Manipulating DNA

What can we do with DNA ?

What can we do with DNA ?

Extract, purify

Make more

Amplify Clone Synthesize

Examine

Quantify Examine length Stain, probe Sequence Examine 3D structure Measure physical properties of DNA molecules

Modify

Cut Ligate Recombine fragments Introduce foreign DNA Mutate

Extract DNA

Break cells, remove lipids and proteins,

precipitate DNA, remove liquid, resuspend in aquaeous solution

Be aware of contaminants!

Extract DNA

Break cells, remove lipids and proteins,

precipitate DNA, remove liquid, resuspend in aquaeous solution

Be aware of contaminants!

(DNA from mitochondria, viruses, bacteria, researcher, symbionts...)

Amplify DNA

Mix: Genomic DNA Probes (oligonucleotides) Nucleotides Taq polymerase Ions (MgCl2)

Cycles of Denaturation, Annealing, Elongation

PCR: Polymerase Chain Reaction

Amplifies DNA fragments of between 0.1 and 10 kb (up to 40 kb)

Amplify DNA

Polymerase chain reaction - PCR

- **Denaturation** at 94-96°C
- 2 Annealing at ~68°C

Elongation at ca. 72 °C

Cloning vs. PCR

Amplify DNA

DNA fragments 5 kb-15 kb: plasmids in bacteria ~10 kb: lambda phage-based vectors Up to 40 kb: fosmids in bacteria ~100-300 kb: bacterial artificial chromosomes (BAC)

Cut DNA with restriction enzymes

Blunt ends, 3' protruding ends, 5' protruding ends

Cut DNA with restriction enzymes

Examine length of DNA

TAE (Tris-acetate-EDTA) buffer

Ligate DNA

Fragments have to be phosphorylated but only on one strand Dephosphorylate the vector to inhibit selfcircularization

Probe DNA: Fluorescent In Situ Hybridization

Probes for telomere sequences

Sanger sequencing

120

800 bp long Starts based on oligonucleotide (primer) ~4 euros per reaction

Dye terminator sequencing

McGovern 2015

130

GTGTGAGCTGTGATCGGT

Ding et al 2015

Illumina sequencing

For transcriptome: 2x 75 bp For whole genome: 2x 150 bp https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/2-channel-sbs.html

Output of Illumina sequencing

Recombine DNA: Gibson cloning

Prepare fragments using PCR and special primers

Synthetize DNA

Gene Synthesis Service Options

Types	Gene Length	Price (No hidden charge promise) †	Starting Turnaround Time (Business Days) *	Starting Turnaround Time with Plasmid Prep Service (Business Days)
Standard Gene Synthesis ^{Guaranteed}	≤ 8 kb	View your discounted price online in as short as 1 minute	8	10
Fast Gene Synthesis ^{Guaranteed}	≤ 5 kb		7	9
Rush Gene Synthesis ^{Guaranteed}	≤4 kb		4 ^{US} Manufacture	6 ^{US Manufacture}
GenPlus HT Gene Synthesis	≤ 3 kb		18	20
GenPlus Economy Gene Synthesis	≤ 8 kb		15	17
GenBrick [®] Gene Synthesis	> 8 kb		23	25

Introduce foreign DNA

most widespread transgenic crop in 2005-2015 = soybean resistant to glyphosate

https://openwetware.org

What can we do with DNA ?

Extract, purify

Make more

Amplify Clone Synthetize

Examine

Quantify Examine length Stain, probe Sequence

Modify

Cut Ligate Recombine fragments Introduce foreign DNA Mutate

CRISPR

Can recognize and cut a specific DNA sequence (recognized by guide RNA) More versatile than restriction enzymes, Zn finger nucleases and transcription activator-like effector nucleases (TALENs).

Gene is disrupted

Gene has a new sequence

Creating mutants with CRISPR/Cas9

GAGTTCTACAGCGTGAACCACATCAACCAGACGTACGAGTTTGTGCAGCGGATGCG	Wild type
GAGTTCTACAGCGTGAACCACATCAACCAGACGTACGAGTTTGCAGCGGATGCG	
GAGTTCTACAGCGTGAACCACATCAACCAGACGTACGAGTAGCGGATGCG	
GAGTTCTACAGCGTGAACCACATCAACCAGACGTACGCAGCGGATGCG	Deletion
GAGTTCTACAGCGTGAACCACATCAACCAGACGTACAGCGGATGCG	
GAGTTCTACAGCGTGAACCACATGCGGATGCG	ſ
AGTTCTACAGCGTGAACCACATCAACCAGACGTACGAGTTTGTGACAGCGGATGCG	
TACAGCGTGAACCACATCAACCAGACGTACGAGTTTGTGGCTTTAAAGCGGATGCG	
CAGCGTGAACCACATCAACCAGACGTACGAGTTTGTGCAAGGAAACTGCGGATGCG	Insertion

Agraulis vanillae

Reed et al. 2017

The first CRISPR food

has concluded that your CRISPR/Cas9-edited white button mushrooms as described in your letter do not contain any introduced genetic material. APHIS has no reason to believe that CRISPR/Cas9-edited white button mushrooms are plant pests"

"Animal and Plant Health

Inspection Service (APHIS)

Deletion in 1 of the 6 polyphenol oxidase genes Reduction of 30% polyphenol oxidase activity

FDA does not consider CRISPR-edited food as GMO

Cattle advanced reproductive technologies: somatic cell nuclear transfer cloning (SCNT), embryo transfer (ET)

https://www.frontiersin.org/files/Articles/593154/fgene-12-593154-HTML/image_m/fgene-12-593154-g001.jpg

CRISPR-edited hornless cows were supposed to be exempt of transgenes

Expected Obtained Sequence Sequence HORNED + HORNED (duplication) Plasmid backbone (-) with ampicillin-R and neomycin-R genes Second copy of template

Young 2019 Nature Biotechnolgy

Regulation about CRISPR-edited organisms in Europe and the US

Augustin Martin

- For Crops : No legal framework : **co-regulation** by the USDA, FDA and EPA
- What matters is the **final characteristics** of the genetically edited organism
- 2020 USDA-APHIS' "SECURE" initiative : disregulation of gene-edited organisms with mutations that could have naturally occurred (CRISPR-induced SNP or addition of an endemic gene)
- Considers this type of gene editing to be an acceleration of what is naturally occurring

« The newest of these methods, such as genome editing, **expand traditional plant breeding tools** (...) potentially saving years or even decades in bringing needed new varieties to farmers. »

Secretary of State Perdue for the USDA

 CRISPR-edited animals are evaluated as animal drugs by the FDA : strict safety evaluation

In Europe

 Major judgment : ECJ "Confédération paysanne" 2018 ruling

« The Court considers that the risks linked to the use of these new mutagenesis techniques might prove to be similar to those that result from the production and release of a GMO through transgenesis »

- What matters is the process through which crops are obtained
- Concluded that **mutagenesis and transgenesis** are similar according to
 - Their potential danger
 - The rate of production
 - Their action of "denaturing" the genome
- CRISPR-edited crops and animals: regulated as GMOs
- Considers gene editing to be an **unnatural** modification of the genome

Numerous plants modified using CRISPR

Korotkova et al. 2019

The first CRISPR-edited foods are not "to save the world"

Herbicide-tolerant oilseed rape

(in 2015, the German authorities authorized the release of oilseed rape developed by the US company CIBUS without being regulated as genetically engineered.)

Soybean with modified fatty acid composition Potato with improved storage capacity at cool temperatures "Waxy" maize with a modified starch composition Herbicide-tolerant flax Sweeter-tasting strawberries Seedless tomatoes

Making plants that are resistant to drought or salt requires exogenous genes

The coding loci of evolution and domestication: current knowledge and implications for bio-inspired genome editing

Virginie Courtier-Orgogozo^{1,*} and Arnaud Martin²

J. Exp. Biol.

Ongoing CRISPR clinical trials In Vivo **Ex Vivo** Cells are taken from the patient Genes are Gene is modified transferred in the lab into cells while still in the patient Cells are transferred back into the patient

Retina disease First CRISPR trial in March 2020 BRILLANCE trial, Editas

Sickle Cell Disease Beta-Thalassemia

Fundamental research is important

bacteria Thermus aquaticus

CRISPR-based gene drive

What is gene drive?

A novel biotechnology under development which aims to bias inheritance and control disease vectors, invasive species and other pests.

Public health, agriculture, conservation biology

"A natural phenomenon in several species" (Austin Burt, 2020)

Rode et al. 2019

Normal reproduction

Gene drive

How a gene drive construct copies itself

1rst gene drive organisms

GENOME EDITING

Science, April 2015

The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations

yellow 417 418 411 410 HA1 vasa-Cas9 U6:3-y1-gRNA HA2 F **y**⁺ ♂ y⁻♂ **y**⁻♀ mosaic Q **y**⁺ ♀ total VMCR & X V+Q 0 40 50 1 91 0

11

2

6

436

Valentino M. Gantz* and Ethan Bier*

VMCR Q X V+3

214

203

Mosquitoes without parasites

PNAS, November 2015

Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi

Valentino M. Gantz^{a,1}, Nijole Jasinskiene^{b,1}, Olga Tatarenkova^b, Aniko Fazekas^b, Vanessa M. Macias^b, Ethan Bier^{a,2}, and Anthony A. James^{b,c,2}

Sterile mosquitoes

Nature Biotechnology, décembre 2015

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*

Andrew Hammond¹, Roberto Galizi¹, Kyros Kyrou¹, Alekos Simoni¹, Carla Siniscalchi², Dimitris Katsanos¹, Matthew Gribble¹, Dean Baker³, Eric Marois⁴, Steven Russell³, Austin Burt¹, Nikolai Windbichler¹, Andrea Crisanti¹ & Tony Nolan¹

Various gene drives

Low threshold drives High threshold drives Integral drives Tethered drives Split drives Daisy drives Under-dominant drives Sex-limited drives

. . .

Raban et al, JEB 2020

A - Population Modification

"Outcome conceptually similar to "vaccinating" pest populations" (Luke Alphey, 2020)

"Agronomic science has been modifying crops to increase productivity or resistance to pests or pathogens.

Gene drive now allows manipulating **pests**."

Agricultural pest control with CRISPRbased gene drive: time for public debate

Should we use gene drive for pest control?

Virginie Courtier-Orgogozo¹, Baptiste Morizot² & Christophe Boëte³

EMBO J. 2017

Various applications of Gene Drive

(A) ERADICATION DRIVES

spreading strongly deleterious mutations in invasive populations

Eradicating invasive pest species

Eradicating invasive disease vectors

(B) SUPPRESSION DRIVES

spreading mildly deleterious mutations in invasive populations

(C) RESCUE DRIVES

spreading beneficial mutations in endangered populations

Eradicating invasive black rats that threaten the kereru (New Zealand pigeon) and other endemic species in New Zealand (NASEM 2016) *Image: David Mudge; Ngā Manu Nature Images*

Eradicating invasive mosquitos, vector of avian malaria in Hawaiian honeycreeper birds (NASEM 2016) *Image: Sean McCann; Flickr*

Reducing the height of invasive common ragweed to decrease its competitive pressure on native plants (Neve 2018) *Image: Ashley Bradford; inaturalist.org*

Protecting lowland leopard frogs from highly pathogenic fungus (Esvelt et al 2014) *Image: Brian Gratwicke; Flickr*

Two advanced gene drives

Drosophila suzukii

Invasive pest species

Scott et al. 2018

Anopheles mosquitoes Vector of malaria

https://targetmalaria.org

Risks and ethical issues associated with gene drives

What is novel about gene drive?

Several DNA pieces assembled together Eukaryote cis-regulatory regions with bacteria coding regions

Manipulates the 2 pillars of evolution

- mutation
- transmission
- -> can bypass selection and spread deleterious alleles

Potentially more effective than other biotechnologies

- ease of use
- speed of change
- unprepared regulatory environment

Classical Darwinian Evolution

http://evolution.berkeley.edu

What are the risks?

Molecular off-targets

Propagation to non-target populations

Propagation to non-target species

Consequences for ecosystems

Failure of counter-measures

What are the risks?

Molecular off-targets

Propagation to non-target populations

Propagation to non-target species

Consequences for ecosystems

Failure of counter-measures

Evaluating the probability of CRISPR-based gene drive contaminating another species

Risk of hybridization

Drosophila suzukii

Invasive pest species

D. subpulchrella India, South East Asia, China, Japan *D. pulchrella* India, South East Asia, southern China

temperate tropical

Anopheles mosquitoes Vector of malaria

An. gambiae s.s. An. arabiensis An. coluzzii An. amharicus An. melas An. merus An. bwambae An. quadriannulatus

Need to stop a drive? Use another one!

CORRESPONDENCE

Nature Biotechnologies, Feb 2016

Bing Wu^{1,2}, Liqun Luo¹ & Xiaojing J Gao¹⁻³

Cas9-triggered chain ablation of *cas9* as a gene drive brake

A brake is not guaranteed to stop an eradication drive

Rode et al., G3 2020

Gene drives: good or bad?

May eradicate diseases and pest species

Less expensive than other methods

Potentially faster than other methods

Potentially more powerful than other methods

Potentially less efficient than expected (resistance via mutations in the target site, cryptic species)

An uncontrolled system released in the wild

Impact on other species and ecosystems not quantified

etc.

Regulation

Falls under the GMO regulation

Cartagena Protocol: international agreement, established as a supplement to the Convention on Biological Diversity (CBD), which aims to protect biological diversity from the potential risks imposed by LMOs (*Living Modified Organisms=any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology*)

Researchers added extra safety rules in their laboratories

What to do if it goes wrong?

International regulation?

DOI: 10.4267/2042/70673

LE FORÇAGE GÉNÉTIQUE (GENE DRIVE) ET SES APPLICATIONS

GENE DRIVE AND ITS APPLICATIONS

Par Virginie COURTIER-ORGOGOZO⁽¹⁾

http://documents.irevues.inist.fr/handle/2042/70673

Florence Débarre Nicolas Rode Baptiste Morizot Antoine Danchin Pierre-Henri Gouyon Christophe Boete

@Biol4Ever