Ottawa-Carleton Algebra Seminar March 21st 2012

> Asymptotical behaviour of roots in infinite Coxeter groups

joint works with: Matthew **DYER** (Notre-Dame), Christophe **HOHLWEG** (LaCIM, UQÀM), Jean-Philippe **LABBÉ** (FU Berlin). Vivien **RIPOLL** LaCIM, UQÀM (Montréal, Canada)

What do we see?

An affine picture built with

of the following:

(in blue) the isotropic cone of a symmetric bilinear form B on a vector space V;

(in red) the first few thousands roots of an infinite root system related to B.

Motivation: to understand how roots are distributed over the space Why study infinite root systems?

Very useful and powerful tool to study Coxeter groups;
Little is known for non affine root systems of infinite Coxeter groups (see Brink-Howlett, Dyer);

From Coxeter groups to other structures (e.g. Lie algebras, Kac-Moody algebras, cluster algebras).

Original motivation of this work: weak order and convexity of subsets of roots, to extend Reading's Cambrian fan.

And because the pictures we obtain are nice and intriguing ...

What is a root system ?

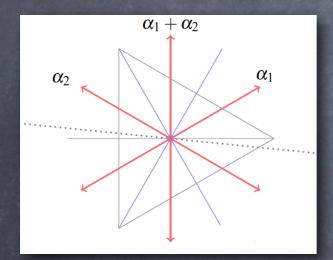
Basic construction:

 V f.d. vector space, B a symmetric bilinear form If the simple roots: start with a set Δ of vectors in V(usually a basis), such that $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1$. So For each $\alpha \in \Delta$, define a B-reflection s_{α} $s_{\alpha}(v) = v - 2B(v,\alpha)\alpha$ \bigcirc Construct the *B*-reflection group $W = \langle s_{\alpha} \mid \alpha \in \Delta \rangle \subseteq \mathcal{O}_B(V)$ \blacksquare Act by Won Δ , construct the root system $\Phi = W(\Delta)$

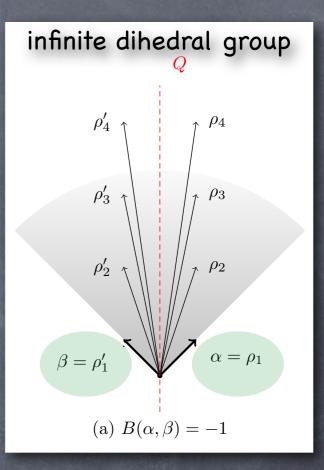
What is a root system ?

Examples

Finite (Euclidean) reflection groups (when B is positive definite)

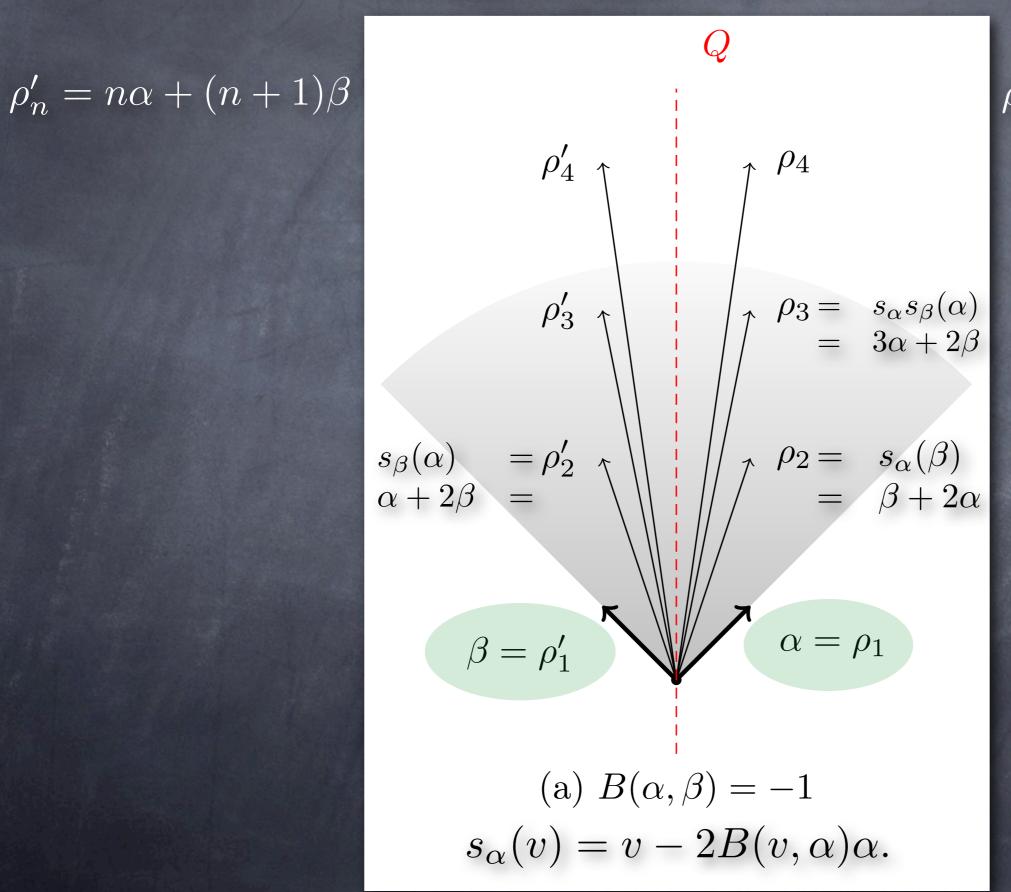


Affine root systems (when B is positive semidefinite)



Isotropic cone of B: $Q = \{v \in V | B(v, v) = 0\}$

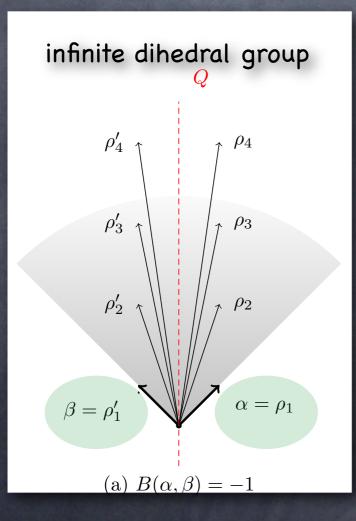
What is a root system ?



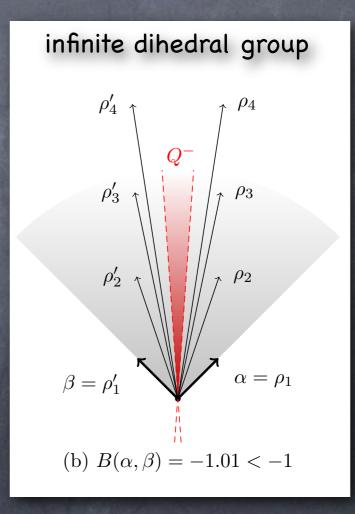
 $\rho_n = (n+1)\alpha + n\beta$

What is a root system ? More examples

Affine root systems (when B is positive semidefinite)



Non-affine root sytems



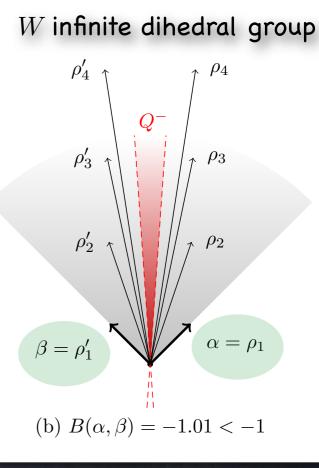
 $Q^{-} = \{ v \in V \, | \, B(v, v) \le 0 \}$

What is a root system? (in this talk)

- A simple system Δ , i.e.,
- Δ is a basis for V;
- $\overline{B(\alpha, \alpha)} = 1$ for all $\alpha \in \Delta$;
- $B(\alpha,\beta) \in]-\infty,-1] \cup \{-\cos\left(\frac{\pi}{k}\right), k \in \mathbb{Z}_{\geq 2}\}$ for $\alpha \neq \beta \in \Delta$.

A *B*-reflection group *W* generated by $S := \{s_{\alpha} \mid \alpha \in \Delta\}$.

Root system: $\Phi = W(\Delta)$



What is a root system ? (in this talk)

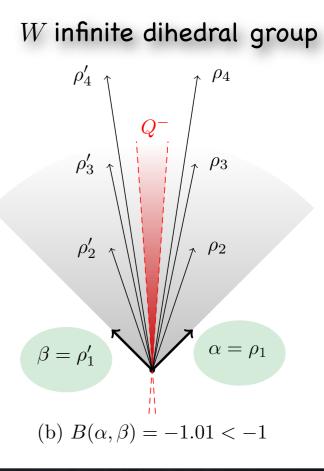
- Simple system Δ
- Δ is a basis for V;

A *B*-reflection group *W* generated by $S := \{s_{\alpha} \mid \alpha \in \Delta\}$.

- $B(\alpha, \alpha) = 1$ for all $\alpha \in \Delta$;
- $B(\alpha, \beta) \in]-\infty, -1] \cup \{-\cos\left(\frac{\pi}{k}\right), k \in \mathbb{Z}_{\geq 2}\} \text{ for } \alpha \neq \beta \in \Delta.$

Root system: $\Phi = W(\Delta)$

Proposition (see Krammer) (a) (W, S) is a Coxeter system; (b) the order of $s_{\alpha}s_{\beta}$ is k (or ∞) if $B(\alpha, \beta) = -\cos(\frac{\pi}{k})$ (or $B(\alpha, \beta) \leq -1$) (c) $\Phi^+ := \operatorname{cone}(\Delta) \cap \Phi$ is a positive root system: $\Phi = \Phi^+ \sqcup -\Phi^+$.



How to see examples of higher rank?

 $\rho'_n = n\alpha + (n+1)\beta$

 α

$$Q$$

$$\rho'_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{3} = s_{\alpha}s_{\beta}(\alpha)$$

$$= 3\alpha + 2\beta$$

$$s_{\beta}(\alpha) = \rho'_{2} \uparrow \qquad \rho_{2} = s_{\alpha}(\beta)$$

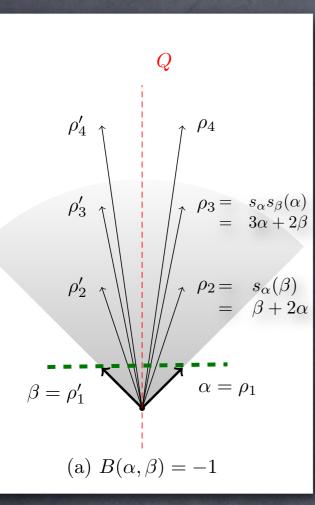
$$= \beta + 2\alpha$$

$$\beta = \rho'_{1} \qquad \alpha = \rho_{1}$$
(a) $B(\alpha, \beta) = -1$

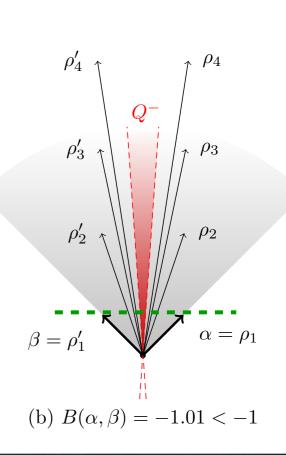
'Cut' the rays of Φ^+ by an affine hyperplane $= \{ v \in V \mid \sum v_{\alpha} = 1 \}$ $\alpha \in \Delta$

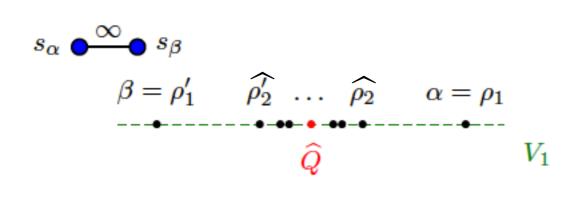
 $\overline{\rho_n} = (n+1)\alpha + n\beta$

How to see examples of higher rank?



Affine hyperplane $V_1 = \{v \in V \mid \sum_{\alpha \in \Delta} v_\alpha = 1\}$ Normalized isotropic cone: $\hat{Q} := Q \cap V_1$ Normalized roots $\hat{\rho} := \rho / \sum_{\alpha \in \Delta} \rho_\alpha$

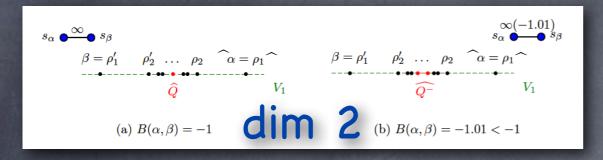


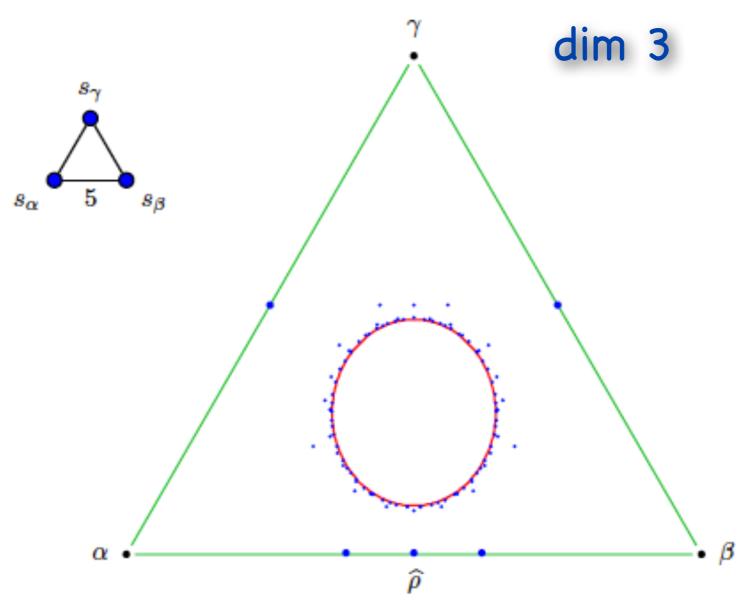


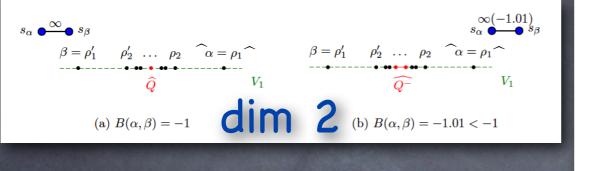
 $\beta = \rho'_1 \qquad \widehat{\rho_2} \qquad \dots \qquad \widehat{\rho_2} \qquad \alpha = \rho_1$ $\widehat{Q^-} \qquad V_1$

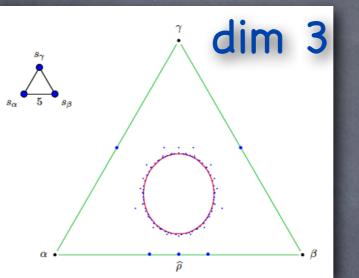
(a) $B(\alpha,\beta) = -1$

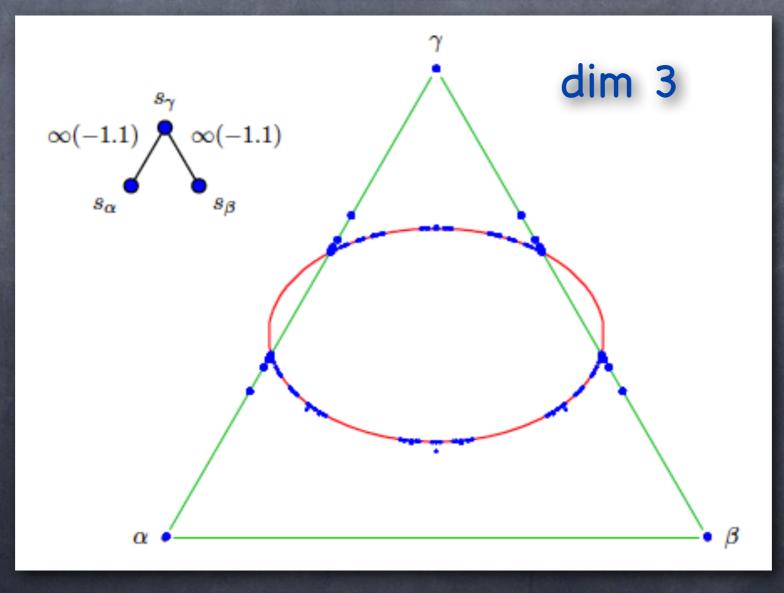
(b) $B(\alpha, \beta) = -1.01 < -1$

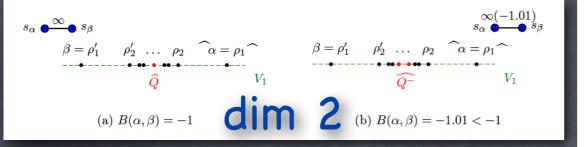


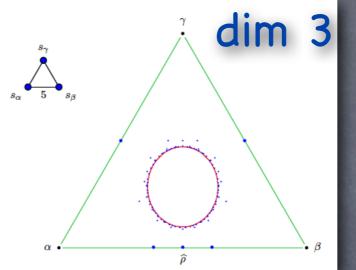


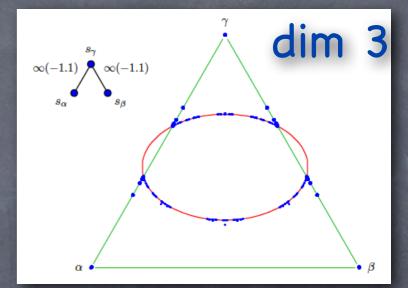


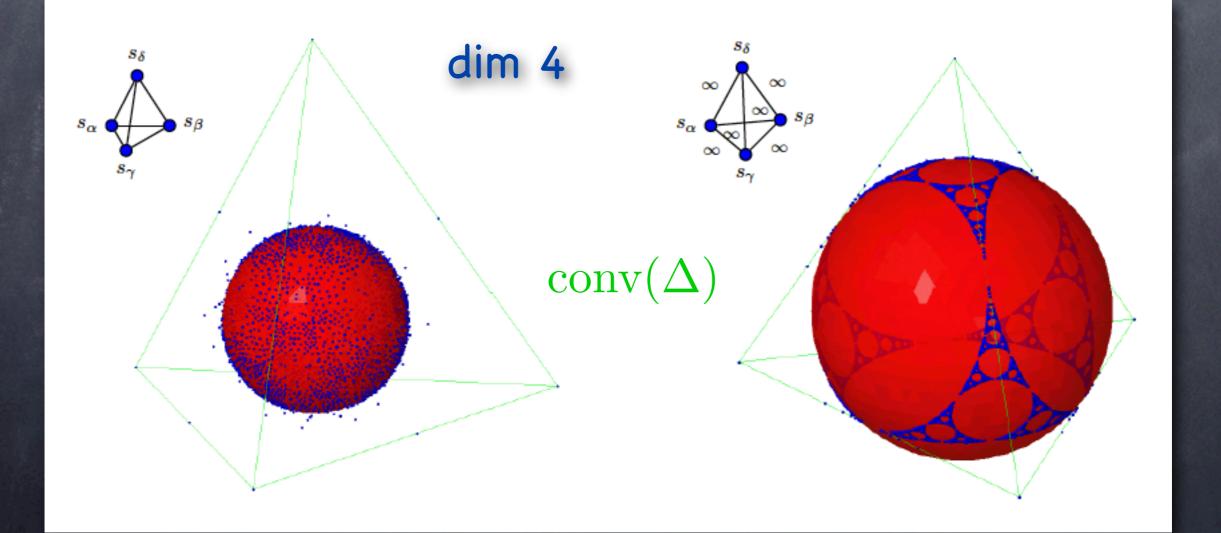


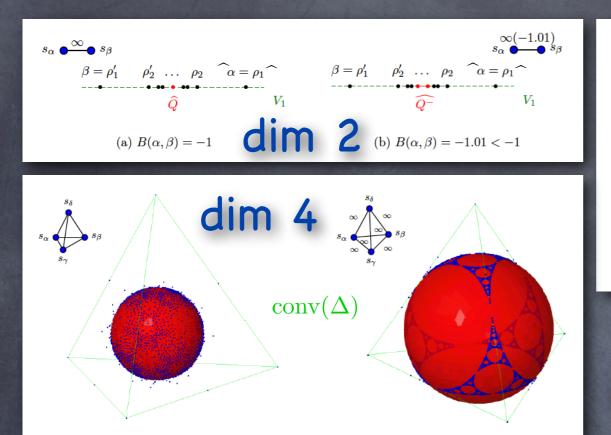


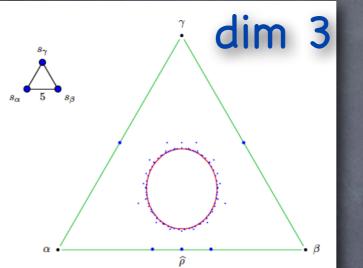


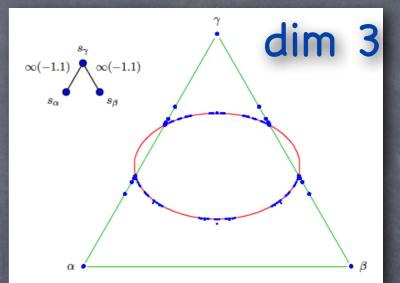






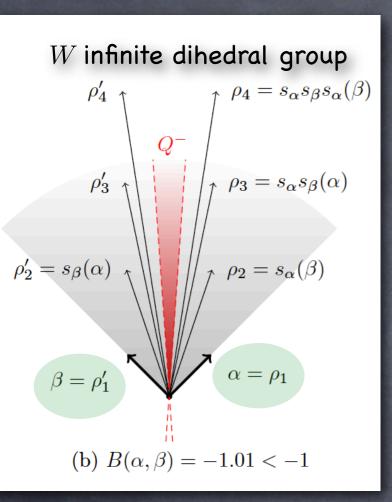






The displayed size of a normalized root (in red in this last picture) is decreasing as the depth of the root is increasing. $dp(\rho) = 1 + \min\{k \mid \rho = s_{\alpha_1} s_{\alpha_2} \dots s_{\alpha_k} (\alpha_{k+1}), \\ \alpha_1, \dots, \alpha_k, \alpha_{k+1} \in \Delta\}.$

Limits of roots

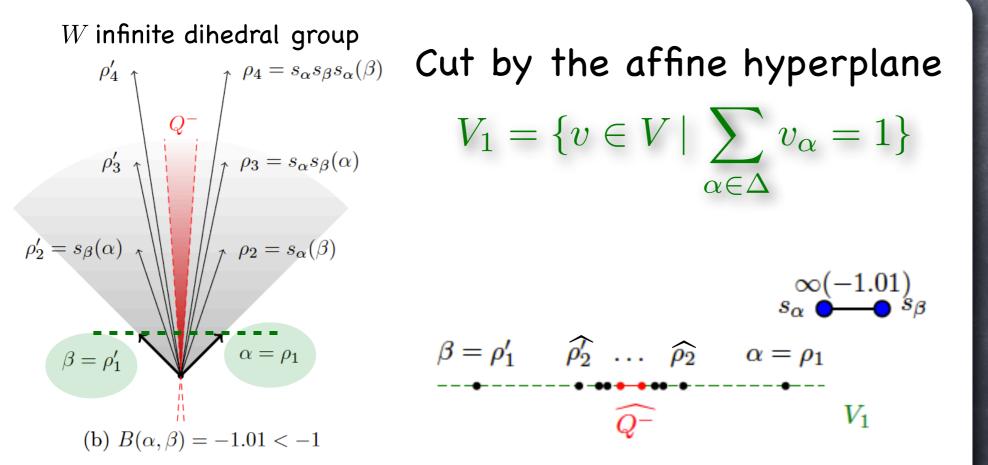


Root system: $\Phi = W(\Delta)$ Depth of a root: $dp(\rho) = 1 + \min\{k \mid \rho = s_{\alpha_1} s_{\alpha_2} \dots s_{\alpha_k}(\alpha_{k+1}), \alpha_1, \dots, \alpha_k, \alpha_{k+1} \in \Delta\}.$ Euclidean norm for Δ orthonormal basis Lemma $\exists \lambda > 0, \ \forall \rho \in \Phi^+, \ ||\rho||^2 \ge 1 + \lambda(dp(\rho) - 1).$

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) Consider an injective sequence of positive roots $(\rho_n)_{n\in\mathbb{N}}$. Then the norm $||\rho_n||$ tends to $+\infty$ (for any norm on V).

Theorem 1 (Hohlweg-Labbé-R. 2011 ?) Consider an injective sequence of positive roots $(\rho_n)_{n \in \mathbb{N}}$. Then the norm $||\rho_n||$ tends to $+\infty$ (for any norm on V).

Set of normalized roots : $\widehat{\Phi} := \{\widehat{\rho} | \rho \in \Phi\} \subseteq V_1$ $\widehat{\Phi}$ is contained in the compact set $\operatorname{conv}(\Delta)$.



Theorem 1 (Hohlweg-Labbé-R. 2011 ?) Consider an injective sequence of positive roots $(\rho_n)_{n \in \mathbb{N}}$. Then the norm $||\rho_n||$ tends to $+\infty$ (for any norm on V).

Set of normalized roots : $\widehat{\Phi} := \{\widehat{\rho} | \rho \in \Phi\} \subseteq V_1$ $\widehat{\Phi}$ is contained in the compact set $\operatorname{conv}(\Delta)$. Corollary (Hohlweg-Labbé-R. 2011 ?) If $(\widehat{\rho_n})_{n \in \mathbb{N}}$ converges to a limit ℓ , then $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta)$.

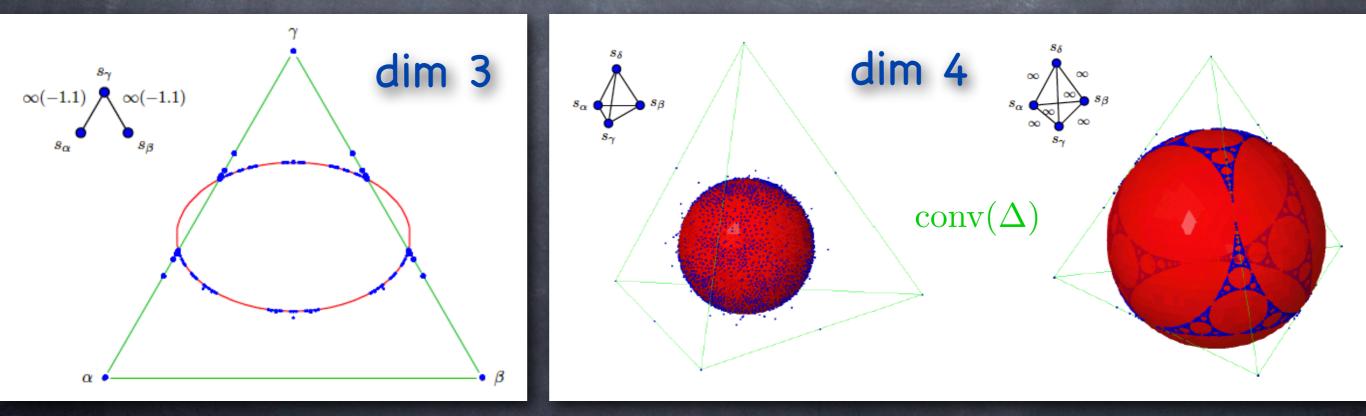
Theorem 1 (Hohlweg-Labbé-R. 2011 ?) Consider an injective sequence of positive roots $(\rho_n)_{n \in \mathbb{N}}$. Then the norm $||\rho_n||$ tends to $+\infty$ (for any norm on V).

Set of normalized roots : $\widehat{\Phi} := \{\widehat{\rho} | \rho \in \Phi\} \subseteq V_1$ $\widehat{\Phi}$ is contained in the compact set $\operatorname{conv}(\Delta)$. Corollary (Hohlweg-Labbé-R. 2011 ?) If $(\widehat{\rho_n})_{n \in \mathbb{N}}$ converges to a limit ℓ , then $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta)$.

Remark: directions of roots converging in Q: (i) Root systems of Lie algebras (Kac 1990). (ii) Imaginary cone for Coxeter groups (Dyer, 2012)

Corollary (Hohlweg-Labbé-R. 2011 ?) If $(\widehat{\rho_n})_{n\in\mathbb{N}}$ converges to a limit ℓ , then $\ell\in \widehat{Q}\cap\operatorname{conv}(\Delta)$.

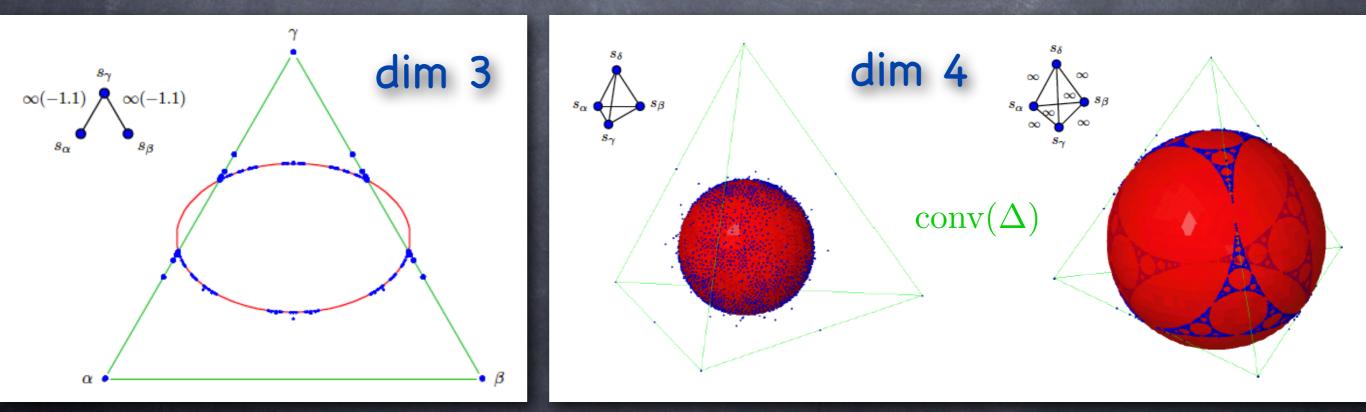
Problem: understand the set of accumulation points ('Limit roots') $E(\Phi) := \operatorname{Acc}(\widehat{\Phi}) \qquad \left(\subseteq Q \cap \operatorname{conv}(\Delta)\right)$



The set of limit roots $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$

Some natural questions:

A `fractal phenomenon'?
Restriction to parabolic subgroups?
How W acts on E(Φ)?
Link with Apollonian gasket (Kleinian groups) and sphere packings?

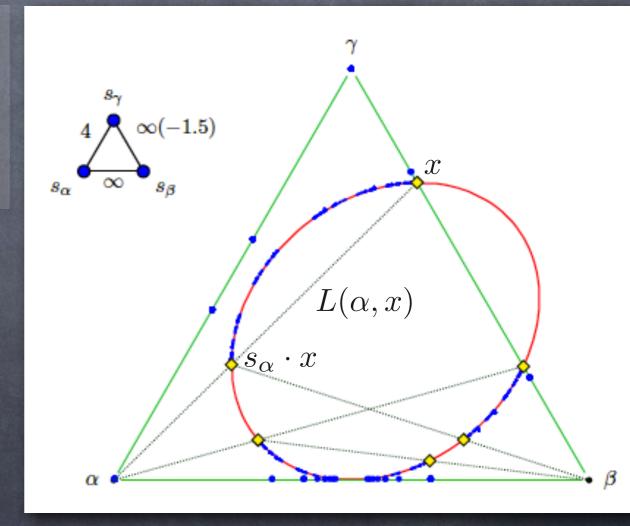


A geometric action on $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$ Remark: V_1 is not stable under W. New action: $w \cdot v = \widehat{w(v)}$ on the set $D := \bigcap_{w \in W} w(V_0^+) \cap V_1$ where $V_0^+ := \{v \in V \mid \sum_{\alpha \in \Delta} v_\alpha > 0\}$

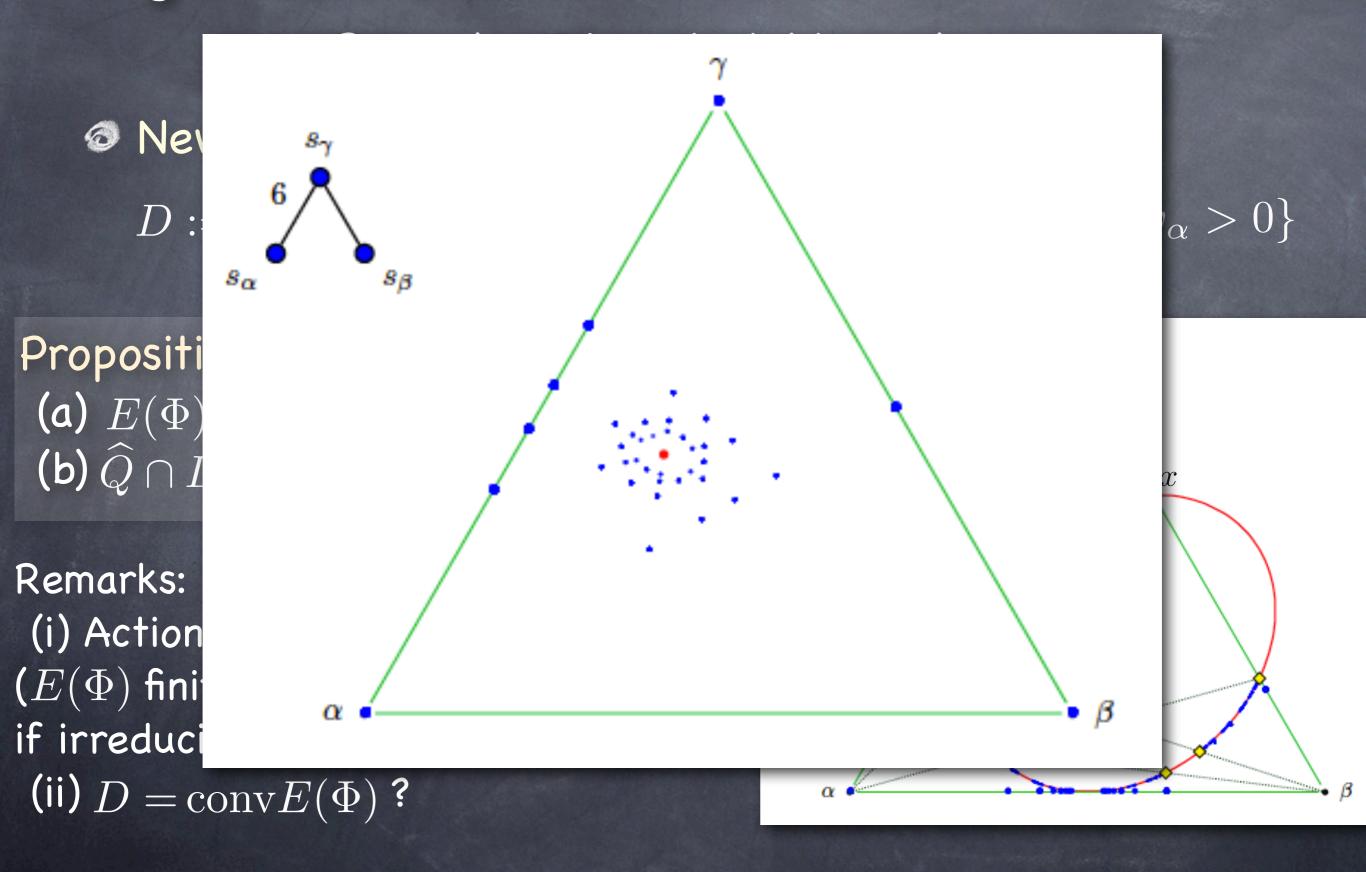
Proposition (Hohlweg-Labbé-R.) (a) $E(\Phi) \subseteq D$ is stable under W; (b) $\widehat{Q} \cap L(\alpha, x) = \{x, s_{\alpha} \cdot x\}$.

Remarks:

(i) Action not faithful in general ($E(\Phi)$ finite in affine cases). Faithful if irreducible not affine of rk ≥ 3 ? (ii) $D = \operatorname{conv} E(\Phi)$?



A geometric action on $E(\Phi) = Acc(\widehat{\Phi})$

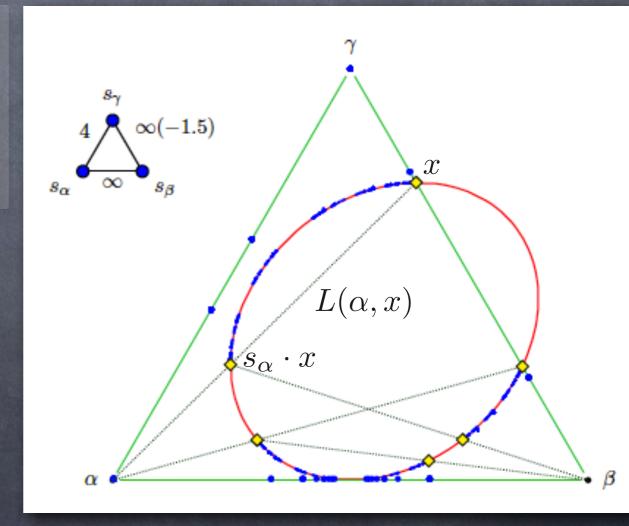


A geometric action on $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$ Remark: V_1 is not stable under W. New action: $w \cdot v = \widehat{w(v)}$ on the set $D := \bigcap_{w \in W} w(V_0^+) \cap V_1$ where $V_0^+ := \{v \in V \mid \sum_{\alpha \in \Delta} v_\alpha > 0\}$

Proposition (Hohlweg-Labbé-R.) (a) $E(\Phi) \subseteq D$ is stable under W; (b) $\widehat{Q} \cap L(\alpha, x) = \{x, s_{\alpha} \cdot x\}$.

Remarks:

(i) Action not faithful in general ($E(\Phi)$ finite in affine cases). Faithful if irreducible not affine of rk ≥ 3 ? (ii) $D = \operatorname{conv} E(\Phi)$?



Remarkable dense subsets of $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$

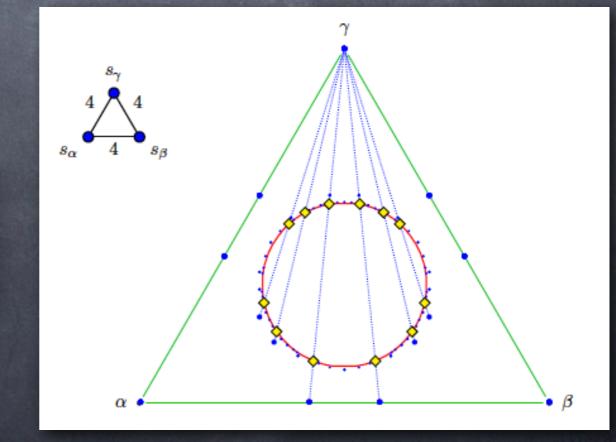
Dihedral reflection subgroup: $W' = \langle s_{\rho}, s_{\gamma} \rangle$, $\rho, \gamma \in \Phi^+$ Associated root system: $\Phi' = W'(\{\rho, \gamma\})$

Observation: $E(\Phi') = \widehat{Q} \cap L(\widehat{\rho}, \widehat{\gamma})$

Limits of normalized roots of dihedral reflection subgps:

 $E_2 := \bigcup_{\rho_1, \rho_2 \in \Phi^+} L(\widehat{\rho_1}, \widehat{\rho_2}) \cap \widehat{Q}$

Theorem 2 (Hohlweg-Labbé-R. 2011) The set E_2 is dense in $E(\Phi)$.



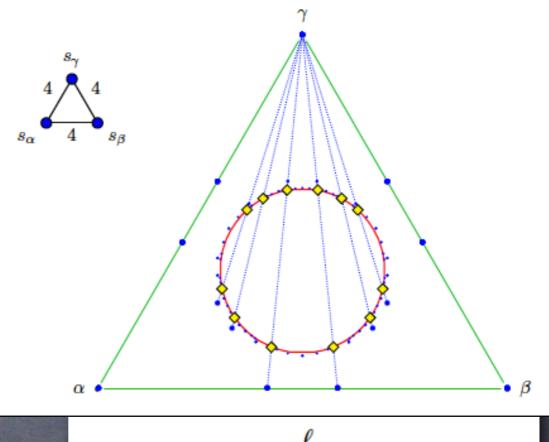
Remarkable dense subsets of $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$

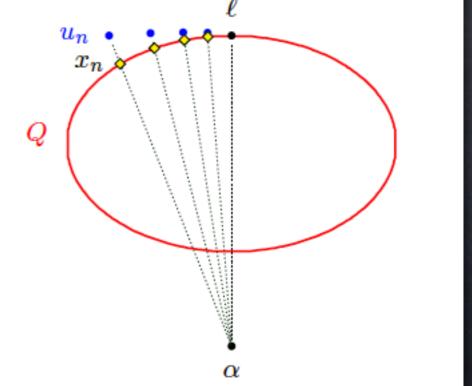
Theorem 2 (Hohlweg-Labbé-R. 2011) The set E_2 is dense in $E(\Phi)$.

Proof (sketch): $\bullet E_2 = W \cdot E_2^{\circ}$ where $E_2^{\circ} := \bigcup_{\substack{\alpha \in \Delta \\ \rho \in \Phi^+}} L(\alpha, \widehat{\rho}) \cap \widehat{Q}$

Proposition (Hohlweg-Labbé-R.) The set E_2° is dense in $E(\Phi)$.

Two cases: $l \notin V^{\perp}$ or $l \in V^{\perp}$ (which is dealt with by Perron-Frobenius)





A finite subset 'generating' $E(\Phi) = \operatorname{Acc}(\widehat{\Phi})$

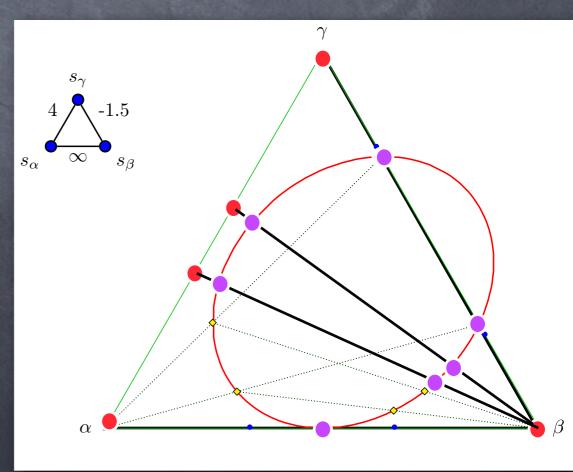
Small root: root obtained from Δ along a path of finite dihedral reflection subgroups.

Theorem (Brink-Howlett, 1993) The set Σ of small roots is finite.

Consider the finite subset: $E_f(\Phi) := \bigcup_{\gamma, \rho \in \Sigma} \widehat{Q} \cap L(\widehat{\gamma}, \widehat{\rho})$

Theorem 3 (Dyer-Hohlweg-R. 2011) The set $W\cdot E_f(\Phi)$ is dense in $E(\Phi)$.

Crucial tool for building a finite state automaton for Coxeter groups



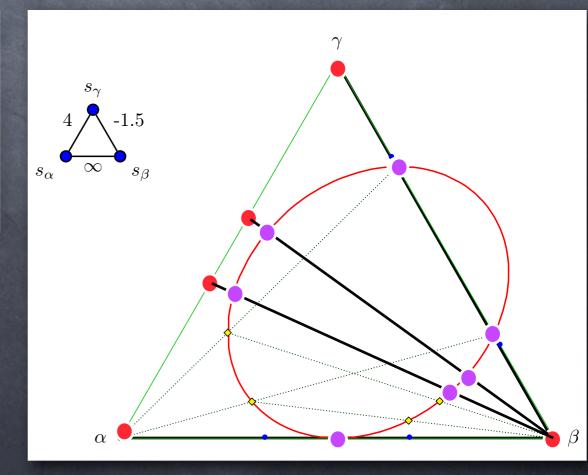
Limit roots and parabolic subgroups

Consider $\Delta_I \subseteq \Delta$ and $V_I := \operatorname{span}(\Delta_I)$. Standard parabolic subgroup: $W_I := \langle s_\alpha \mid \alpha \in \Delta_I \rangle$; Associated root system: $\Phi_I := W_I(\Delta_I)$.

Remark: $E(\Phi_I) \neq E(\Phi) \cap V_I$ in general (e.g. rank 5).

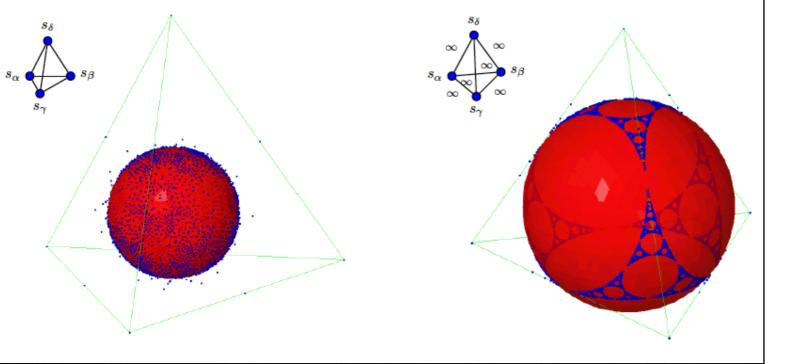
Theorem 4 (Dyer-Hohlweg-R. 2011) For $\Delta_I \subseteq \Delta$, we have $W_I \cdot E_f(\Phi_I) = (W \cdot E_f(\Phi)) \cap V_I$

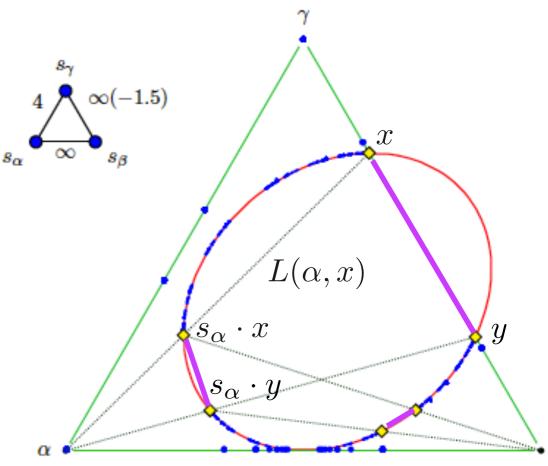
Remark: Same properties with a smaller set related to the fundamental coverings of the dominance order.



A fractal phenomenon? (conjectures/questions, work in progress with Ch. Hohlweg) If $\widehat{Q} \subseteq \operatorname{conv}(\Delta)$, then $E(\Phi) = \widehat{Q}$? In general : $E(\Phi) = \widehat{Q} \setminus$ all the images by the action of Wof the parts of \widehat{Q} outside the simplex, i.e.:

 $E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) \quad ?$





Further works

 ${\it I}$ Study the action of W on $E(\Phi)$. Second Explain the fractal phenomenon. Link with Dyer's imaginary cone
 for Coxeter groups. Section Extend the results to more general root systems. Applications to the study of `biclosed' and `biconvex' sets of roots? Inks with Apollonian gaskets, Kleinian groups, sphere packings?

Further works

 \odot Study the action of W on $E(\Phi)$. Second Explain the fractal phenomenon. Solution Link with Dyer's imaginary cone for Coxeter groups. Section Extend the results to more general root systems. Applications to the study of `biclosed' and `biconvex' sets of roots? Inks with Apollonian gaskets, Kleinian groups, sphere packings? Merci ! / Thank you!