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Motivation

NC(n) :={w € &, | {7(w) + Lr(w™c) = £7(c)}, where

o T := {all transpositions of S,}, {1 associated length function
(“absolute length”);

@ cis a long cycle (n-cycle).

NC(n) is

@ equipped with a natural partial order (“absolute order”), and is
a lattice;

@ isomorphic to the poset of NonCrossing partitions of an n-gon
(“noncrossing partition lattice”), so it is counted by the

Catalan number Cat(n) = n}rl (3™.




Generalization to finite Coxeter groups (or reflection groups):
o replace &, with a Coxeter group W;
o replace T with R := {all reflections of W}, and ¢1 with /g;

o replace ¢ with a Coxeter element of V.

the W-noncrossing partition lattice

NC(W, C) = {W e W ’ KR(W) +€R(W_1C) = ER(C)}

@ also equipped with a “W-absolute order”;
o counted by the W-Catalan number Cat(WV) := 7, %h.

Cat(W) appears in other combinatorial objects attached to (W, ¢):
cluster complexes, generalized associahedra, Cambrian fans and
lattices, subword complexes...

~> “Coxeter-Catalan combinatorics”.



Generalization to finite Coxeter groups (or reflection groups):
o replace &, with a Coxeter group W;
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@ replace ¢ with a Coxeter element??

the W-noncrossing partition lattice

NC(W,c):={w e W | Lr(w) + Lr(wc) = lr(c)}

@ also equipped with a “W-absolute order”;

e counted by the W-Catalan number Cat(W) :=[]i_, d’jh.

Cat(W) appears in other combinatorial objects attached to (W, ¢):
cluster complexes, generalized associahedra, Cambrian fans and
lattices, subword complexes...

~ “Coxeter-Catalan combinatorics”.
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@ Classical” definitions of a Coxeter elements
@ ... for a Coxeter system (W, S)
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Coxeter element of a Coxeter system

Definition
A Coxeter system (W, S) is a group W equipped with a generating
set S of involutions, such that W has a presentation of the form:

W=(S|s>=1(Vs€S); (st)™* =1 (Vs#teS)),

with ms; € N>o U {oo} for s # t.
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Coxeter element of a Coxeter system

Definition
A Coxeter system (W, S) is a group W equipped with a generating
set S of involutions, such that W has a presentation of the form:

W=(S|s>=1(Vs€S); (st)™* =1 (Vs#teS)),

with ms; € N>o U {oo} for s # t.

Coxeter element, “Definition 0"

Write S := {s1,...,5,}. A Coxeter element of (W,S) is a product

of all the generators:
C=Sp1)- - Sn(n) forme G,

Fact: When W is finite, all Coxeter elements of (W, S) are
conjugate. (ingredient: the Coxeter graph is a forest)
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@ Classical” definitions of a Coxeter elements

o ... for a real reflection group
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Coxeter element of a real reflection group

@ V real vector space of dimension n

e W finite subgroup of GL(V) generated by reflections
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Coxeter element of a real reflection group

@ V real vector space of dimension n

e W finite subgroup of GL(V) generated by reflections

~ W admits a structure of Coxeter system:
@ fix a chamber C of the hyperplane arrangement of W
o take S := {reflections through the walls of C}
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Coxeter element of a real reflection group

@ V real vector space of dimension n

e W finite subgroup of GL(V) generated by reflections

~ W admits a structure of Coxeter system:
@ fix a chamber C of the hyperplane arrangement of W
o take S := {reflections through the walls of C}

Definition (“Classical definition”)

Let W be a finite real reflection group. A Coxeter element of W is
a product (in any order) of all the reflections through the walls of a
chamber of W.
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Coxeter element of a real reflection group

@ V real vector space of dimension n

e W finite subgroup of GL(V) generated by reflections

~ W admits a structure of Coxeter system:
@ fix a chamber C of the hyperplane arrangement of W
o take S := {reflections through the walls of C}

Definition (“Classical definition”)

Let W be a finite real reflection group. A Coxeter element of W is
a product (in any order) of all the reflections through the walls of a
chamber of W.

v

Proposition

The set of Coxeter elements of W forms a conjugacy class.
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@ Classical” definitions of a Coxeter elements

o ... for a complex reflection group
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Complex reflection group

@ V complex vector space of dimension n

e W finite subgroup of GL(V') generated by “reflections”
(r € GL(V) of finite order and fixing pointwise a hyperplane)

Finite real reflection groups can be seen as complex reflection
groups.

But there are much more.

In general: no Coxeter structure, no privileged (natural, canonical)
set of n generating reflections.

~ how to define a Coxeter element of W7
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Digression: geometry of Coxeter elements in real groups

Assume W is real and irreducible.
Call h := Coxeter number = the order of a Coxeter element.
Fact: h = d,, the highest invariant degree of W.

d1 < --- < d, degrees of homogeneous polynomials f, ..., f, such
that C[V]W =CIf, ..., f].
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Digression: geometry of Coxeter elements in real groups

Assume W is real and irreducible.
Call h := Coxeter number = the order of a Coxeter element.
Fact: h = d,, the highest invariant degree of W.

d1 < --- < d, degrees of homogeneous polynomials f, ..., f, such
that C[V]W =CIf, ..., f].

Proposition (Coxeter)

If c is a Coxeter element, then there exists a plane P C V stable
by ¢ and on which c acts as a rotation of angle 27”

In particular, ¢ admits e » (and e~ "+ ) as an eigenvalue.
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Geometry of Coxeter elements in real groups

Better: c is e » -regular in the sense of Springer: it has a
2im

e h -eigenvector v € V¢, which does not lie in the reflecting
hyperplanes.
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Geometry of Coxeter elements in real groups

Better: c is e » -regular in the sense of Springer: it has a
2im

e h -eigenvector v € V¢, which does not lie in the reflecting
hyperplanes.

[Springer] : the set of (-regular elements (in a complex reflection
group W) form a W-conjugacy class.
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Geometry of Coxeter elements in real groups

Better: c is e » -regular in the sense of Springer: it has a
2im

e h -eigenvector v € V¢, which does not lie in the reflecting
hyperplanes.

[Springer] : the set of (-regular elements (in a complex reflection
group W) form a W-conjugacy class.

Proposition

¢ is a Coxeter element in W

)

¢ admits e h as an eigenvalue

)

c is e h -regular
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Coxeter element in a complex reflection group

Now W is a well-generated, irreducible complex reflection group:
W can be generated by n = dim V reflections. Define the Coxeter
number h of W as the highest invariant degree: h = d,.
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Coxeter element in a complex reflection group

Now W is a well-generated, irreducible complex reflection group:
W can be generated by n = dim V reflections. Define the Coxeter
number h of W as the highest invariant degree: h = d,.
The set of elements of W having e’ as eigenvalue

@ is non-empty and forms a conjugacy class of W [Springer] ;

@ = the set of elements having e » as eigenvalue.



Classical definitions
Q000e

Coxeter element in a complex reflection group

Now W is a well-generated, irreducible complex reflection group:
W can be generated by n = dim V reflections. Define the Coxeter
number h of W as the highest invariant degree: h = d,.

2im

The set of elements of W having e # as eigenvalue
@ is non-empty and forms a conjugacy class of W [Springer] ;

@ = the set of elements having e » as eigenvalue.

Definition (“classical definition”, Bessis '06)

Let W be a well-generated, irreducible complex reﬂectlon group. A
Coxeter element of I/ is an element that admits e » as an
eigenvalue.

Bessis’ seminal work related to Coxeter-Catalan combinatorics and
the dual braid monoid for complex groups uses this definition.
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© Extended definitions
@ ... with alternative Coxeter structures
o ... with reflection automorphisms
@ ... with other eigenvalues
@ Main result and consequences on Coxeter-Catalan
combinatorics
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© Extended definitions
@ ... with alternative Coxeter structures
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure:
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure:

Example
Symmetry group of the regular hexagon = 5(6) ~ A; x A J




Extended definitions
oeo

Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure:

Example
Symmetry group of the regular hexagon = 5(6) ~ A; x A

But unicity of the structure if “S must consist of reflections”:

Rigidity Property (Observation/Folklore?)
Let W be a finite real reflection group, R the set of all reflections
of W. Let 5,5" C R be such that (W,S) and (W, S’) are both

Coxeter systems.
Then (W, S) and (W, S’) are isomorphic Coxeter systems.
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure:

Example
Symmetry group of the regular hexagon = 5(6) ~ A; x A

But unicity of the structure if “S must consist of reflections”:

Rigidity Property (Observation/Folklore?)

In other words:

(W, S) finite Coxeter system. R :=|J,cpy wSw ™', Let S’ C R be
such that (W, S’) is also a Coxeter system.

Then (W, S’) is isomorphic to (W, S).
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Alternative Coxeter structures

In general a real reflection group does not have a unique Coxeter
structure:

Example
Symmetry group of the regular hexagon = 5(6) ~ A; x A

But unicity of the structure if “S must consist of reflections”:

Rigidity Property (Observation/Folklore?)

In other words:

(W, S) finite Coxeter system. R :=|J,cpy wSw ™', Let S’ C R be
such that (W, S’) is also a Coxeter system.

Then (W, S’) is isomorphic to (W, S).

proof not enlightening! (case-by-case check on the classification)
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New Coxeter elements

For a real reflection group W, one may be able to construct a set S
of Coxeter generating reflections, which do not come from a
chamber of the arrangement...

~» Isomorphic, but not conjugate structures!

Example of h(5).

Definition
We call generalized Coxeter element of W a product (in any order)
of the elements of some set S, where S is such that:

@ S consists of reflections;

e (W,S) is a Coxeter system.
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© Extended definitions

o ... with reflection automorphisms

Galois automorphisms
00000000
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Reflection automorphisms

(W,S) and (W, S’) are isomorphic Coxeter systems —>
there is an automorphism 1 of W mapping S to S'.

Fact: 1 is then a reflection automorphism of W, i.e., an
automorphism of W stabilizing the set R of all reflections of W.

From the Rigidity Property we obtain:

Proposition

Let W be a finite real reflection group.
c is a generalized Coxeter element of W

)

¢ = 1(cp) with 1) reflection automorphism and ¢y classical Coxeter
element of W.
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© Extended definitions

@ ... with other eigenvalues

Galois automorphisms
00000000
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Classical definitions
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Replace e%™/" by another h-th root of unity

Definition (“Extended definition”)
Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.
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Replace e%™/" by another h-th root of unity

Definition (“Extended definition”)

Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wX where w is a classical Coxeter element and k A h = 1.
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Replace e%™/" by another h-th root of unity

Definition (“Extended definition”)

Let W be a well-generated, irreducible complex reflection group,
and h its Coxeter number.

We call generalized Coxeter element an element of W that admits
a primitive h-th root of unity as an eigenvalue.

Equivalently, c is a generalized Coxeter element if and only if
c = wX where w is a classical Coxeter element and k A h = 1.

Is this definition compatible with the extended definition for real
groups 7
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Extended definitions
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Four definitions

Classical definition

Galois automorphisms

00000000

Extended definition

Product of reflections

H s, for some S C R,

W real through the walls of a scS
chamber with (W, 5) Coxeter
21':7 . . I
2ix .. e is eigenvalue
W complex e h is eigenvalue &

for some k, kANh=1
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© Extended definitions

@ Main result and consequences on Coxeter-Catalan
combinatorics

Galois automorphisms
00000000
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Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:

(i) ¢ has an eigenvalue of order h;
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Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = (w) where w is a classical Coxeter element and v is a
reflection automorphism of W ;
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Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = (w) where w is a classical Coxeter element and v is a
reflection automorphism of W ;

(iii) c is a Springer-regular element of order h.
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Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = (w) where w is a classical Coxeter element and v is a
reflection automorphism of W ;

(iii) c is a Springer-regular element of order h.




Extended definitions Galois

automorphisms

Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = (w) where w is a classical Coxeter element and v is a
reflection automorphism of W ;

(iii) c is a Springer-regular element of order h.

If W is real, this is also equivalent to:
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Compatibility of the extended definitions

Theorem (Reiner-R.-Stump)
Let c € W. The following are equivalent:
(i) ¢ has an eigenvalue of order h;

(i) ¢ = (w) where w is a classical Coxeter element and v is a
reflection automorphism of W;

(iii) c is a Springer-regular element of order h.

If W is real, this is also equivalent to:

(iv) There exists S C R such that (W,S) is a Coxeter system and
c is the product (in any order) of elements of S.
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Application to Coxeter-Catalan combinatorics

Corollary
W well-gen., irred. c.r.g., R = Refs(W). Any property
@ known for classical Coxeter elements, and

@ ‘depending only on the combinatorics of the couple (W, R)",

extends to generalized Coxeter elements.
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Application to Coxeter-Catalan combinatorics
Corollary
W well-gen., irred. c.r.g., R = Refs(W). Any property
@ known for classical Coxeter elements, and
@ ‘depending only on the combinatorics of the couple (W, R)

”
’

extends to generalized Coxeter elements. This applies in particular
to Coxeter-Catalan combinatorics, e.g.:
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Application to Coxeter-Catalan combinatorics
Corollary
W well-gen., irred. c.r.g., R = Refs(W). Any property
@ known for classical Coxeter elements, and
@ ‘depending only on the combinatorics of the couple (W, R)",
extends to generalized Coxeter elements. This applies in particular
to Coxeter-Catalan combinatorics, e.g.:

e the W-noncrossing partition lattices
NC(W, C) = {W ew ‘ ER(W) + ER(W_IC) = €R(c)}

(for ¢ a generalized Coxeter element) are isomorphic posets;
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Application to Coxeter-Catalan combinatorics
Corollary
W well-gen., irred. c.r.g., R = Refs(W). Any property
@ known for classical Coxeter elements, and
@ ‘depending only on the combinatorics of the couple (W, R)",

extends to generalized Coxeter elements. This applies in particular
to Coxeter-Catalan combinatorics, e.g.:

e the W-noncrossing partition lattices
NC(W, C) = {W ew ‘ ER(W) + ER(W_IC) = €R(c)}

(for ¢ a generalized Coxeter element) are isomorphic posets;

@ the number of reduced R-decompositions of a generalized

. . o | pn
Coxeter element into reflections is TVI‘}I ;
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Application to Coxeter-Catalan combinatorics

Corollary
W well-gen., irred. c.r.g., R = Refs(W). Any property
@ known for classical Coxeter elements, and
@ ‘depending only on the combinatorics of the couple (W, R)",

extends to generalized Coxeter elements. This applies in particular
to Coxeter-Catalan combinatorics, e.g.:

e the W-noncrossing partition lattices
NC(W, C) = {W ew ‘ ER(W) + ER(W_lc) = €R(c)}

(for ¢ a generalized Coxeter element) are isomorphic posets;

@ the number of reduced R-decompositions of a generalized

. . o | pn
Coxeter element into reflections is TVI‘}I ;

@ the Hurwitz action of the braid group B, on reduced
decompositions is transitive.
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© Galois automorphisms
@ Field of definition of W and Galois automorphisms
@ Galois action on conjugacy classes of Coxeter elements
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© Galois automorphisms
@ Field of definition of W and Galois automorphisms
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Classical definitions

Field of definition of W

Definition
The field of definition Ky of W is

Kw = <tr\/(w), w € W> .

Fact: the representation V of W can be realized over Ky, so Ky
is the smallest field over which one can write all matrices of W.
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Field of definition of W

Definition
The field of definition Ky of W is

Kw = <tr\/(w), w € W> .

Fact: the representation V of W can be realized over Ky, so Ky
is the smallest field over which one can write all matrices of W.

Examples
o Ky = Q iff W crystallographic (Weyl group)
o W =HsorHy: Ky = Q(+/5)
o W =h(m): Ky = Q(cos2Z
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Galois action on W

Let I := Gal(Ky /Q). For vy € T an w € W, define v(w) by acting
on the coefficients of the matrix of w written in K.



Galois automorphisms
[e]e] T}

Galois action on W

Let I := Gal(Ky /Q). For v € T an w € W, define v(w) by acting
on the coefficients of the matrix of w written in K.

Problem: W is not necessarily preserved by the action of T.
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Galois action on W
Let I := Gal(Ky /Q). For v € T an w € W, define v(w) by acting
on the coefficients of the matrix of w written in K.
Problem: W is not necessarily preserved by the action of T.

But: (W) is the “same” reflection group as W in the classification,
so they are conjugate: (W) = aWa™1, for a € GL(V).



Galois automorphisms
[e]e] T}

Galois action on W
Let I := Gal(Ky /Q). For v € T an w € W, define v(w) by acting
on the coefficients of the matrix of w written in K.
Problem: W is not necessarily preserved by the action of T.

But: (W) is the “same” reflection group as W in the classification,
so they are conjugate: (W) = aWa™1, for a € GL(V).

~ obtain a reflection automorphism 1) of W, associated to -,
defined modulo conjugation by an element of the normalizer

NeL(vy(W).

Such an automorphism ¢ is called Galois automorphism of W
attached to 7.
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Galois automorphisms of W

@ The character of 1) (seen as a representation of W) is
w = y(try(w)).

Theorem (Marin-Michel '10)

Let W be an irreducible complex reflection group.
Any reflection automorphism of W is a Galois automorphism
(associated to some y €T).
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Galois automorphisms of W

@ The character of 1) (seen as a representation of W) is
w = y(try(w)).
@ Any Galois automorphism of W is a reflection automorphism.

Theorem (Marin-Michel '10)

Let W be an irreducible complex reflection group.
Any reflection automorphism of W is a Galois automorphism
(associated to some vy €T).
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Galois automorphisms of W

@ The character of 1) (seen as a representation of W) is
w — Y(try(w)).
@ Any Galois automorphism of W is a reflection automorphism.

o Let ¢ be a reflection automorphism of W. Then ¢ is a Galois
automorphism of W attached to v € I if and only if ¢ satisfies

Y € W, try (d(w)) = y(try (w)).

Theorem (Marin-Michel '10)

Let W be an irreducible complex reflection group.
Any reflection automorphism of W is a Galois automorphism
(associated to some v € T).
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© Galois automorphisms

@ Galois action on conjugacy classes of Coxeter elements
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.

~+ action of I on
Cox(W) := {conjugacy classes of generalized Coxeter elements}
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.

~= action of I on

Cox(W) := {conjugacy classes of generalized Coxeter elements}
[Marin-Michel] and [RRS] == this action is transitive.
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.

~= action of I on

Cox(W) := {conjugacy classes of generalized Coxeter elements}
[Marin-Michel] and [RRS] == this action is transitive.

Theorem (Reiner-R.-Stump)
The action of I = Gal(Kw /Q) on Cox(W) is simply transitive :

VC,C' € Cox(W),IyeTl, C'=~-C.
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.

~+ action of I on
Cox(W) := {conjugacy classes of generalized Coxeter elements}
[Marin-Michel] and [RRS] == this action is transitive.

Theorem (Reiner-R.-Stump)
The action of I = Gal(Kw /Q) on Cox(W) is simply transitive :

VC,C' € Cox(W),IyeTl, C'=~-C.

Consequence: | Cox(W)| = [Kw : Q].
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Simply transitive action of I

Via Galois automorphisms, I = Gal(K\y/Q) does not act directly
on W, but on Ng(v)(WW)-conjugacy classes of V.

~+ action of I on
Cox(W) := {conjugacy classes of generalized Coxeter elements}
[Marin-Michel] and [RRS] == this action is transitive.

Theorem (Reiner-R.-Stump)
The action of I = Gal(Kw /Q) on Cox(W) is simply transitive :

VC,C' € Cox(W),IyeTl, C'=~-C.

Consequence: | Cox(W)| = [Kw : Q].

The proof?



The “proof”

Lemma

The number of conjugacy classes of generalized Coxeter elements is

where my, ..., m, are the exponents of W (m; = d; — 1)




The “proof”

Lemma
The number of conjugacy classes of generalized Coxeter elements is

where my, ..., m, are the exponents of W (m; = d; — 1)

2. Prove that [Ky : Q] = @‘ﬁsfg]) (*) ... case-by-case.




The “proof”

Lemma

The number of conjugacy classes of generalized Coxeter elements is

#integers in [1, h] that are coprime to h

Cox(W)| =
o) #integers in [1, h] coprime to h among my, ..., my’

where my, ..., m, are the exponents of W (m; = d; — 1)

2. Prove that [Ky : Q] = @f\sfg]) (*) ... case-by-case.
(*) is equivalent to Malle’s characterization of Ky, for W

well-generated:

Theorem (Malle)

Let ¢ = &®™/" and Gy, be the setwise stabilizer of{C’"l, e ,C’""}
in the Galois group Gal(Q(¢)/Q).

Then Ky is equal to the fixed field Q(¢)°w.

Equivalently, Ky is generated by the coefficients of the
characteristic polynomial of any Coxeter element of W.
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Further results and questions. ..

@ The property of transitivity of reflection automorphisms on
regular elements of order h extends to Springer’s regular
elements of arbitrary order.

o the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
groups with presentations “a la Coxeter”).

o for the other well-generated complex groups, there is no
canonical form of presentation, and not (yet?) a
“combinatorial” vision of Coxeter elements.
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@ The property of transitivity of reflection automorphisms on
regular elements of order h extends to Springer’s regular
elements of arbitrary order.

o the characterization of generalized Coxeter elements for real
groups extends to Shephard groups (those nicer complex
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