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The central dogma of molecular

DNA

POORDVOVOT

chlica’.ion

R

Transcription

INA

%“_
tRNAs
Translation \ B

Ribosome W
, R )
mRNA | HE—— ek Y3

-~

V)

gL

Attached

amino acid

Crowing
peptide chan

Protein

Replication

DNA replication yields two

DNA molecules identical o the
original one, ensuring transmission
of genetic information to daughter
cells with exceptional ﬁflc-lil}'.

Transcription

The sequence of bases in DNA is
recorded as a sequence of
complementary bases in a single-
stranded mRNA molecule.

Translation

Three-base codons on the mRNA
corresponding to specific amine acids
direct the sequence of bulding a
protein. These codons are recognized

by tRNAs (transfer RNAs| carrying the

appropriate amino zcids. Ribosomes
are the “machineny™ lon protein

synthesis.
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Is heredity influenced by the
environment?

selection acts on phenotypic variation via genetic variation
(mutations) which is not sensitive to environmental cues.

Weismann’s principle of the « germplasm » (1892): somatic cells
are separated from germ cells, and thus, no mechanisms were
thought to exist for germ cells to be modified by the
environment.




But: environmentally challenged parents
sometimes give rise to modified progeny, which
cannot be accounted for by Mendelian inheritance

e Waddington observation of heat-induced fly wing structure
alteration (coined the word epigenetics — 1942)

e Changes in disease rate and metabolic status in the
offspring of women who experienced the Dutch Famine in
1944-1945. If individuals experienced famine during the
last trimester of pregnancy or within the first few months
of life, the rates of obesity significantly decreased.
However, if individuals experienced famine during the first

half of pregnancy, they had a significantly increased rate of
obesity



Transgenerational metabolic programming in
Drosophila
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Environmentally induced epigenetic
transgenerational inheritance

Environmental toxicants

Agricultural fungicides (Vinclozclin) Insect repellants (Permethrin and DEET)
Agricultural pesticides (Methoxychlor) Pesticides (DDT)
Industrial contaminants (DioxinTCDD) Industrial toxicants and biocides (Tributyltin)
BPA and phthalates (Plastic compounds) Hydrocarbons (Jet fuel JP8)
Herbicides (Atrazine and glyphosate) Heavy metals (Mercury)
Other types of exposure
Nutrition (High fat or caloric restriction) Smoking and alcohol
Temperature and drought (Plant health and flowering) Stress and trauma (behavioral)
Plants Flies Worms Fish Birds Rodents Pigs Humans
Trerds in Endocrinology & Metabolism

Trends in Endocrinology & Metabolism 2020 31478-494DOI: (10.1016/j.tem.2020.02.009)



Epigenetics

Epigenetics can be defined as any (mitotically or meiotically) heritable
modifications in the function of specific genes not related to modification
in the DNA sequence.

“the study of molecules and mechanisms that can perpetuate alternative
gene activity states in the context of the same DNA sequence”

> Powerful way to turn a transient external influence / signalling event
into a long-lived change in organism performance or function

Common mechanisms may include but not limited to:
« Histone modification/histone variants
o Regulatory non-coding RNAs
« DNA methylation



Example of epigenetically transmitted characters: Obesity
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Example of epigenetically transmitted characters: Obesity

Isogenic &
environmentally
controlled cffspring

Bi-stable An Imgrinted Gene Network .
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Histone Tails are chemically
modified by many types of
Histone Proteins €NZymes: altgr the interaction between

(COI’E) HZA,HZB, H3 & H4 DNA and histones and DNA accessibility to
transcription.
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Heterochromatin vs. Euchromatin

Nuclear architecture and histone code

a Primary (-10 kb) ¢is-acting elemnents b Secondary (~100 kb) histone modifications
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Epigenetics and maintenance of cell states
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Two main questions for chromatin
inheritance

e First:
How are chromatin state specified?
e Second:

How are these states transmitted with high
fidelity?



Major carriers of epigenetic information

e Heterochromatin com ponents: megabasesized repetitive DNA domains

coated in a specific histone H3K9 trimethylation mark. Heterochromatin components can
both write and read the H3K9me3 mark and compact their target chromatin.

o Poncom b protei NS: Polycomb (PcG) and Trithorax:two antagonistic groups that

maintain the memory of spatial patterns of expression of genes throughout development,
(maintenance of developmentally or environmentally programmed expression states)

e Noncodi Ng RNAS: Many different classes and function. They are also involved in

the regulation of chromatin architecture.

e DNA met hyI ation: involve specific proteins that recognize CpG hemimethylated
DNA and thereby redeposit DNA methylation on newly replicated DNA.




Histone Code Hypothesis

As proposed by Allis and Strahl: “that multiple histone modifications,
acting in a combinatorial or sequential fashion on one or multiple
histone tails, specify unique downstream functions”
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Histone code hypothesis

e Post-translational modifications are made on a specific
histone residue may regulate modification of the same or
different residues within the same or a different histone

e Different types or combinations of modifications are read by
chromatin-modulating proteins, resulting in regulation of
chromatin structure and, hence, transcription



Inaccessible
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Acetylation of histones enhances access
to promoter region and facilitates
transcription.
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Histone Modifications Alter Chromatin Structure
and Gene Activation

TR L] Chromatin
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Organization of the Epigenome
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Experimental demonstration of chromatin
decondensation in vivo

An experiment demonstrating that some TF activation domains regulate
chromatin condensation is shown. In this experiment, DNA consisting of a
tandemly repeated /ac operator sequence was incorporated into a yeast
chromosome. When a fluorescently tagged wild-type Lac repressor is introduced
into the cell, the DNA is shown to be confined to a small region of the nucleus
(left). However, when the Lac repressor is fused to a yeast activation domain that
interacts with a histone acetylase, staining spreads throughout a larger volume of
the nucleus indicating the DNA has been decondensed (right).




Histone modifications

e “Histone tails” = N-termini of Histones

e.g. Histones H3 and N-termini
e.g. Histones , and H1 N- and C-termini

e Post-translational modifications:

Acetylation : K-ac

Methylation : K-mel, K-me2, K-me3 and R-mel, R-me2a, R-me2as
Phosphorylation : S-Ph and T-ph

Ubiquitination : K-ub

Sumoylation : K-su

ADP-ribosylation : E-ar

Deimination : R > Cit

Proline isomerization : P-cis > P-trans

Acetylation, methylation, phosphorylation, and deimination can appear and disappear
on chromatin within minutes of stimulus arriving at the cell surface




Histone modifications

e Histone acetylation

— Histone acetyl transferases (HATSs)

e Adds acetyl groups to histone tails
e Reduces interaction of histones with DNA
e Facilitates transcription

— Histone de-acetylases (HDACs)
e Removes acetyl groups from histone tails
e [ncreases interaction of DNA and histones
e Represses transcription (usually)

— May involve the same Lys residues as targeted for
methylation



Histone modifications

e Histone methylation

— Histone methyl transferases (HMTs):

¢ Histone lysine methyl transferases (HKMTs)
— Methylate lys (K) residues
¢ Protein arginine methyl transferases (PRMTs)
— Methylate arg (R) residues
— Varying number of methyl groups:
e Lys — mono- di- or tri-methylated (on e-amino group)
e Arg — mono- or di-methylated (symmetric or
asymmetric) (on guanidino-e-amino groups)
— Methylation can result in repression or activation
of expression



Histone modifications

e Histone phosphorylation
— E.g. by aurora AIR2—-Ipl1 kinase family

e Required for chromosome condensation and cell cycle progression

— E.g. by MSK1 and 2 or IKKa kinase

e Required for signal transduction leading to gene activation

e Can prevent nearby histone methylation due to (i) steric hindrance or
(ii) facilitation of competing acetylation

— Reversed by phosphatases like PP1 or PP2
— Alters recruitment of binding proteins; e.g.-

* If phospho-acceptor precedes methylated residue - activates
transcription

* If phospho-acceptor follows methylated residue = silences
transcription



Histone modifications

e Histone ubiquitination
— Mono-ubiquitination (by Rad6) and recruitment of
proteasomal ATPases (Rpt4 and Rpt6)

e alters chromatin structure
e regulates H3 methylation

— De-ubiquitination (by SAGA-associated Ubp8)

e regulates mono- vs tri-methylation



Structure & Epigenetics of
Euchromatin versus Heterochromatin
DNA methylation and histone modifications
help to compartmentalize the genome

into domains of different transcriptional potentials

Euchromatin Heterochromatin
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« Low DNA methylation « Dense DNA methylation
« H3-K4 methylation + H3-K9 methylation



The histone fold

‘ M% Ribbon drawing

Simple.
Conserved.
Adopted by all 4 “core” histones (H2A, H2B, H3 and H4).
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H3-H4 tetramer binds two H2A-H2B dimers
to form the histone octamer
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Crystal structure of the nucleosome
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Chromosome Structure

e Nucleosome

— fundamental unit of chromatin

— 147bp DNA wound 1.75 turns around
histone core (octamer)

e 2(H2A/H2B) + (H3/H4),
— 11 nm fiber (“beads on a string”)
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Set of 46 homologous chromosomes of the human male




Functional DNA sites — Telomere & Centromere

Vetaohase chromosome

Centromere
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Chromatid

Schematic and electron micrograph of X chromosome.

« Telomeres protect the ends.

e Centromere is at the primary constriction. It mediates
chromosome cohesion, spindle attachment and
chromosome segregation.



The organization of genes on a human chromosome.
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Analysis of transcriptional rate in open chromatin in human

Cel IS (mesure of RNA produced at a given transcription site on the chromosome).

H3K27ac
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Epigenetic footprint
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Methylation of Cytosine in DNA

Cytosine methylation
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DNA methylation and transcription control:

e Small percentages of newly synthesized DNAs (~¥3% in mammals) are chemically
modified by methylation.

e  Methylation occurs most often in symmetrical CG sequences.

e Transcriptionally active genes possess significantly lower levels of methylated DNA
than inactive genes.

o A gene for methylation is essential for development in mice (turning off a
gene also can be important).

o  Methylation results in a human disease called fragile X syndrome; FMR-1
gene is silenced by methylation.
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Critical CpG Sequences in CpG Islands Near Promoters

Genomic distribution of DNA methylation

Methyl-Cytosine
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Cytosine Methylation Maintains Inactive-Condensed
Chromatin State

Cytosine methylation
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5mC mapping technique

Me-DIP-Seq: Methylated DNA ImmunoPrecipitation Sequencing
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5-Methyl Cytosine is Found in Heterochromatic Regions
The distribution of cytosine methylation in mammals

+ Heterogeneity visible at cytogenetic scale

+ Associated with heterochromatic regions




Genomic imprinting:
inactivation of maternal or paternal genes
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Methylation of H19 inactivates transcription

(involved in expression of insulin like growth factor)

b) Paternal chromosome

Activator activates Igf2 transcription

S b - T e

> { —-{;Ctivator e
" cannot activate .
v e H189 transcription .
R PP & LA LA
| /. e /.

/ 7ibg,
J

Insulator H10 e Enhancer



Maintenance of Cytosine Methylation

Establishment and maintenance

Replication

.
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Maintenance methylation
Dnmt1




Passive Demethylation of 5-Methyl-Cytosine

Establishment and maintenance

Replication

L

Maintenance methylation




Establishment and Maintenance of
Cytosine Methylation

Establishment and maintenance

Replication

-

M;aintenance methylation
Dnmti



Some DNA Methyl Transferases are Essential

Cytosine methylation in mammals

+ (Gene expresesion

*» Chromosomal stability
» Cell differentiation

+ |Imprinting

« X-Inactivation

« Carcinogenesic

« Aging




Mechanisms of germline reprogramming

Post-fertilization reprogramming Germline reprogramming

Imprint maintenance

Maintenance at some |AP
elements and rare single-copy loci
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Methylated DNA from Zygote to Adult

Differentiated cells become
more restricted in their potential
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Epigenetic mechanisms that
maintain cell identities during
development and throughout life
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Maintaining chromatin states through the cell cycle.

a Replicating heterochromatin (S phase)
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Major carriers of epigenetic information

e Heterochromatin com ponents: megabasesized repetitive DNA domains

coated in a specific histone H3K9 trimethylation mark. Heterochromatin components can
both write and read the H3K9me3 mark and compact their target chromatin.

o Poncom b protei NS: Polycomb (PcG) and Trithorax:two antagonistic groups that

maintain the memory of spatial patterns of expression of genes throughout development,
(maintenance of developmentally or environmentally programmed expression states)

e Noncodi Ng RNAS: Many different classes and function. They are also involved in

the regulation of chromatin architecture.

e DNA met hyI ation: involve specific proteins that recognize CpG hemimethylated
DNA and thereby redeposit DNA methylation on newly replicated DNA.




Non-coding RNA

Short interfering RNA (siRNA)

Micro RNA (mir RNA)
Double-stranded RNA (ds RNA)
Short heterochromatic RNA (sh RNA)

transcripts from repeated sequences (ALU, LTR)



Non-coding RNA

How many different microRNA genes are there?

C. elegans ~ 40,000 pairs of hairpins
35,697 had the minimal conservation
to receive MiRscan score.
+ 15 000 miRNAs were identified

D. melanogaster ~ 436,000 pairs of hairpins
118,000 structure with high score
+8000 miRNA genes identified in 2019

Human ~ 800,000 pairs of hairpins
15,000 have a minimal conservation
to receive MIRscan score ( non-coding regions)
+2300 miRNA genes identified in 2019



Non-coding RNA

How is MicroRNA Activity Regulated?

*miRNAs have diverse temporal and quantitative
expression profile

*miRNA genes are known to reside in local genomic
clusters with possible operon-like organization



Non-coding RNA

MicroRNAs and Short Interfering RNAs Might Use the Same RNA
Processing Complex.

MicroRNA gene Transposons , transgenes,
- - - - viruses, heterochromatic DNA...

Primary transcript
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The micro-
RNA (miRNA)
precursor folds
back on itself

Hydrogen

bond

Non-coding RNA
What Do MicroRNA Do ?

Dicer cuts dsRNA
into short segments

One strand of
mMiRNA associates
with protein.
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Non-coding RNA
What Do MicroRNA Do ?

Active chromatin

Histone methylation directed
by heterochromatic siRNAs

¥ % % % %
Silent chromatin
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Interplay between different epigenetic strategies

DNA methylation
Histone deposition _ . < Chromatin
and exchange —* Histone code —* remodeling

I

Nuclear Untranslated
organization RNA

Current Opinion in Genetics & Development

Margueron ,Current Opinion in Genetics & Development (2005)



