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Phenotypic plasticity

vironme > Phenotype 1

Genotype

onme > Phenotype 2

« the property of a given genotype to produce different phenotypes in
response to distinct environmental conditions » (Pigliucci, 2001)



Examples of phenotypic plasticity

(Pfennig et al., 2010)



Phenotypic plasticity and adaptation to
environmental fluctuations

Winter

Snow hare



Polyphenisms vs Polymorphisms

“In order to make the term ‘polymorphism’ more useful and precise, there is
now a tendency to restrict it to genetic polymorphism. Since this would leave
nongenetic variation of the phenotype without a designation, the term
‘polyphenism’ is here proposed for it. Polyphenism is discontinuous when
definite castes are present (certain social insects) or definite stages in the life
cycle (larvae vs. adults; sexual vs. parthenogenetic) or definite seasonal forms
(dry vs. wet; spring vs. summer). Polyphenism may be continuous, as in the
cyclomorphosis of fresh-water organisms and some other seasonal variation.”

(Mayr, 1963)



Canalization

Canalization describes the ability of a organism to maintain the wild-type
phenotype despite genetic and environmental variations (Waddington 1942;
see also Schmalhausen 1949).

Environmental canalization can be seen as the opposite of phenotypic
plasticity (Flatt, 2005).

However, environmental canalization and phenotypic plasticity are not
mutually exclusive:

- Polyphenisms can be robust (canalized): no intermediate phenotype
observed between alternative morphs.

- A plastic molecular response to environmental variation can be used to
maintain the phenotype.

Role in evolution: release of accumulated cryptic genetic variation upon
decanalization.



The reaction norm: a major tool to
represent phenotypic plasticity

The reaction norm: graph representing the phenotype as a function of
the environment

First drawn by Woltereck (1909) who however mis-interpreted them as
the distinction between Genotype and Phenotype was made only in 1911
by Johannsen.
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Analyses of reaction norms (using Analysis of Variance)
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The genetics of phenotypic plasticity:

The idea that plasticity is under genetic control was initially
developed by Bradshaw (1965)

Two genetic mechanisms were proposed (Via, 1995):

-allelic sensitivity

-gene regulation

But these to categories may blur.



How is the environmental cue perceived
and integrated in gene regulatory network?

Shade avoidance in plants:
role of phytochromes in plants: detection of Red/Far Red ratio
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Environmental conditions can strongly
affect the transcriptome

Study of Drosophila adults
transcriptome in 20 different
environmental conditions: 15% of
expressed genes show
transcriptional plasticity (Zhou et
al., 2012).
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Environmental conditions modulate the expression of
developmental regulatory genes:

Bicyclus anynana polyphenism

Dry season form Wet season form
17°C 27°C

(Brakefield et al., 1996)



Distalless expression modulation in the butterfly Bicyclus anynana
correlates with wing eyespot plasticity (Brakefield et al., 1996).
Functional analyses show that ODistalless is involved in eyespot
formation (Monteiro et al., 2013).
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Mapping genetic variation for plasticity:
example of size thermal plasticity in Drosophila
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Identification of SNPs affecting size thermal plasticity or size
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Epigenetic bases of phenotypic plasticity

Epigenetics: The study of mitotically and/or meiotically heritable changes in
gene function that cannot be explained by changes in DNA sequence" (Russo et al. 1996)

High fat diet induced chromatin remodeling in
mouse liver (Leung et al., 2014).

Casts in the carpenter ant Camponotus floridanus
and histone acetylation (Simola et al., 2012, 2016).

Honeybee casts and DNA methylation (Kucharski et
al., 2008).




Effect of inactivation of DNA methyl transferase
Dnmt3 in the honeybee
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Difference of DNA methylation between honeybee casts

Over 550 genes show differential methylation in queen and worker brains.
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Hormonal bases of phenotypic plasticity

Corticotropin releasing hormone and reduction of

developmental time in desiccating environment in
amphibians (Denver, 1997).

Ecdysone and Bicyclus anynana eyespot plasticity
(Monteiro et al., 2015).

Insulin and nutritional plasticity in Drosophila (Tang
et al., 2011).



The Insulin pathway in Drosophila
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Nutritional plasticity differs between appendages
in Drosophila
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The imaginal discs of Drosophila

R b 1251, B
1

o -

‘_,éély .

SOOI v s Al

o <
ADULT i
wm ‘,},m!/‘ ¢ =
B prothoracic disc cl labl «'}""Vg vil =
ypeo-labral bud atd vill =
wing disc 4 &=
I wing = eye-antenna disc - &
I haltere disc I 1abial disc o8
- Ieg disc i @5;\,}4/;,:4'('/,'/,:-347:.}7/_ -;-_,_:_:_7’
~ abdominal histoblast vV e =

I genital disc

(Hartenstein, 1993)



Loss of activity of the insulin pathway has
different effects depending on the appendage in
Drosophila
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Differential expression of foxo explains the difference of
nutritional plasticity between the wing and the genitals
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Artificial selection on phenotypic plasticity in Manduca sexta

Heat-shocked b/ack mutant

(Suzuki and Nijhout, 2006)



Artificial selection on phenotypic plasticity in Manduca sexta
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Artificial selection on phenotypic plasticity in Manduca sexta
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Artificial selection on phenotypic plasticity in Manduca sexta
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The monophenic line has a reduced JH sensitivity at high temperature.

The polyphenic line has a higher juvenile hormone (JH) titer at high temperature;
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Genetic assimilation of ether induced Bithorax phenocopies

Wild-type fly

Bithorax phenocopyK(/\ f;; Y




Selection for increased and decreased proportions of ether

induced Bithorax phenocopies
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Ether induced Bithorax phenocopies correspond to loss
of expression of Ubx

(Gibson et Hogness, 1996)



Frequency of phenocopies (%)

Selection of Ubx alleles during genetic assimilation of the
Bithorax phenotype
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Genetic assimilation in the polyphenic butterfly
Bicyclus anynana

17°C 27°C
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(Brakefield et al., 1996)



Genetic assimilation

Defined by Waddington (1952, 1959):

Environmental changes can reveal cryptic genetic variation and induce new
phenotypes in some individuals.

This genetic variation can be selected allowing to fix a phenotype initially
observed only in particular environmental conditions.

Some of Waddington's experiments were repeated with isogenic or
outbred stocks and it was shown that genetic variation was necessary for
genetic assimilation (Bateman, 1959).

However, in a recent study, it was shown that de novo mutation induced
by the environment (heatshock) can be involved in genetic assimilation
(Fanti et al., 2017).



The idea that an ancestral plastic species can be at the origin of
divergent species after fixation of the alternative morphs has been
proposed by West-Eberhard as "the flexible stem hypothesis" (2003).

ancestral plastic species

daughter species 1
Phenotype

daughter species 2

Environment 1 Environment 2

It is based on genetic assimilation discovered by Waddington.
The “flexible stem hypothesis” is close to the ‘“plasticity first
evolution” model.



Plasticity first evolution in cichlid fishes
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Plasticity first evolution in the lizard Uta stansburiana
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The environment in the genotype-phenotype relation

Phenotypic Environmental Genetic
plasticity canalization compensation
(Grether, 2005)
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Phenotypic plasticity is not always linked to
differential gene expression

Influence of carotenoids present in the diet on pigmentation

(Price, 2006)
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Drosophila and temperature

In Drosophila temperature affects many
traits:

Developmental rate,
Size,

Ovariole number,
Bristle number,
Reproductive diapause,

Pigmentation

(Bouletreau-Merle et al., 2003; David et al., 2004;
Schmidt et al., 2005; Trotta et al, 2006).



Temperature sensitivity of female abdominal pigmentation

Drosophila melanogaster, isogenic line w8



Reaction norms of female abdominal pigmentation
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(Gibert, Mouchel-Vielh et al., PLoS Genetics, 2016)



Transcriptome analysis at 18°C and 29°C in young
adult female posterior abdominal epidermis

Log2 Fold
Change o
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Normalized mean
3000 transcripts=2097 genes (p<0.05), 200 transcripts (p<1E-10)



Cuticular pigment synthesis pathway

L-aspartic acidm p-alanine Dopamine melanin
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The expression of several pigmentation enzyme genes is
modulated in pupal abdominal epidermis
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The expression of expression of tanis dramatically modulated
by femperature in the abdominal epidermis of freshly hatched
females
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tan expression is modulated by temperature

(Gibert, Mouchel-Vielh et al., PLoS Genetics, 2016)



Modulation of tan expression by temperature is
essential for female abdominal pigmentation
plasticity

18°C 29°C

control at 18°C control at 29°C

tan LOF at 18°C tan GOF at 29°C

(Gibert, Mouchel-Vielh et al., PLoS Genetics, 2016)



The effect of temperature on tan expression
is mediated by the tan-MSE enhancer

Structure of tan genomic region
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GFP expression in a tan-MSE GFP line is sensitive to temperature
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FAIRE (Formaldehyde Assisted Isolation of Regulatory
Element)-qPCR shows that +_MSE is less compacted

than vg enhancer
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Epigenetic marks analysed in tan region

H3K4me3 Promoter Active genes

H3K27ac Enhancer Active enhancer



t MSE is enriched in H3K27ac, but this mark is not modulated
by femperature
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H3K4me3 on tan promoter is strongly modulated
by temperature
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Complexes involved in H3K4 methylation

ps40
('ﬁs‘(\()
= eps2s
ySetl /COMPASS
apRas
Yeast Setl/COMPASS
I \
I \
\
. \
! \
I ~d

\ 4

dUTX

R .
Ppy30
PTIP Trithorax-related

llpf\ ] dNC()f\(‘

Drosophila Trithorax Drosophila Trithorax-related

Drosophila Setl/COMPASS dCOMPASS-like dCOMPASS-like

H3K4m2, 3 H3K4mel, 2, 3 H3K4mel

(Mohan et al., 2011; Herz, et al., 2012; Hallson et al., 2012; Tie et al;, 2014; Smith et al., 2004)



Female pigmentation phenotypes of H3K4 methyl-transferase LOF
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The H3K4 methyl-transferase Trithorax is involved in female
abdominal pigmentation and tan requlation
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yellow expression is modulated by temperature at the pupal stage

In situ hybridization revealing yellow mRNA
(Gibert et al., Scientific Reports, 2017)



tan and yellow are both involved in abdominal pigmentation plasticity

WT UAS-y/pnr-Gal4

WT

UAS-t/+;
pnr-Gal4/+

(Gibert et al., Scientific Reports, 2017)



Conclusions

tan temperature sensitive expression plays a major role in female abdominal
pigmentation plasticity. Modulation of yellow expression by temperature is

also involved.

The effect of femperature on tan expression is mediated at least partly by
t_MSE. However we did not detect modification of chromatin structure on

+_MSE.

In contrast H3K4me3 level is strongly modulated by temperature on tan
promoter.

The H3K4me3 methyl-transferase involved is likely Trithorax as it
regulates female abdominal pigmentation, tan expression and H3K4me3
level on tan promoter.
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Phenotypes of the Dark and Pale lines at different temperatures
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(De Castro et al., PLOS Genetics, 2018)



Reaction norms of the Dark and Pale lines
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Effects of the different chromosomes of the Dark and Pale lines on pigmentation
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The third chromosome plays a major role in the difference of
pigmentation between the Dark and Pale lines
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bab, a major QTL for female abdominal pigmentation
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bab and sex-specific pigmentation
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Genotyping of the F2 of a Dark x Pale cross shows that
the bab locus is linked to the pigmentation phenotype
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Comparison of the activities of bab dimorphic enhancers from the Dark and
FPale lines

18°C 29°C

bCRE°nEGFP

bCRE“nEGFP

(De Castro et al.,, PLOS Genetics, 2018)
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Impact of genetic variation in the enhancer on its activation by AbdB
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Impact of genetic variation in the enhancer on its activation by AbdB

A e
6
18°C 29°C T
D&-*l-
110.- ws= bCRE?-nEGFP 110 - GXT**
e bCRE -nEGFP GxD***
.é 90+ g 90 - DxT***
= = GxTxD*
g 701 £ 70
£ -
a.
5 507 G 0 w bCREP-nEGFP
. S 3p. wss bCRE’-nEGFP
10 r T ) 10 .
1 2 3 1 2 3
Abd-B dose Abd-B dose
Ea 13
A7 18°C 29°C S
350 - ; o
s BCRED -nEGEP e g:a NS
g 250 .é 250 GXTxD*
a. Q.
§ 200 -+ § 200 -
< 150 1501 e HCREP-nEGFP
s bCREP-nEGFP
100 : : : 100 : : .
1 2 3 1 2 3
Abd-B dose Abd-B dose

(De Castro et al., PLOS Genetics, 2018)



AbdB expression is not modulated by femperature

Abd-B relative expression
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babl and bab2 expressions are different between the Dark and Pale lines
and modulated by temperature

bab1 relative expression
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bab represses tan via the +_ MSE

Cuticle phenotype
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Analysis of tan expression in the Dark and Pale lines
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Analysis of tan expression in the Dark and Pale lines

t relative expression

16 -

12 -

08 -

04 -

G**

Tlll**

GxT(*)

e Dark

s Pale

18°C

29°C

(De Castro et al., PLOS Genetics, 2018)



Model

___ _(Abd-B @

bab *

Trx

\

_._> t* @

Vi

Melanin production

pus— T

(De Castro et al.,, PLOS Genetics, 2018)



Interestingly, genetic variation in tan t+-MSE and bab dimorphic
element is involved in within and between Drosophila species
pigmentation variation (Bastide et al., 2013; Yassin et al., 2016; Jeong
et al., 2008; Rogers et al., 2013).

This suggests that the temperature sensitivity of these regulatory
sequences turns them into evolutionary hotspots by facilitating the
selection of the genetic variation they carry.
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