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A definition of root system

@ V: areal vector space, of finite dimension n
@ B: a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system A:
@ A is a basis for V;
@ Vae A Bla,a) =1,
@ YVa # [ e A:
e either B(«, 8) = —cos (%) for some m € Z>»,
e or B(a, ) < —1.
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A definition of root system

2. For each a € A, define the B-reflection s,:

Sq: V — 4
v — v—-2B(a,V)a.
Check: s,(a) = —a, and s, fixes pointwise a-*.
Notation: S = {s,, a € A}.
3. Construct the B-reflection group W := (S).

4. Act by W on A to construct the root system
o= W(A).

Note: if p = w(a) (with a € A), ws,w~" is the B-reflection
associated to the root p.



Coxeter group and root system
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Coxeter group and root system

Proposition (Krammer)
@ (W,S) is a Coxeter system, with Coxeter presentation:

wz<s(s2:1 (Vs e S); (st)™t = 1 (Vs;éteS)>,

m  if B(a, ) = — cos(w/m),
oo ifB(a,p) < —1.
@ Letd™ :=dncone(A). Then: d = o+ LI (—dT).

where ms,, s, = {

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation [Tits].
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Infinite root systems

For finite root systems:
¢ is finite & W is finite (< B is positive definite).

What does an infinite root system look like?
Simplest example, in rank 2:

o _
—o Matrix of B in the basis («, 8): { 1 1].
Sa Sp -1 1



Infinite dihedral group, case B(a, 5) = —1

P4
P3

p2 = 82(8) = B — 2B(a, B)a = B + 2a

a = pi

php=na+n+1)s ; pon=(n+1)a+ns



Observations

@ The norms of the roots tend to oo;

@ The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q:={veV, B(v,v)=0}.

(in the example the equation is v3 + v5 — 2v,Vv3 = 0, and
Q = span(a + 3).)
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What if B, 8) < —1?

. 1 k| . , oo(k)
@ Matrix of B: with k < —1. We write e—e
k 1 Sa Sﬁ
@ Then Qs the union of 2 lines.
pa
P3
p2
oo(—1.01)
———o
S t

o = p1
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Let’'s see examples of higher rank
We cut the directions of the roots with an affine hyperplane.

Vi={veV|) va=1}

aceA




“Normalization” of roots




Examples in rank 3: finite group, sgn B = (3, 0). (Hs)
Sy

N

v



Examples in rank 3: affine group, sgn B = (2,0) (52)
Sy

N



Examples in rank 3: affine group, sgn B = (2,0) (52)
Sy

N



Examples in rank 3: case sgn B = (2,1)

Sy

N\

Sa S3



Examples in rank 3: case sgn B = (2,1)

Sy

N\

Sa S3

v
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Examples in rank 3: case sgn B = (2,1)

Sy

N

Sa S3

v
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4 T oo(—1.5)

Sa X s




Examples in rank 4

Ss

Sa @Sﬂ




Examples in rank 4




The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let ® be a root system for an (infinite) Coxeter group, and
(pn)nen an injective sequence in ®. Then:

@ ||pnl| tends to oo (for any norm on V);
@ if the sequence of normalized root p,, has a limit ¢, then

teQ@n conv(A).
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The limit roots lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R. '11)

Let ® be a root system for an (infinite) Coxeter group, and
(pn)nen an injective sequence in ®. Then:

@ ||pn|| tends to o (for any norm on V);
@ if the sequence of normalized root p,, has a limit ¢, then

te@n conv(A).

Property proved independently in other contexts:
@ [Kac 90] for Weyl groups of Kac-Moody algebras,

@ generalized by [Dyer 2012] (work on the imaginary cone of
a Coxeter group).

~~ Problem: understand the set of possible limits, i.e., the
accumulation points of ¢:

E(®) := Acc (6) (“limit roots”).
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Geometric action of W on a partof Vi: w- v := w(v).

Definedon D= Vyn () w(V\ Vo), where Vg = v1
weW

Proposition
@ E(®) C D and E(®) is stable under the action of W.
@ Foracdandx e E, QN L(a, x) = {X,Sq - X}.
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Faithfulness of the action

If W affine, then E = singleton ~~ non faithful action.

Theorem (Dyer-Hohlweg-R. ’12)

If W is infinite, non-affine and irreducible, then the action of W
on E is faithful.

@ we prove that E is not contained in a finite union of affine
subspaces of Vj.

@ we use the link with the imaginary cone of ¢ studied by
Dyer. It is a positive cone Z defined by the geometry of ¢
and W, and verifying:

conv(E) = Zn V.
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Minimality of the action

Theorem (Dyer-Hohlweg-R. ’12)

If W is irreducible infinite, then for all x € E, the orbit of x under
the action of W is dense in E:

W.-x=E.

The proof uses:

@ the properties of the action on C = conv(E) [Dyer '12]:
if W is irreducible infinite, then

Vx € C, conv <W) =C.

@ the fact that the set of extreme points of the convex set C
is dense in E [Dyer-Hohlweg-R. ’12].
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Start with the intersections of Q with the faces of conv(A), and
act by W...

Sy

4 T oo(—1.5)

Sa X s




“Fractal” description of a dense subset of E
Ss

4 4
Sa S3

Sy




How to describe E directly?
Special case:

Theorem

Suppose W irreducible, infinite non affine. If QcC conv(A), then
sgnB = (n—1,1) and E(¢) = Q.




How to describe E directly? (general case)
Conjecture
IfWis irreducib/e,A E(®) is equal to Q minus all the images by
W of the parts of Q which are outside conv(A), i.e. :

E(®)=Qn (] w-conv(A).

weW




General case: @ cut the faces

Ss
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Equivalent conjecture

Conjecture
In general, E(®) is equal to Q minus all the images by W of the
parts of Q which are outside conv(A), i.e. :

E(®) = Qn ﬂ w - conv(A).

weW

From [Dyer '12]: ﬂ w - conv(A) = conv(E), so:
weW
Conjecture < E = conv(E) N Q.

~- True for the case where B has signature (n—1,1) (we can
assume Q is a sphere).
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@ How does E behave in regards to restriction to parabolic
subgroups? Take I C A, W, its associated parabolic
subgroup, ¢, = W(A), and V; = Vect(/) N V4. Then
E(®)) # E(®) N V;in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E...



Some other questions

@ How does E behave in regards to restriction to parabolic
subgroups? Take I C A, W, its associated parabolic
subgroup, ¢, = W(A), and V; = Vect(/) N V4. Then
E(®)) # E(®) N V;in general! (counterexample in rank 5).
But this type of property of good restriction works for other
“natural” subsets of E...

@ Case of signature (n — 1,1). Links with hyperbolic
geometry, and with Kleinian groups in rank 4.
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