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VR : real vector space of finite dimension.

W : afinite reflection group of GL( W), i.e. finite subgroup
generated by reflections ( ~ structure of a finite Coxeter group).

@ We will consider W acting on the complex vector space
V.=VrxC.

@ Results remain valid for more general groups (well-
generated complex reflection groups).

Invariant  theory  of Combinatorics of the noncrossing
W (geometry of the <« partition lattice of W (factorizations
discriminant Ay) of a Coxeter element)
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The noncrossing partition lattice of type W

@ Define R := {all reflections of W}.

@ ~ reflection length (or absolute length) /5. (not the usual
Coxeter length /g 1)

@ Absolute order <p :
u<gv ifandonly if Zg(u)+ La(u™"v) = £a(v) .

@ Fix c : a Coxeter element in W (particular conjugacy class
of elements of length n = rk(W)).

Definition (Noncrossing partition lattice of type W)

NC(W,c) :={we W|w<=xc}

Note: the structure doesn’t depend on the choice of the
Coxeter element (conjugacy) ~~ write NC(W).
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Prototype: noncrossing partitions of an n-gon

@ W := &, with generating set R := {all tfranspositions}
@ c:=ncycle(123 ... n)
@ NC(W,c) «— {noncrossing partitions of an n-gon}

9 1’ ‘2\ | 2\
)

3
4

6 5 6 5
T=(145)(23)(679)

noncrossing



FuB-Catalan numbers

Kreweras’s formula for multichains of noncrossing partitions
o W = Gn,
@ c: an n-cycle.

The number of multichains wy <z Wo <p ... <p Wp g CN
NC(W, c) is the FuB-Catalan number

n
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FuB-Catalan numbers of type W

Chapoton’s formula for multichains in NC(W)
@ W :=anirreducible reflection group of rank n;
@ c: a Coxeter element.

The number of multichains wy <p Wo <p ... g Wp <R CIN
NC(W, c) is the FuB3-Catalan number of type W

n n
d; + ph 1
Cat?w) = 117%™ = gy Ll +o).
=1 i=1

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case!
Remark: Cat(")(W) (and Cat(P)(W)) appear in other contexts:
Fomin-Zelevinsky cluster algebras, nonnesting partitions...



Factorizations of a Coxeter element

Definition (Block factorizations of c)
(wy,...,wp) € (W — {1})P is a block factorization of c if




Factorizations of a Coxeter element

Definition (Block factorizations of c)
(wy,...,wp) € (W — {1})P is a block factorization of c if
@ wi...wp=cC.




Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wy,...,wp) € (W — {1})P is a block factorization of c if
@ wi...wp=cC.
® (p(wy) + -+ La(Wp) = La(c) = n.




Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wy,...,wp) € (W — {1})P is a block factorization of c if
@ wi...wp=cC.
® (p(wy) + -+ La(Wp) = La(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.




Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wy,...,wp) € (W — {1})P is a block factorization of c if
@ wi...wp=cC.
® (p(wy) + -+ La(Wp) = La(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.

@ “Factorizations « chains”.



Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wy,...,wp) € (W — {1})P is a block factorization of c if
@ wi...wp=cC.
® (p(wy) + -+ La(Wp) = La(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.

@ “Factorizations « chains”.

@ Problem : < vs <z ? ~» use classical conversion
formulas.



Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wq,...,wp) € (W — {1})Pis a block factorization of ¢ if
@ Wy...wp=_C.
® (p(wy) + -+ La(Wp) = La(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.

@ “Factorizations « chains”.

@ Problem : < vs <z ? ~» use classical conversion
formulas.

@ Bad news : we obtain much more complicated formulas.



Factorizations of a Coxeter element

Definition (Block factorizations of c)

(wq,...,wp) € (W — {1})Pis a block factorization of ¢ if
@ Wy...wp=_C.
® (p(wy) + -+ La(Wp) = La(c) = n.

FACTp(c) := {block factorizations of ¢ in p factors}.

@ “Factorizations « chains”.

@ Problem : < vs <z ? ~» use classical conversion
formulas.

@ Bad news : we obtain much more complicated formulas.

@ Good news : we can interpret some of them geometrically
(and even refine them); in particular forp = norn—1.
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Submaximal factorizations of a Coxeter element

The number of reduced decompositions of c is:
|FACTh(C)| =n! h" / |W| , where his the order of c.
[Deligne, Bessis-Corran] (case-by-case proof).

What about FACT,_1(c) ?

Theorem (R.)

Let A\ be a conjugacy class of elements of length 2 of NC(W).
Call submaximal factorizations of ¢ of type N the block
factorizations containing n — 2 reflections and one element (of
length 2) in the conjugacy class A. Then, their number is:

(n— 1)1 A1

FACTh R

‘ c n—1(C)| ‘W’ deg D/\ )

where D, is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.




Outline

9 Geometry of the discriminant
@ Strata in the discriminant hypersurface
@ Bifurcation locus of the discriminant
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The quotient-space V/W

W acts on the polynomial algebra C[V].

Chevalley-Shephard-Todd’s theorem

There exist invariant polynomials fi., . .., f;, homogeneous and
algebraically independent, s.t. C[V]" = C[fy, ..., f].

The degrees dy < --- < d,=hoffq,...,f, (called invariant
degrees) do not depend on the choices of the fundamental
invariants.

~~ isomorphism:  V/W = C"
v o= (f1(V),...,fn(V)).
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Discriminant hypersurface and strata

A = {reflecting hyperplanes of W} (Coxeter arrangement).

For H in A, denote by oy a linear form of kernel H.

Ay =[] v’ € CIV1" =C[A,....f;] (discriminant of W)
HeA

equation of p([Jycq H) = H , wherep: V — V/W.



(O T«
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Example W = As: discriminant (“swallowtail”

hypersurface # (discriminant) € W\ V ~ C3
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Intersection lattice and parabolic subgroups

Stratification of V with the “flats” (intersection lattice):

L:={NgegH|B<S A} = PSG(W) (parabolic subgps of W)
L — W, (pointwise stabilizer of L)
@ A parabolic subgroup is a reflection group [Steinberg].

@ lts Coxeter elements are called parabolic Coxeter
elements.

Loe L < WpePSG(W) <« ¢ parabolic Coxeter elt
codim(Ly) = rk(Wo) = lr(co)



Construct a stratification of V/W, image of the stratification L:
L=L/W=P(L)ec=W-L)ec.
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Strata in H

Construct a stratification of V/W, image of the stratification L:
L=L/W=(p(L)ec=(W:-L)ec.

L < PSG(W)/conj. < {parab. Coxeter elts }/con;.
codim(A) = rank( W) = Cr(wp)
Proposition

The set L is in canonical bijection with:

@ the set of conjugacy classes of parabolic subgroups of W ;

@ the set of conjugacy classes of parabolic Coxeter
elements;

@ the set of conjugacy classes of elements of NC(W).
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)

If W is a real (or complex well-generated) reflection group, then
the discriminant Ay is monic of degree n in the variable f,.

So if we fix fi, ..., f,_1, the polynomial Ay, viewed as a
polynomial in f,, has generically nroots...
... except when (fy,...,f,_1) is a zero of

Dy = DISC(Aw(f1 ey fn) ; fn) S C[f1 ey fn—1]-

Definition
The bifurcation locus of Ay, (w.r.t. f,) is the hypersurface

of C"—1:
K :={Dw = 0}
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Submaximal factorizations of type A
L, := {strataof £ of codimension 2}
< {conjugacy classes of elements of NC(W) of length 2}

Proposition
The (M), for \ € Lo, are the irreducible components of K.

~ we can write Dy, = = D", where r, > 1 and the D, are
) ] NeLs &N
polynomialsin fy, ..., fh_q.

Theorem (R.)

For A\ € L, the number of submaximal factorizations of ¢ of
type A (i.e. , whose unique length 2 element lies in the
conjugacy class \) is:

(n— 1)1 A1

|FACTA . (c)| = Sy e9Dh-
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Submaximal factorizations of a Coxeter element cz»

How to compute uniformly >,z deg Dy ?

@ Recall that Dy = [[rcz, Dp-

@ We found an interpretation of [ [, 7, D,’\A‘1, as the
Jacobian J of an algebraic morphism. @EEED

@ Compute deg J, and then > deg Dy = deg Dy — deg J.

Corollary

The number of block factorisations of a Coxeter element c
in n— 1 factors is:

. n—1 . . n—1
FacT, 1(0) = |1v)v!h <(” e 2)h+Zd,>,

where d;, ..., dn, = h are the invariant degrees of W.
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—

Wy, ..., W,) € FACT(C)

facto




The proof uses the Lyashko-Looijenga morphism and
topological factorizations @=»
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Fibers of LL and block factorizations of ¢

Let w be a multiset in E,.

“Compatibility” = for all y in the fiber LL~'(w), the distribution
of lengths of factors of facto(y) is the same (composition of n).

Theorem (Bessis '07)

The map facto induces a bijection between the fiber LL " (w)
and the set of strict factorizations of same “composition” as w.

Equivalently, the product map:

LL x facto
—_—

Y En, x FACT(C)

is injective, and its image is the set of “compatible” pairs.

~ a way to compute cardinalities of sets of factorizations using
algebraic properties of LL.



Conclusion

@ New manifestation of the deep connections between the
geometry of W and the combinatorics of NC(W).

@ Proof a bit more enlightening and satisfactory than the
usual ones: we travelled from the numerology of FACT,(c)
to that of FACT,_1(c), without adding any case-by-case
analysis.

@ We recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial
proofs [Krattenthaler].

@ To obtain more we should study further the geometrical
setting (Lyashko-Looijenga morphism and its ramification).
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Lyashko-Looijenga morphism of type W a=»

Definition
LL: Y — E,:= {multisets of n points in C}
y +— {roots, with multiplicities, of Aw(y, fa) in f,}

Aw="+af2 +af3+...+a,_1f,+ an
Definition (LL as an algebraic (homogeneous) morphism)

LL: cn-1 — cr-1
(f1,...,fn_1) — (32,...,8,7)

facto : Y — FACT(c) := {block factorizations of c}
Geometrical compatibilities:
@ length of the factors (+» multiplicities in the multiset LL(y));
@ conjugacy classes of a factor of facto(y) <> (via Steinberg
bijection) the strata containing the corresponding
intersection point (y, X;).



Example of W = Aj: stratification of the discriminant

)

H={Ay=0}C W\V~C?
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An unramified covering @=m

Bifurcation locus: 4

K = LL'(E,— Ep®)
= {yeY|Aw(y,fn) has multiple roots w.r.t. f,}
= {yeY[Duly) =0}

where

D = DiSC(Aw(y, fn) ; fn) € C[f1 Sy fn—1]-

Proposition (Bessis)
@ LL: Y - K — E;® is a topological covering, of degree
n kW
® |FACTh(c)| =nt A"/ |W]|.

How to compute | FACT,_1(C)| ?
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Submaximal factorizations of type A e=»

Want to study the restriction of LL : I — E, — E,*.
Recall D = H D,r\A (irreducible factors in Cl[fy, ..., fr_1]).
/\EZg

The restriction LL : Ko — E, — E;® corresponds to the
extension Clay, ..., an|/(D) € Cl[fi,....f,—1]/(Da).
Theorem (R.)
Forany A\ in L5,

@ LL, /s a finite morphism of degree % deg Dp;

@ the number of factorizations of ¢ of type A is
(n—1)! h"—1

|FACTA ,(c)| = 9D




Problem: find a general computation of >,z deg Dx.

«40>» «Fr» «=)>» «

i
i
u
N)
¥l
?
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Jacobian of LL

Problem: find a general computation of Z/\EZQ deg Dp.

Recall that D, = H/\Gﬁ_z D;\A

Proposition (Saito; R.)
Set J :=Jac((a,...,an)/(f1,...,fr—1)). Then:

J = H D/f\/\f‘l
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Jacobian of LL ez»

Problem: find a general computation of Z/\eiz deg Dp.

Recall that D | = H/\GL_Q D;\A

Proposition (Saito; R.)
Set J :=Jac((a,...,an)/(f1,...,fr—1)). Then:

= H D/rcidl

/\Eﬁ_g

So, Y degDp =deg D —degd =...
D



Reflection group vs. Lyashko-Looijenga extension @=»

Reflection group W

Extension LL

V- V/W Y - C"T
Clfy,...,f) = C[V]W C C[V] | Cla,...,an] C Clf,..., frq]
degree |W/| degree n! h"/ |W|

yvreg _, Vreg/W
Generic fiber ~ W

ramified on Jyca H — H
N

Jw =TTag™
en = |Whyl

Y — K E
~ Redg(c)

K =Upez, ¢(N) = En — E*
Dii = Tlacz, DR
Jqo=1100""

r\ = pseudo-order of
elements of NCPy of type A
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