Noise, Cryptic Variation, Robustness and Quantitative Genetics

Virginie Courtier-Orgogozo Institut Jacques Monod, Paris

Human genetic diversity

- Genome size: 2.9 Gb
- Gene number: 25 000
- (1% of coding sequences)
- In one individual:
 - ~70 new mutations compared to his parents
- ~20 lethal mutations (heterozygous)
- Genetic difference between two humans?
- Genetic differences between humans and chimps?
- •

Human genetic diversity

Genome size: 2.9 Gb

Gene number: 25 000

• (1% of coding sequences)

In one individual:

~70 new mutations compared to his parents

~20 lethal mutations (heterozygous)

~0.

Genetic difference between two humans?

 Genetic differences between humans and chimps?

~4% (<1% for coding sequences)

~0.1%

From laboratory to "real-life" data

Knock out

Natural variation

Domestication of laboratory strains

Arabidopsis thaliana

Caenorhabditis elegans

Domestication of laboratory strains results in extreme phenotypic values for many traits: artificial selection and pleiotropy

Choice of laboratory environment

ca. 10-20 years ago: surprise at not finding phenotypes in gene knockouts

The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes

Maureen E. Hillenmeyer, et al. Science **320**, 362 (2008);

1144 growth environments for *S. cerevisiae*

Laboratory mutations

- Not in nature
- Extreme effects
- Would likely be lost under selection
- Must be induced

- Interrogates (nearly) all regions
- Readily cloned
- Strong effects

QTL

- Representative of nature
- Variants with small effects
- Sustained under selection
- Readily available
- Interrogates only variable regions
- Difficult to map
- Small effects

Is natural variation discrete or continuous? Biometricians against Mendelians

Karl Pearson Walter Weldon

- Continuous variation
- Pre-existing variation
- Gradual change

William Bateson Hugo de Vries

- Discontinuous variation with discrete heredity factors
- Mutation
- Evolutionary jumps

Reconciliation of Mendelian genetics and heredity of quantitative characters

Nilsson-Ehle (cereals) East (corn)

example with only two factors with additive action:

Quantitative genetics

Quantitative genetics

• If to each genotype corresponds a distribution of phenotypes

= variable expressivity the character itself is quantitative

and/or

• If the variation of many genes is involved in the phenotypic difference between two strains/individuals

the <u>segregation of the character is quantitative</u>

Quantitative Trait Loci (QTL) mapping

- QTL are specific genetic loci that affect quantitative traits.
- QTL can be detected by markers that are linked with it.

Two goals:

Identify the location of the QTL

Estimate the genetic effects of the QTL

QTL mapping

Quantitative measure of the phenotype

min D

_max D

Measure of 2 indexes L/D and Dmin/Dmax for 10 fruits per plant L/D : L= length, D = diameter at equator Dmin/Dmax

82 molecular markers on the 12 tomato chromosomes

Two main files

Markers file

```
-start
-Chromosome 1
              0.4
CF5475
              24.7
CF5573
              41.0
CT7895
              59.0
CT8903
CF5613
              67.7
CT7892
             76.0
CT890
              89.0
СТ233
              39.0
              50.0
Telomere
-Chromosome 2
CF5671
              0
CF5675
              10.4
CF5673
              34.7
CT789
              41.0
              89.0
CT890
             115.0
CT567
Telomere
              130.0
```

Genotypes and phenotype(s) file

```
-start individuals markers
Ind 1 0 0 1 1 0 0 0 0 0 1 2 2
Ind 2 0 0 0 1 0 1 0 0 1 1 1 1 0 0
Ind 3 2 2 2 2 2 1 0 1 1 1 1
Ind 4 0 1 0 0 0 0 1 1 1 2 2
Ind 5 0 1 0 0 0 0 1 1 1 1
Ind 7 1 1 1 1 1 1 1 0 1 n n
Ind 8 2 2 2 1 1 1 1 0 1 1 1
Ind 9 1 1 1 1 1 1 1 0 0 1 1 1 1 1
Ind 1 0 2 2 1 1 1 1 1 0 0 0 1 1 2
-stop individuals markers
-start individuals traits 1 LoverD named
        5.5
Ind 1
Ind 2 3.0
Ind 3
       4.0
       7.0
Ind 4
Ind 5
       6.5
Ind 6
       5.0
Ind 7
       3.5
        6.0
Ind 8
```

Simple linear regression for each marker

```
L/D of individual i = a + b.xi + \epsilon

xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp

a,b = best fit parameters (least square regression)

\epsilon assumed to have a normal distribution
```

Likelihood ratio test statistic

$$\begin{split} D &= -2(\ln(\text{likelihood for null model}) - \ln(\text{likelihood for alternative model})) \\ &= -2\ln\left(\frac{\text{likelihood for null model}}{\text{likelihood for alternative model}}\right). \end{split}$$

The probability distribution of the test statistic can be approximated by a chi-square distribution with (df1 - df2) degrees of freedom, where df1 and df2 are the degrees of freedom of models 1 and 2 respectively

Interval mapping

L/D of individual i = a + b.xi + e

xi = indicator variable specifying the probabilities of an individual being in different genotypes for the tested position, constructed by flanking makers xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp

a,b = best fit parameters (maximum likelihood)

Test Ho: b=0 versus H1: b=estimated b

Interval mapping

```
L/D of individual i = a + b.xi + e
xi = indicator variable specifying the probabilities of an individual being
in different genotypes for the tested position, constructed by flanking makers
xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp
a,b = best fit parameters (maximum likelihood)
Test Ho: b=0 versus H1: b=estimated b
```

Composite Interval mapping

```
L/D of individual i = a + b.xi + c.xi + e
xi = indicator variable specifying the probabilities of an individual being
in different genotypes for the tested position, constructed by flanking makers
xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp
yi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp at marker y
```

LOD score

L/D of individual i = a + b.xi + e

Test Ho: b = 0 *versus* H1: b = estimated b

Lo = pr (data | no QTL) – phenotypes assumed to follow a normal distribution L1 = pr (data | QTL at tested position)

$$LOD = -\log \frac{L_0}{L_1}$$

The likelihood ratio test statistic (LR) is

$$LR = -2 \ln \frac{L_0}{L_1} = -2 \ln 10^{-LOD} = 2(\ln 10)LOD = 4.605LOD$$

and thus

$$LOD = -\log \exp(-\frac{LR}{2}) = \frac{1}{2}(\log e)LR = 0.217LR$$

Interval mapping

```
L/D of individual i = a + b.xi + e
xi = indicator variable specifying the probabilities of an individual being
in different genotypes for the tested position, constructed by flanking makers
xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp
a,b = best fit parameters (maximum likelihood)
Test Ho: b=0 versus H1: b=estimated b
```

Composite Interval mapping

```
L/D of individual i = a + b.xi + c.xi + e
xi = indicator variable specifying the probabilities of an individual being
in different genotypes for the tested position, constructed by flanking makers
xi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp
yi = 0 if Le/Le, = 1 if Le/Lp, = 2 if Lp/Lp at marker y
```

One major locus near marker TG645

responsible for 67% of L/D variance

allele YP = recessive

Corrections for multiple testing

- Correction of *p* value: Bonferroni correction

$$p_{\text{genome-wide}} = p_{\text{nominal}} / n_{\text{tests}}$$

very "conservative" correction some less conservative variants such as sequential Bonferroni

- Empirical permutation test:

takes into account the structure of the data

Permutation of the data (here shuffling genotype and phenotype),

many times (example: 10,000)

At each permutation i: Pi = min(p over all markers)

 $p_{5\%}$ = threshold of p value where only 5% permutations pass the test can then be used in the true dataset

Recombinant Inbred Lines (RIL)

Analysis of multiple individuals of the same genotype

Linkage Mapping

Crosses in the lab

P₁

F₁

F_2 Likelhood rato 30 20 10 0 120 Testing position (cM)

Association Mapping

Past crosses in natural populations

THREE APPROACHES to FIND the GOLDEN LOCI of EVOLUTION

REVERSE GENETICS

From genes to traits

FORWARD GENETICS

From traits to genes

Little Ascertainment Bias, but

Requires the intermixing of two gene pools or lineages

Noise

Developmental noise

Differences between left and right sides of the body

ear shape, neuron connectivity, olfactory receptor gene expression, X inactivation pattern, organ cell number and size...

Developmental noise

Differences between left and right sides of the body

ear shape, neuron connectivity, olfactory receptor gene expression, X inactivation pattern, organ cell number and size...

Differences between twins

immune system cells, gait, arms crossing, voice, heart beat, brain waves...

Some can be attributed to variation in the number of determinant molecules

During terminal differentiation of mouse 3T3-L1 pre-adipocytes, individual TF abundance differs dramatically (from ~250 to >300,000 copies per nucleus) and the dynamic range can vary up to fivefold during differentiation.

Simicevic 2013 Nature

Developmental noise can be "good"

Somatic mosaicism

Nature Reviews | Genetics

73 somatic CNVs in 11 tissues of six persons

 O'Huallachain 2012 PNAS

Somatic mosaicism used to reconstruct cell lineages

Female mosaicism: X inactivation pattern

Somatic transposition in human brain

In three individuals:

in the hippocampus and caudate nucleus 7,743 somatic L1 insertions, 13,692 somatic Alu insertions and 1,350 SVA insertions

Robustness

Robustness

Absence or low variation of a phenotype when faced with an incoming variation

- 1) Of what?
- 2) To what?

To either:

- stochastic variation
- environmental variation: specify
- genetic variation: specify

3) How much?

Different phenotypic metrics

Coefficient of variation: standard deviation/mean

Historically:

quantitative genetics (low variance, canalization) physics/chemistry/engineering (robustness, buffering)

Canalization: mechanisms that make the system follow a certain trajectory

Trait plasticity versus invariance (robustness) at different levels of the genotype-phenotype map

Propagation of variation

Incoming Variation:

- Noise
- Environmental
- Genetic

Causes of robustness

Non-linearity

Heat-shocked black mutant

0.0

Redundancy

LETTERS

Phenotypic robustness conferred by apparently redundant transcriptional enhancers

Cryptic genetic variation

Heat-shocked black mutant

0.0

2.5

Cryptic genetic variation

First requires defining the *phenotype of interest*

Genetic variation that has no effect on phenotype of interest

... but may be revealed *under some circumstances* by its effect on this phenotype

Cryptic genetic variation (CGV) is defined as standing genetic variation that does not contribute to the normal range of phenotypes observed in a population, but that is available to modify a phenotype that arises after environmental change or the introduction of novel alleles.

Gibson & Dworkin Nat Rev Gen 2004

Expressivity of one mutation varies with wild genetic gackground

Tcof1/- heterozygote mice

Epigenetics

An epimutation

Wild-type

Peloric

Methylated DNA

Presence of CYCLOIDEA proteins

Absence of CYCLOIDEA proteins

Conclusion

Complexifications of the G-P map

Genetic Linkage Large number of alleles

Epistasis Noise

Supergene Robustness

Pleiotropy Cryptic genetic variation

GxE (introduction) Epigenetics

What makes us different?

Genetics

Epigenetics

Environment

Stochasticity

Heritable

Deterministic causes

Interaction of all these parameters

A living organism is not made by assembling pieces together

..but results from changes that occurred successively across evolutionary time

A simplistic view

development ------ Phenotype Genotype reproduction Genotype ----- Phenotype reproduction Genotype ----- Phenotype reproduction Genotype ----- Phenotype Heritable traits are not always due to genes

The genotype does not determine entirely the phenotype

The genotype cannot replicate by itself

Genotype and phenotype imply variation