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Some integer sequences

nn−2

number of labelled trees on n vertices
in Sn, number of factorizations of an n-cycle in (n − 1)
transpositions
number of maximal strict chains of noncrossing partitions of an
n-gon

nn−3 (n − 2)(n − 3)

2
+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +
(anywhere) another element that is a product of two transpositions
(refined according to the conjugacy class of this element)
number of “submaximal” strict chains of noncrossing partitions
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Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),
generated by reflections)

Define R := {all reflections of W}.
 reflection length (or absolute length) `R. (NOT the usual
length `S !)
Fix c : a Coxeter element in W (particular conjugacy class of
elements of length n = rk(W )).

Definition (Block factorizations of c)
(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.
`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.
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Maximal and submaximal factorizations of c

The number of reduced decompositions of c is known to be:
| FACTn(c)| = n! hn / |W | where h is the order of c.

[Deligne, Bessis-Corran] (case-by-case proof).
What about FACTn−1(c) ?

Theorem (R.)
Let Λ be a conjugacy class of elements of length 2 of W. Call
submaximal factorizations of c of type Λ the block factorizations
containing n − 2 reflections and one element (of length 2) in the
conjugacy class Λ. Then, their number is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ ,

where DΛ is a homogeneous polynomial constructed from the
geometry of the discriminant hypersurface of W.
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The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.
Block factorizations of c ←→ strict chains in NC(w , c).
the structure doesn’t depend on the choice of the Coxeter element
(conjugacy) we write NC(W ).
if W = Sn, NC(W ) ' lattice of noncrossing partitions of an
n-gon.
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Coxeter-Catalan combinatorics

Proposition (Chapoton)
Suppose W irreducible of rank n, and let c be a Coxeter element.
The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal to
the “Fuß-Catalan number of type W”

Cat(p)(W ) =
n∏

i=1

di + ph
di

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =
n∏

i=1

di + h
di

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using the
classification of reflection groups.

 how to understand this formula uniformly ?
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Interest of the theorem

Formulas for block factorizations! formulas for multichains.

proof of | FACTΛ
n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :

I use of a bijection between some classes of factorizations and fibers
of a ramified covering : the Lyashko-Looijenga covering LL.

I computation of cardinalities of fibers via degrees of algebraic
morphisms, restrictions of LL.

we can compute (in a case-free way)
∑

Λ deg DΛ.

 we get an instance of Chapoton’s formula, with a more enlightening
proof:

Corollary
The number of block factorisations of a Coxeter element c in n − 1
factors is:

| FACTn−1(c)| =
(n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑
i=1

di

)
.
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Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).

A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :=
{⋂

H∈B H | B ⊆ A
}

∼−→ PSG(W ) (parabolic subgps of W )
L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].
Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter element
codim(L0) = rk(W0) = `R(c0)
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The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theorem
There exist invariant polynomials f1, . . . , fn, homogeneous and
algebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)
do not depend on the choices of the fundamental invariants.

 isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).
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Example W = A3: discriminant (“swallowtail”)⋃
H∈A

H ⊆ V
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Example W = A3: discriminant (“swallowtail”)

/W

⋃
H∈A

H ⊆ V

hypersurface H (discriminant) ⊆ V/W ' C3
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Stratification of the discriminant hypersurface⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

t us
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Stratification of the discriminant hypersurface⋃
H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3
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Stratification of the discriminant hypersurface⋃
H∈A
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H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)
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Bifurcation locus

Theorem (Orlik-Solomon, Bessis)
If W is a real (or complex well-generated) reflection group, then the
discriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial in
fn, has generically n roots...
... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

Definition
The bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}
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Bifurcation locus K

H ⊆W\V ' C3
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Bifurcation locus K

H ⊆W\V ' C3

Y

fn

ϕ projection
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Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y
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Bifurcation locus K

ϕ

Y

fn

yy ′

y ′′

0
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Bifurcation locus K

ϕ

Y

fn

K
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Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

ϕ(Λ1)
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Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

Λ2

ϕ(Λ2)

ϕ(Λ1)
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Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}
↔ {conjugacy classes of elements of NC(W )}

Proposition
The ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

 we can write DW =
∏

Λ∈L̄2
DrΛ

Λ , where rΛ ≥ 1 and the DΛ are
polynomials in f1, . . . , fn−1.

Theorem
For Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ
(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛ
n−1(c)| =

(n − 1)! hn−1

|W |
deg DΛ .
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LL morphism and topological factorisations

LL

facto

{x1, . . . , xn} ∈ En

(w1, . . . ,wp) ∈ FACT(c)
ϕ

Y

fn

y y ∈ Y

ϕ−1(y) ' C
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Conclusion

new manifestation of the mysterious connections between the
geometry of W and the combinatorics of NC(W ).

proof more satisfactory than the case-by-case one.
we recover geometrically formulas for certain specific
factorisations, known in the real case with combinatorial proofs
[Krattenthaler].
Todo: study further the geometrical setting (Lyashko-Looijenga
morphism and its ramification) to obtain a global understanding of
Chapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximal
factorisations of a Coxeter element, arXiv:1012.3825.
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