 1 for all ↵ 2 �;

• B(↵,�) 2 ]�1,�1] [ {� cos

�
⇡
k

�
, k 2 Z�2} for ↵ 6= � 2 �.

A simple system   , i.e., �



A B-reflection group    generated 
by                    . 

W
S := {s↵ |↵ 2 �}

Root system: � = W (�)

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

W infinite dihedral group

Proposition (see Krammer)

  (a)         is a Coxeter system;
  (b) the order of       is   (or    ) if
                            (or                ) 
  (c)                        is a positive
      root system:                  . 

(W,S)
s↵s� k 1

B(↵,�) = � cos(

⇡
k ) B(↵,�)  �1

�

+
:= cone(�) \ �

� = �+ t ��+

• � is a basis for V ;

• B(↵,↵) = 1 for all ↵ 2 �;

• B(↵,�) 2 ]�1,�1] [ {� cos

�
⇡
k

�
, k 2 Z�2} for ↵ 6= � 2 �.

Simple system �

What is a ? (in this talk) root system



↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,�) = �1

= s↵(�)
= � + 2↵

s�(↵) =
↵ + 2� =

= s↵s�(↵)
= 3↵ + 2�

⇢n = (n + 1)↵ + n�⇢0
n = n↵ + (n + 1)�

V1 = {v 2 V |
X

↵2�

v↵ = 1}

‘Cut’ the rays 
of     by an 
affine 
hyperplane

�+

How to see examples of higher rank?



↵ = ⇢1� = ⇢0
1

⇢2⇢0
2

⇢3⇢0
3

⇢4⇢0
4

Q

(a) B(↵,�) = �1

= s↵(�)
= � + 2↵

= s↵s�(↵)
= 3↵ + 2�

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

V1 = {v 2 V |
X

↵2�

v↵ = 1}
Affine hyperplane

Normalized isotropic 
cone: bQ := Q \ V1

s�(↵) =
↵ + 2� = b b b b

Normalized roots
b⇢ := ⇢/

X

↵2�

⇢↵

How to see examples of higher rank?



s�(↵) =
↵ + 2� =

b b b b

dim 2

dim 3

Other examples of infinite root systems in rank 3 and 4



b b b b

dim 2

dim 3

dim 3

Other examples of infinite root systems in rank 3 and 4



b b b b

dim 2

dim 3 dim 3

dim 4

conv(�)

Other examples of infinite root systems in rank 3 and 4



b b b b

dim 2

dim 3 dim 3

dim 4

conv(�)

The displayed size of a 
normalized root (in red in this last 
picture) is decreasing as the 
depth of the root is increasing.

↵1, . . . ,↵k, ↵k+1 2 �}.
dp(⇢) = 1 + min{k | ⇢ = s↵1s↵2 . . . s↵k(↵k+1),

Other examples of infinite root systems in rank 3 and 4



Limits of roots

Root system: � = W (�)

↵1, . . . ,↵k, ↵k+1 2 �}.
dp(⇢) = 1 + min{k | ⇢ = s↵1s↵2 . . . s↵k(↵k+1),

Depth of a root:

Lemma
9� > 0, 8⇢ 2 �+, ||⇢||2 � 1 + �(dp(⇢)� 1).

Euclidean norm for    orthonormal basis�

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

W infinite dihedral group

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) 

 Consider an injective sequence of positive roots         . 
  Then the norm       tends to        (for any norm on   ). 

(⇢n)n2N
||⇢n|| V+1



Limits of normalized roots

is contained in the compact set           . 

bb b b b

Q�

↵ = ⇢1� = ⇢01

⇢2⇢02

⇢3⇢03

⇢4⇢04

(b) B(↵,�) = �1.01 < �1

W infinite dihedral group
Cut by the affine hyperplane

V1 = {v 2 V |
X

↵2�

v↵ = 1}

Set of normalized roots : b� := {b⇢ | ⇢ 2 �} ✓ V1

b� conv(�)

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) 

 Consider an injective sequence of positive roots         . 
  Then the norm       tends to        (for any norm on   ). 

(⇢n)n2N
||⇢n|| V+1



Limits of normalized roots

Corollary (Hohlweg-Labbé-R. 2011 ?) 

If          converges to a limit  , then(c⇢n)n2N `

` 2 bQ\ conv(�).

is contained in the compact set           . 
Set of normalized roots : b� := {b⇢ | ⇢ 2 �} ✓ V1

b� conv(�)

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) 

 Consider an injective sequence of positive roots         . 
  Then the norm       tends to        (for any norm on   ). 

(⇢n)n2N
||⇢n|| V+1



Limits of normalized roots

Corollary (Hohlweg-Labbé-R. 2011 ?)

If          converges to a limit  , then(c⇢n)n2N `

` 2 bQ\ conv(�).

Remark: directions of roots converging in    : 
 (i) Root systems of Lie algebras (Kac 1990). 
 (ii) Imaginary cone for Coxeter groups (Dyer, 2012)

is contained in the compact set           . 
Set of normalized roots : b� := {b⇢ | ⇢ 2 �} ✓ V1

b� conv(�)

Q

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) 

 Consider an injective sequence of positive roots         . 
  Then the norm       tends to        (for any norm on   ). 

(⇢n)n2N
||⇢n|| V+1



Problem: understand the set of accumulation points

Limits of normalized roots
Corollary (Hohlweg-Labbé-R. 2011 ?)

If          converges to a limit  , then(c⇢n)n2N `

dim 4

conv(�)

dim 3

E(�) := Acc(

b
�)

�
✓ Q\ conv(�)

�

` 2 bQ\ conv(�).

(‘Limit roots’)



The set of limit roots 

dim 4

conv(�)

dim 3

A `fractal phenomenon’? 
Restriction to parabolic subgroups? 
How     acts on       ? 
Link with Apollonian gasket (Kleinian groups) and sphere packings?

W E(�)

Some natural questions:

E(�) = Acc(b�)



A geometric action on  
Remark:    is not stable under   .  V1 W

Proposition (Hohlweg-Labbé-R.) 

 (a)              is stable under    ;
 (b)                             . 

E(�) ✓ D W
b
Q \ L(↵, x) = {x, s↵ · x}

Remarks: 
 (i) Action not faithful in general            
(       finite in affine cases). Faithful 
if irreducible not affine of rk      ?
 (ii)                   ?   

E(�)

L(↵, x)

x

s↵ · x

New action:               on the set 
                            where

w · v = [w(v)

D :=
\

w2W

w(V +
0 ) \ V1 V +

0 := {v 2 V |
X

↵2�

v↵ > 0}

D = convE(�)

E(�) = Acc(b�)

� 3



A geometric action on  
Remark:    is not stable under   .  V1 W

Proposition (Hohlweg, Labbé, R) 

 (a)              is stable under    ;
 (b)                             . 

E(�) ✓ D W
b
Q \ L(↵, x) = {x, s↵ · x}

Remarks: 
 (i) Action not faithful in general            
(       finite in affine cases). Faithful 
if irreducible not affine?
 (ii)                   ?   

E(�)

L(↵, x)

x

s↵ · x

New action:               on the set 
                            where

w · v = [w(v)

D :=
\

w2W

w(V +
0 ) \ V1 V +

0 := {v 2 V |
X

↵2�

v↵ > 0}

D = convE(�)

E(�) = Acc(b�)



A geometric action on  
Remark:    is not stable under   .  V1 W

Proposition (Hohlweg-Labbé-R.) 

 (a)              is stable under    ;
 (b)                             . 

E(�) ✓ D W
b
Q \ L(↵, x) = {x, s↵ · x}

Remarks: 
 (i) Action not faithful in general            
(       finite in affine cases). Faithful 
if irreducible not affine of rk      ?
 (ii)                   ?   

E(�)

L(↵, x)

x

s↵ · x

New action:               on the set 
                            where

w · v = [w(v)

D :=
\

w2W

w(V +
0 ) \ V1 V +

0 := {v 2 V |
X

↵2�

v↵ > 0}

D = convE(�)

E(�) = Acc(b�)

� 3



Remarkable dense subsets
   of 

Dihedral reflection subgroup:                  ,    
Associated root system: 

Observation: 

Limits of normalized roots of dihedral reflection subgps:

W 0 = hs⇢, s�i ⇢, � 2 �+

�0 = W 0({⇢, �})

E2 :=
[

⇢1,⇢22�+

L( b⇢1, b⇢2) \ bQ

Theorem 2 (Hohlweg-Labbé-R. 2011) 

 The set    is dense in       .  E2 E(�)

E(�0) = bQ \ L(b⇢, b�)

E(�) = Acc(b�)



Theorem 2 (Hohlweg-Labbé-R. 2011) 

 The set    is dense in       .  E2 E(�)

Proof (sketch):
              where

Two cases:         or          (which 
is dealt with by Perron-Frobenius)

E�
2 :=

[

↵2�
⇢2�+

L(↵, b⇢) \ bQ
E2 = W · E�

2

Proposition (Hohlweg-Labbé-R.) 

 The set    is dense in       .  E�
2 E(�)

l /2 V ? l 2 V ?

Remarkable dense subsets
   of E(�) = Acc(b�)



A finite subset ‘generating’ 

Theorem 3 (Dyer-Hohlweg-R. 2011) 

 The set             is dense in       .  W · Ef (�) E(�)

Small root: root obtained from    along a path of finite 
dihedral reflection subgroups. 

Theorem (Brink-Howlett, 1993) 

 The set   of small roots is finite.

Crucial tool for 
building a finite 

state automaton for 
Coxeter groups

Consider the finite subset:

⌃

↵ �

�

s↵ s�1

s�

4 -1.5Ef (�) :=
[

�,⇢2⌃

bQ \ L(b�, b⇢)

�

E(�) = Acc(b�)



Limit roots and parabolic subgroups                    

Remark:                       in general (e.g. rank 5).E(�I) 6= E(�) \ VI

Remark: Same properties with a 
smaller set related to the 
fundamental coverings of the 
dominance order. ↵ �

�

s↵ s�1

s�

4 -1.5

Theorem 4 (Dyer-Hohlweg-R. 2011) 

  For            , we have
WI · Ef (�I) = (W · Ef (�)) \ VI

�I ✓ �

Consider           and                    .
Standard parabolic subgroup:                        ;
Associated root system:                  .

�I ✓ �
WI := hs↵ |↵ 2 �Ii

�I := WI(�I)

VI := span(�I)



A fractal phenomenon? 
(conjectures/questions, work in progress with Ch. Hohlweg)

L(↵, x)

x

s↵ · x

s↵ · y

y

 If                 , then               ?  
 In general :                 all the images by the 

action of    of the parts of     outside the simplex, i.e.:

bQ ✓ conv(�) E(�) = bQ
E(�) = bQ \

bQW

E(�) =

bQ \
\

w2W

w · conv(�) ?



Further 
worksb b

Applications to the study of `biclosed’ 
and `biconvex’ sets of roots?

Study the action of    on       .  
Explain the fractal phenomenon.
Link with Dyer’s imaginary cone 
for Coxeter groups.
Extend the results to more 
general root systems.

W E(�)

Links with Apollonian gaskets, Kleinian groups, sphere packings?
... 



Merci ! / Thank you!

Further 
worksb b

Applications to the study of `biclosed’ 
and `biconvex’ sets of roots?

Study the action of    on       .  
Explain the fractal phenomenon.
Link with Dyer’s imaginary cone 
for Coxeter groups.
Extend the results to more 
general root systems.

W E(�)

Links with Apollonian gaskets, Kleinian groups, sphere packings?
... 


