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@ V: areal vector space, of finite dimension n
@ B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system A:
@ A is a basis for V;
@ Vae A Bla,a) =1,
@ YVa # [ e A:
e either B(«, 8) = —cos (%) for some m € Z>»,
e or B(a, ) < —1.
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What is a root system?

2. For each a € A, define the B-reflection s,:

Sq: V — 4
v — v—-2B(a,V)a.
Check: s,(a) = —a, and s, fixes pointwise a-*.
Notation: S = {s,, a € A}.
3. Construct the B-reflection group W := (S).

4. Act by W on A to construct the root system
o= W(A).

Note: if p = w(a) (with a € A), ws,w~" is the B-reflection
associated to the root p.
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Coxeter group and root system

Proposition (Krammer)
@ (W,S) is a Coxeter system.

@ The order of s, s is m if B(a, ) = — cos(w/m), and ~c if
B(O[, B) S 71 e
@ Letd™ := dncone(A). Then: d = o+ LI (—dT).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation [Tits].
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Infinite root systems

Finite root systems are well studied :
¢ is finite & W is finite (< B is positive definite).
What happens when ¢ is infinite?

Simplest example in rank 2:

o0 _
—o Matrix of B in the basis («, 8): { 1 1].
Sa Sg -1 1



What is a root system ?




Observations

@ The norms of the roots tend to oo;

@ The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q:={veV, B(v,v)=0}.

(in the example the equation is v3 + v5 — 2v,Vv3 = 0, and
Q = span(a + 3).)
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What if B, 8) < —1?

. 1 k| . , oo(k)
@ Matrix of B: with k < —1. We write e—e
k 1 Sa Sﬁ
@ Then Qs the union of 2 lines.
pa
P3
p2
oo(—1.01)
———o
S t

o = p1
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How to see examples of higher rank?

Affine hyperplane
Vi = {v € V[ ¥0=1]

acA
Normalized isotropic

cone: @ =) a1
Normalized roots

(b) B(a, ) = —1.01 < —1
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(a) B(a,8) = -1 dlm 2 (b) B(a, 8) = —1.01 < —1

The displayed size of a
normalized root (in red in this last
picture) iS decreasing as the
depth of the root is increasing.

dp(p) = 1 + min{k | o' = SENC S = uscERn (e
Qpyeey Oy Opt1 € A}
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Theorem (Hohlweg-Labbé-R.)

Let & be a root system for an (infinite) Coxeter group, and
(pn)nen an injective sequence in ®. Then:

@ ||pn|| tends to oo (for any norm on V);
© if the sequence of normalized root pp, has a limit ¢, then

teQn conv(A).

Known in other contexts:
@ Root systems of Lie algebras (Kac, 1990)
@ Imaginary cone for Coxeter groups (Dyer, 2011)

~~ Problem: understand the set of possible limits, i.e., the
accumulation points of ¢:

E(®) := Acc <<T>> (“limit roots”).




How to construct some particular limit roots
Take two roots pq, po in ® ~ get a rank 2 reflection subgroup of
W, agd a root subsystem ¢’. Note:
° &' C L(p1, p2);
@ the isotropic cone for " is Q N span(p1, p2);
@ = Limit roots for ®": E(®') = QN L(p1,02) (0,1 or 2 points).

A /N
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The dihedral limit roots

Definition

We define the set Ex(®) of dihedral limit roots for the root
system ¢ as the subset of E(®) formed by the union of the
E(®"), for &' a root subsystem of rank 2 of ®. Equivalently,

Ex®):= (J L(pi.p2)NnQ

P1 7P2€¢

Note: E- is countable.

Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E» is dense in E.

@ Eisclosed, so E = E;
@ in general, E; is not equal to E. In fact sometimes E = Q!
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A fractal phenomenon?

(conjectures/questions, work in progress with Ch. Hohlweg)
® If Q C conv(A), then E(®)=Q ?

@ In general : E(®)=0Q \ all the images by the
action of Wof the parts of () oufside the simplex, i.e.:

E(®)=Qn ﬂ w - conv(A) ?
weW




