Notations de Landau, et développements limités.

* "Petit o" (nécigible)

S'il y a deux fonctions définies en un voisinage d'un point $a \in \mathbb{R}$.
On dit que f est nécigible devant g au voisinage de a,

et on écrit $f(x) = o(g(x))$.

Si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$.

(on peut aussi le définir pour $a = +\infty$ ou $-\infty$).

Exemple:

- $x^3 = o(x)$ \quad $\ln x = o(x)$ \quad $\sqrt{x} = o(x)$.
 \quad $x \to 0$
 \quad $x \to +\infty$

- $x^3 = o(x^4)$ si $k > l$.
 \quad $x^2 = o(x^k)$ si $k < l$.
 \quad $x \to 0$
 \quad $x \to +\infty$

Si f est dérivable en a,

$f(a + h) = f(a) + f'(a)h + o(h)$.

"Grand O" (dominance)

On dit que f est "dominée" par g au voisinage de a,

et on écrit $f(x) = O(g(x))$.

Si $f(x)$ est bornée au voisinage de a.

i.e., $\forall x \in \mathbb{R}$, $|f(x)| \leq M |g(x)|$ au voisinage de a.

Exemple:

- $x^2 = O(x)$ \quad or, aussi $x = O(2x)$.
 \quad $x \to 0$
 \quad $x \to +\infty$

$\Rightarrow f(x) = o(g(x)) \Rightarrow f(x) = O(g(x))$, or, mais pas nécessairement.
* Équivalence

On dit que f et g sont équivalentes à x au voisinage de a et on écrit $f(x) \sim g(x)$ si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Eq.

$$f(x) \sim g(x) \iff f(x) = g(x) + o(g(x)) \quad (x \to a)$$

Ex.

$$x^5 + x^2 + 1 \sim x^5 \quad (x \to +\infty)$$

* Pour les suites:

On utilise les mêmes notations pour les suites:

$$u_n = o(v_n) \quad \text{ou} \quad u_n = O(v_n) \quad \text{ou} \quad v_n \uparrow v,$$

ou bien entendu que $n \to +\infty$. Bien sûr.

* Développements limités

On dit que f admet un développement limité au voisinage de $a \in \mathbb{R}$ si on peut écrire:

$$f(a + h) = b_0 + b_1 h + b_2 h^2 + \ldots + b_n h^n + o(h^n)$$

à l'ordre n.

avec les $b_i \in \mathbb{R}$ constantes.

i.e., si f est approchable par un polynôme de degré n au voisinage de a.

Ex. Si f est dérivable $(n+1)$ fois, le théorème de Taylor permet d'obtenir un développement limité à l'ordre n de f.