www.gephebase.org

GepheBase

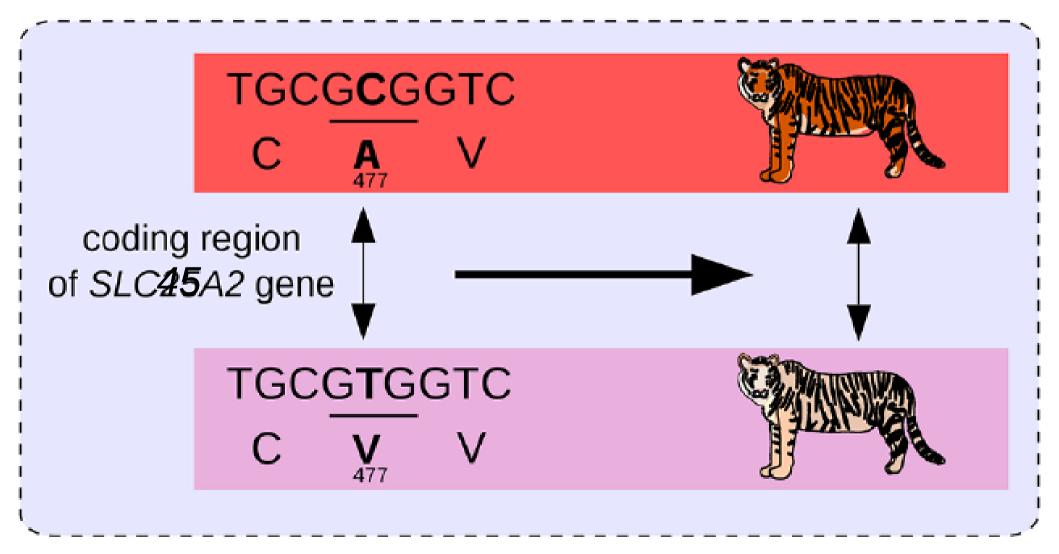
The Database of Evolutionary Genotype-Phenotype Relationships

Virginie Courtier-Orgogozo Arnaud Martin (Washington DC) Laurent Arnoult (former postdoc) Stéphane Prigent (former postdoc)

www.gephebase.org

GepheBase

The Database of Evolutionary Genotype-Phenotype Relationships


www.gephebase.org

Includes Natural, Domesticated and Experimental Variation but NO LAB MUTANTS and NO CLINICAL TRAITS

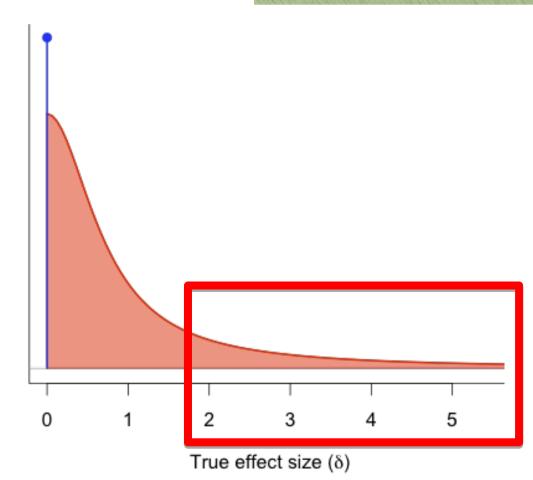
> >1600 genes and mutations associated with natural phenotypic changes in animals and plants

Virginie Courtier-Orgogozo Arnaud Martin (Washington DC) Laurent Arnoult (former postdoc) Stéphane Prigent (former postdoc)

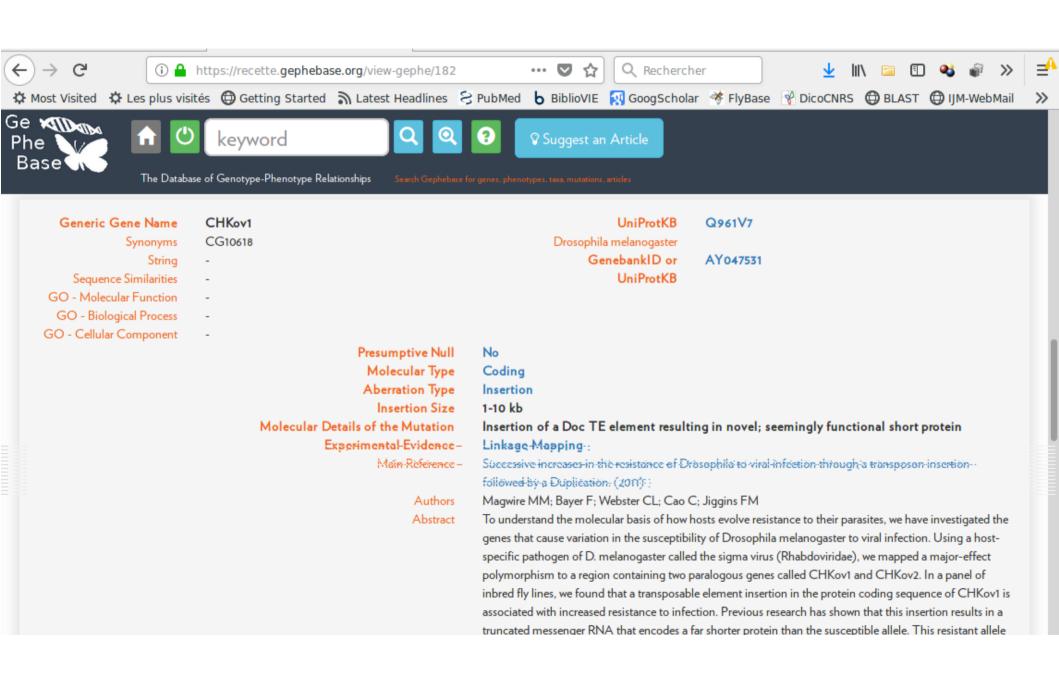
Ge-phe a Genetic VARIATION *causing* a Phenotypic VARIATION

Orgogozo, Morizot & Martin Frontiers Genet. 2015

THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER


Matthew V. Rockman^{1,2}

Density


The shiny "**large effect**" loci we can document experimentally

CHKov1

(←) → C' (i) ♣ (https://recette.gephebase.org/	view-gephe/182	♥ ☆	Q Recherche	er	<u>↓</u> II	\ 🗀 🗊	€ €	» ≡ ⁴
Amost Visited Amost Visited	és Getting Started 🔊 La	test Headlines 🛭 😣 PubMed	b BiblioVIE	🐼 GoogScholar	🌴 FlyBase	V DicoCNRS	BLAST	🕀 IJM-WebN	1ail ≫
Ge Kuller Phe Base The Database	keyword of Genotype-Phenotype Relationships	Search Gephebase for genes, pheno	Suggest an Otypes, taxe, mutations,						
GEPHE SUMMARY									
Gephebase Gene Entry Status	CHKov1			GephelD Main curator	GP00000182 Martin				
PHENOTYPIC CHANGE								Show All De	tails
	Trait #1 Trait Category Trait Trait State in Taxon A Trait State in Taxon B	Physiology Pathogen resistance Drosophila melanogaster Drosophila melanogaster	-						
	Trait #2 Trait Category Trait Trait State in Taxon A Trait State in Taxon B	Physiology Xenobiotic resistance (ins -	ecticide)						

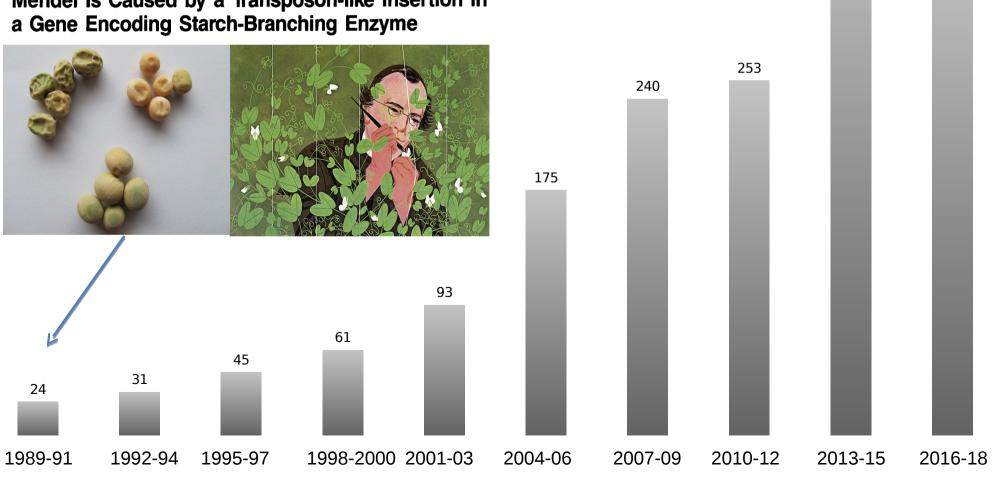
ADVANCED SEARCH

Field

AND	•
AND	•
AND	•
AND	-
AND	•

Trait Category	•
Taxon and Synonyms	•
Molecular Type	•
Aberration Type	•
Aberration Size	-

Term


Morphology	•	×
"Mammalia"		×
Cis-regulatory	•	×
Deletion	•	×
10-99 bp	•	×

🕂 Add search criteria

- Group Mutations
- Group Genes

The Wrinkled-Seed Character of Pea Described by Mendel Is Caused by a Transposon-like Insertion in

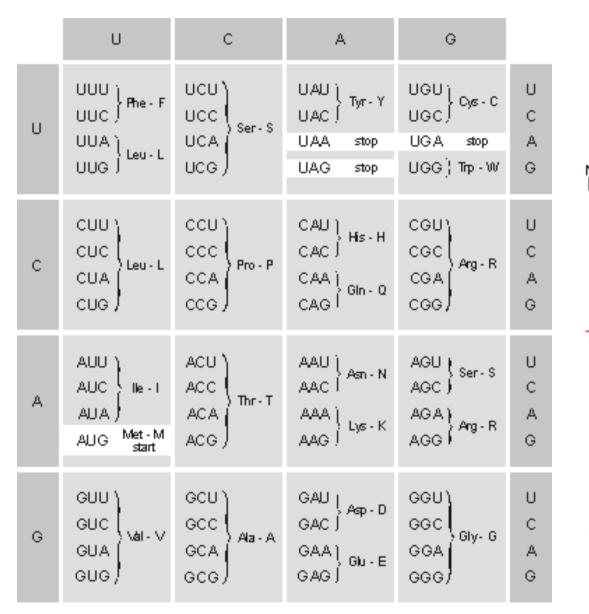
Since 2015:

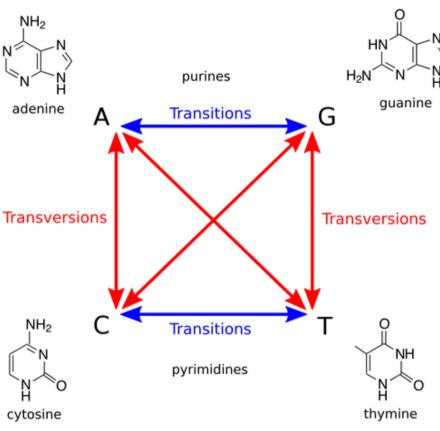
390

hard to keep up with all the publications...

351

www.recette.gephebase.org


Virginie.courtier@ijm.fr


Meta-analysis of the coding SNP

Transitions or transversions?

Which codon site?

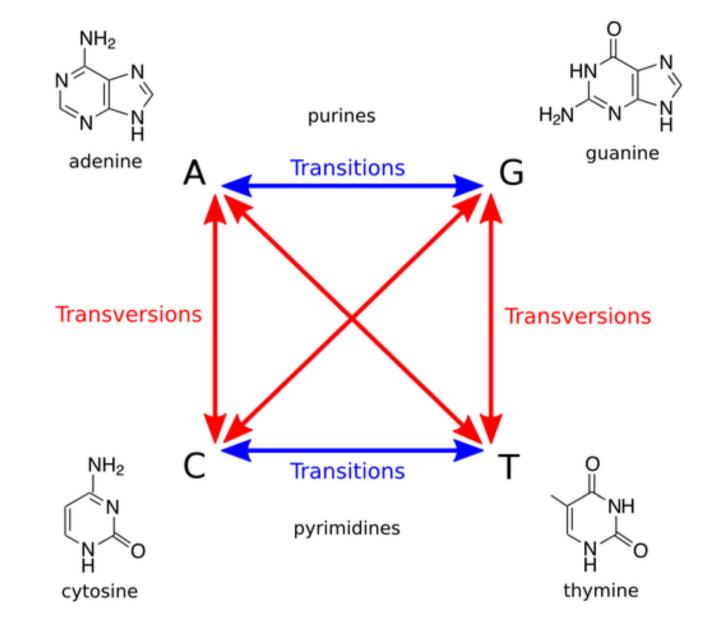
Variation according to taxonomic group? Or to taxonomic status (experimental, domestication, intraspecific, intergenera)?

CYtosine et TYmine are PYrimidines

Case 1: diapause in C. elegans desert strain scd-2 gene

	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1	Molecular Details	Molecular Typ	Presumpt	SNP Coding Ch	Student	Codon-Ta	Codon-Po	Codon-	Codon-	Transition-Tra	AminoAcid-Taxon	AA-Positio	AminoAcid-Taxon	Aberratio
2	Premature stop codon in exon 7	Coding	Yes	Nonsense										SNP
3	Gly985Arg	Coding	No	Nonsynonymous	Courtier									SNP

Gephebase-entries https://tinyurl.com/y7pb3vth


Protocol https://tinyurl.com/y9eaxwk6

ExtractedData https://tinyurl.com/ycuw25ax

	U	с	А	G	
U	UUU UUC UUA UUG Leu-L	UCU UCC UCA UCA	UAU UAC UAA stop UAG stop	UGU UGC UGA stop UGG]Trp-W	U C A G
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAC CAA CAA Gln - Q	CGU CGC CGA CGG	U C A G
А	AUU AUC AUA AUG Met - M start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp - D GAC GAA GAG Glu - E GAG	GGU GGC GGA GGG	U C A G

	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
1	AA-Positio	AminoAcid-Taxon	Aberrati	Aberratio	Reference Title	Reference Abstract	Publication Ye	Main PMID	RefLink	Additional PMID
2			SNP		The molecular basis of white peri-	Repeated phenotypic evolution	2010	21121088,1	ND	
3			SNP		C. elegans anaplastic lymphoma	Different environmental stimuli;	2008	18674914 <mark>,1</mark>	https://sci-hub.tw/10.1016/j.cub.2008	.06.060

We sequenced the ALK gene from the three available *scd-2* alleles and identified lesions for all three, proving that *scd-2* encodes ALK. *scd-2(sa935)* and *scd-2(sa249)* contain **G** to A transitions resulting in **G985R** and G1174E substitutions, respectively. *sa935* and *sa249* replace highly conserved small glycine side chains in the kinase domain with bulky charged side chains; the glycine at position 985 is part of the ATP-bind-ing motif and is conserved in all functional protein kinases, and the glycine at position 1174 is conserved in all ALK orthologs

CYtosine et TYmine are PYrimidines

Experimental Procedures

Experimental procedures are included with the Supplemental Data.

Supplemental Data

Supplemental data include Supplemental Results and Experimental Procedures, two figures, and two tables and can be found with this article online at http://www.current-biology.com/cgi/content/full/18/15/1101/DC1/.

> No relevant data provided in the supplementary data Accession numbers not provided

No sequence data except the wild-type sequence when I searched "scd-2 C elegans" in NCBI Nucleotide

Experimental Procedures

Experimental procedures are included with the Supplemental Data.

Supplemental Data

Supplemental data include Supplemental Results and Experimental Procedures, two figures, and two tables and can be found with this article online at http://www.current-biology.com/cgi/content/full/18/15/1101/DC1/.

No accession numbers provided

No sequence data except the wild-type sequence when I searched "scd-2 C elegans" in NCBI Nucleotide

5	~ 5 7	100% -	00. % €	<u>0</u> 123 -	Arial -	10	- В	I	÷.	A è	• ⊞	53 ×	≣ -	<u>+</u> -	÷ - 17 -	сэ +	ılı	Υ - Σ -		^
fx																				
	AI		AJ	AK	AL	AM	AN		AO	AP	AQ	A	٨R		AS	AT		AU	AV	AW
1	Molecular Details	5	Molecular Ty	Presumpt	SNP Coding Ch	Student	Codor	I-Ti Co	don-Po	Codon	Codon-	Transi	ition-Tra	Amino	Acid-Taxon	AA-Positio	Amin	oAcid-Taxon	Aberrati	Aberra
2	Premature stop co	odon in exon	7 Coding	Yes	Nonsense														SNP	
3	Gly985Arg, G to A	\	Coding	No	Nonsynonymous	Courtier	nd	nd		nd	nd	transit	ion	Gly		985	Arg		SNP	
4	K19E		Coding	No	Nonsynonymous	Courtier													SNP	
5	1bp substitution re	esulting in pre	en Coding	Yes	Nonsense														SNP	
6	Phe - Val substitut	tion	Coding	No	Nonsynonymous														SNP	
7	D30G (reversion; f	functionally v	el Coding	No	Nonsynonymous														SNP	
8	Leu363Trp		Coding	No	Nonsynonymous														SNP	
9	Ser234Cys		Coding	No	Nonsynonymous														SNP	

Case 2: trichome density in *A. thaliana ETC2* gene

X		
	Г	

	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1	Molecular Details	Molecular Typ	Presump	SNP Coding Ch	Student			Codon- TaxonB		Transition-T ransversion	AminoAcid-Taxon	AA-Positio	AminoAcid-Taxon	Aberrati(/
2	Premature stop codon in exon 7	Coding	Yes	Nonsense										SNP
3	Gly985Arg, G to A	Coding	No	Nonsynonymous	Courtier	nd	nd	nd	nd	transition	Gly	985	Arg	SNP
4	K19E	Coding	No	Nonsynonymous	Courtier									SNP
-														

	U	С	А	G	
U	UUU UUC UUA UUG	UCU UCC UCA UCA	UAU UAC UAA stop UAG stop	UGU UGC UGA stop UGG TTP - W	U C A G
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC HIS - H CAA CAA GIn - Q CAG	CGU CGC CGA CGG	U C A G
А	AUU AUC AUA AUG Met - M start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU Ser-S AGC AGA AGA Arg-R	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp - D GAC GAA Glu - E GAG Glu - E	GGU GGC GGA GGG	U C A G

 $GAAorG \rightarrow AAAorG$

1rst codon position

	U	с	A	G			IUPAC nucle	eotide code
	υυυ ί	υςυ γ	UAU) - v	UGUjara	υ	Symbol	Bases	Description
	UUC Phe-F	LICC	UAC Tyr-Y	UGC) Cys-C	c	А	А	Adenine
U	UUA) Leu- L	UCA	UAA stop	UGA stop	A	С	С	Cytosine
	UUG	ucg)	UAG stop	UGG)Trp-W	G	G	G	Guanine
						T (or U)	T (or U)	Thymine (or Uracil)
			CAU) CAC J	CGU CGC	U C	W	A or T	Weak
С	CUC CUA	CCA Pro-P	C00)	CGC Arg - R CGA	A	S	C or G	Strong
	cug)	CCG)	CAA CAG CAG		G	М	A or C	aMino
						К	G or T	Keto
	ΑΟΟ γ	ACU)	AAU).	AGU Ser-S	U	R	A or G	puRine
	AUC lie - i	ACC	AAC I	AGC)	С	Y	C or T	pYrimidine
A	AUA)	ACA	AAA Lys - K	AGA }	A	В	C or G or T	not A (B comes after A)
	A⊔G Met-M stant	ACG)	AAG J	AGG	G	D	A or G or T	not C (D comes after C)
	GUU	GCU)	GAU Asp - D	GGU}	U	н	A or C or T	not G (H comes after G)
G	GUC GUA	GCC Aa-A	GAC J	GGC GGA	C A	V	A or C or G	not T (V comes after T and U)
	gug)	ece)	GAG J GIU-E	GGG)	G	Ν	any base	any Nucleotide (not a gap)

1rst codon position 1rst codon position

					Codon-	Codon-P	Codon-	Codon	Transition-T			
Molecular Details	Molecular Typ	Presump	SNP Coding Ch	Student	Taxon-A	osition	TaxonB	-Site	ransversion	AminoAcid-Taxon	AA-Positio	AminoAcid-Taxon /
Premature stop codon in exon 7	Coding	Yes	Nonsense									5
Gly985Arg, G to A	Coding	No	Nonsynonymous	Courtier	nd	nd	nd	nd	transition	Gly	985	Arg
K19E	Coding	No	Nonsynonymous	Courtier	GAR	nd	AAR	1	transition	Lys	19	Glu
	i –									-		

No need to check the reference in this case

Case 3: salt tolerance (exerimental evol.) in S. cerevisiae - CYC8 gene

					Codon-	Codon-P	Codon-	Codon	Transition-T				
Molecular Details	Molecular Ty	Presumpt	SNP Coding Ch	Student	Taxon-A	osition	TaxonB	-Site	ransversion	AminoAcid-Taxon	AA-Positio	AminoAcid-Taxon	Abe
Premature stop codon in exon 7	Coding	Yes	Nonsense										SNP
Gly985Arg, G to A	Coding	No	Nonsynonymous	Courtier	nd	nd	nd	nd	transition	Gly	985	Arg	SNP
K19E	Coding	No	Nonsynonymous	Courtier	GAR	nd	AAR	1	transition	Lys	19	Glu	SNP
1bp substitution resulting in premature stor	Coding	Yes	Nonsense										SNP

AA-Positio	AminoAcid-Taxon	Aberratio	Aberratio	Reference Title	Reference Abstract	Publication Ye	Main PMID	RefLink	Additio
		SNP		The molecular basis of white period	Repeated phenotypic evolution	2010	21121088,1	ND	
985	Arg	SNP		C. elegans anaplastic lymphoma	Different environmental stimuli;	2008	18674914,1	https://sci-hub.tw/10.1016/j.cub.2009	.06.060
19	Glu	SNP		A single amino acid replacement	Our understanding of the evolutio	2009	19818620,1	https://sci-hub.tw/10.1016/j.cub.2009	0.08.057
		SNP		Determinants of divergent adapta	Divergent adaptation can be	2010	20637622,1	https://sci-hub.tw/10.1016/j.cub.2010	
		SNP		Determinants of divergent adapta	Divergent adaptation can be	2010	20637622,1	https://sci-hub.tw/10.1016/j.cub.2010	
		SNP		Determinants of divergent adapta	Divergent adaptation can be	2010	20637622,1	https://sci-hub.tw/10.1016/j.cub.2010	
		SNP		Determinants of divergent adapta		2010	20637622,1	https://sci-hub.tw/10.1016/j.cub.2010	2185693
		SNP		Determinants of divergent adapta	Divergent adaptation can be		20637622,1	https://sci-hub.tw/10.1016/j.cub.2010	2185693
		SNP		Adaptive introgression of anticoa	Polymorphisms in the vitamin K	2011	21782438,1	https://sci-hub.tw/10.1016/j.cub.2011	.06.043
		SNP		Epistatic and combinatorial effect	Understanding the molecular		24508169,1	https://sci-hub.tw/10.1016/j.cub.2014	.01.020

Seventeen candidate mutations were confirmed by polymerase chain reaction, conventional sequencing, and comparative genome hybridization analysis (Table S1; Table S2). These included: in S2, nonsynonymous point mutations in the coding sequence of *PMA1*, *GCD2*, *MET3*, and *LAP2*, a point mutation in the intergenic region 3' to *SEC13* and *PNP1*, and an expansion of the *ENA* gene cluster; in S6, nonsynonymous point mutations in the *PMA1* and *CYC8* coding sequences, point mutations in the *YBP2* and *CAB3* promoters, and a contraction of the *ASP3* gene cluster; and in M8, nonsynonymous mutations in the coding sequences of *TIM11*, *RPH1*, *MDS3*,

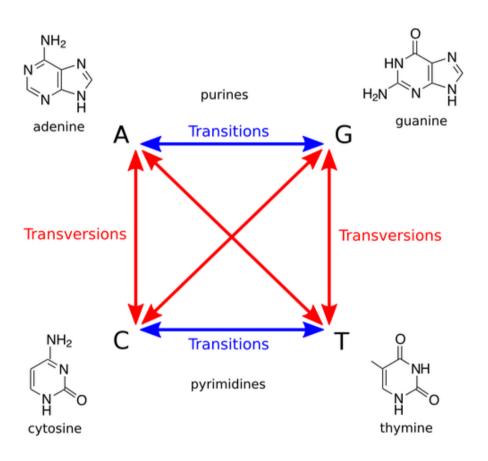
Download supplementary tables

M8 Chromosome	Position, Base, and Amino-Acid Changes	Gene	Notes
S2 Haploid			
7	481971 G-C S-C	PMA1	Main adaptive determinant in high salt
7	646331 C-A M-I	GCD2	No effect on fitness detected
10	456758 C-A P-H	MET3	Confers a no-growth phenotype (auxotrophy) in low glucose
12	560742 C-G	Intergenic region 3' to YLR208W and YLR209C	No effect on fitness detected
14	530695-538465	Expansion, ENA1, ENA2, ENA5	Adaptive determinant in high salt. Synergistic with evolved allele of <i>PMA1</i>
14	543274 A-G D-G	LAP2	No effect on fitness detected
S6 Haploid			
2	464706, G -T, Y- *	CYC8	Adaptive determinant in high salt, synergistic with the S6 evolved allele of <i>PMA1</i>
7	481584 A-C, L-W	PMA1	Adaptive determinant in high salt. Confers slow growth in YPD and low glucose
7	390007, G-A	Noncoding, promoter of <i>YBP2</i>	No effect on fitness detected
11	274875, T-A	Noncoding, promoter of <i>CAB3</i>	No effect on fitness detected
12	470406- 486202	Contraction, ASP3- 1, ASP3-2, ASP3-3, ASP3-4	No effect on fitness detected
M8 Haploid			
4	1112209 C-A C-F	TIM11	No effect on fitness detected
5	525696 C-G T-I	RPH1	Fitness benefit after the diauxic shift in low glucose, not necessary to reconstitute the full M8 phenotype
7	126872 T-G F-V	MDS3	Fitness benefit before the diauxic shift in low glucose. Evolved allele confers a sporulation deficiency: $10.4\% \pm 0.8$ SE (n=12 measurements) vs. 30.1 ± 1.0 SE (n=50)
12	64832 C-T Q-Q	UBI4	No effect on fitness detected
14	467221 A-G D-G	MKT1	Fitness benefit after the diauxic shift in low glucose
15	432852 G-A R-K	SGT1	No effect on fitness detected

Table S1.	SNPs and Gene-Cluster Siz	ze Changes in Haploi	d Representatives of S2, S6, and
M8			

	U	С	А	G	
U	UUU UUC UUA UUG Leu-L	UCU UCC UCA UCA	UAU UAC UAA stop UAG stop	UGU UGC UGA stop UGG TTP - W	U C A G
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC HIS - H CAA CAA GIn - Q CAG	CGU CGC CGA CGG	U C A G
А	AUU AUC AUA AUG Met - M start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU Ser-S AGC AGA AGA Arg-R AGG Arg-R	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU _{Asp} -D GAC GAA <mark> </mark> Glu-E GAG	GGU GGC GGA GGG	U C A G

 $\begin{array}{ll} G & \rightarrow & T \\ Y & \rightarrow & stop \end{array}$


Impossible! Error in Table S1

Let's consider that the error lies in the nucleotide report

 $\mathsf{UAR} \rightarrow \mathsf{UAY}$

$\mathsf{UAR} \ \rightarrow \ \mathsf{UAY}$

3rd position Transversion

Symbol	Bases	Description
А	А	Adenine
С	С	Cytosine
G	G	Guanine
T (or U)	T (or U)	Thymine (or Uracil)
W	A or T	Weak
S	C or G	Strong
М	A or C	aMino
К	G or T	Keto
R	A or G	puRine
Υ	C or T	pYrimidine
В	C or G or T	not A (B comes after A)
D	A or G or T	not C (D comes after C)
н	A or C or T	not G (H comes after G)
V	A or C or G	not T (V comes after T and U)
Ν	any base	any Nucleotide (not a gap)

IUPAC nucleotide code

It's your turn!

Gephebase-entries https://tinyurl.com/y7pb3vth

Protocol https://tinyurl.com/y9eaxwk6

ExtractedData https://tinyurl.com/ycuw25ax