Noise, Cryptic Variation, Robustness, Quantitative Genetics, the Genotype-Phenotype Map

Virginie Courtier-Orgogozo Institut Jacques Monod, Paris

Human genetic diversity

Genome size: 2.9 Gb Gene number: 25 000 (1% of coding sequences)

In one individual: ~70 new mutations compared to his parents ~20 lethal mutations (heterozygous)

Genetic difference between two humans?

Genetic differences between humans and chimps?

Human genetic diversity

Genome size: 2.9 Gb Gene number: 25 000 (1% of coding sequences)

In one individual: ~70 new mutations compared to his parents ~20 lethal mutations (heterozygous)

Genetic difference between two humans?

~0.1%

Genetic differences between humans and chimps?

~4% (<1% for coding sequences)

99.4% human?

Banners by www.zephyr-tvc.com

From laboratory to "real-life" data

Natural variation

Domestication of laboratory strains

Saccharomyces cerevisiae

Arabidopsis thaliana

wildtype

Caenorhabditis elegans

Domestication of laboratory strains results in extreme phenotypic values for many traits: artificial selection and pleiotropy

Choice of laboratory environment

ca. 10-20 years ago: surprise at not finding phenotypes in gene knockouts

The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes

Maureen E. Hillenmeyer, et al. Science 320, 362 (2008);

1144 growth environments for *S. cerevisiae*

Laboratory mutations

- Not in nature
- Extreme effects
- Would likely be lost under selection
- Must be induced

- Interrogates (nearly) all regions
- Readily cloned
- Strong effects

QTL

- Representative of nature
- Variants with small effects
- Sustained under selection
- Readily available
- Interrogates only variable regions
- Difficult to map
- Small effects

Quantitative genetics

Quantitative genetics

If to each genotype corresponds a distribution of phenotypes

 = variable expressivity
 <u>the character itself is quantitative</u>
 ^{% of} individuals

and/or

 If the variation of many genes is involved in the phenotypic difference between two strains/individuals the <u>segregation of the character is quantitative</u>

Quantitative Trait Loci (QTL) mapping

- QTL are specific genetic loci that affect quantitative traits.
- QTL can be detected by markers that are linked with it.

Two goals:

Identify the location of the QTL

Estimate the genetic effects of the QTL

Noise

Assortment of chromosomes from father and mother

Cancer cells will be BRCA1 -/-

Somatic mosaicism

73 somatic CNVs in 11 tissues of six persons

Somatic mosaicism used to reconstruct cell lineages

Behjati 2014 Nature

Female mosaicism X inactivation pattern

Somatic transposition in human brain

In three individuals:

in the hippocampus and caudate nucleus 7,743 somatic L1 insertions, 13,692 somatic Alu insertions and 1,350 SVA insertions

Baillie 2011 Nature

Developmental noise

Differences between left and right sides of the body

ear shape, neuron connectivity, olfactory receptor gene expression, X inactivation pattern, organ cell number and size...

Developmental noise

Differences between left and right sides of the body

ear shape, neuron connectivity, olfactory receptor gene expression, X inactivation pattern, organ cell number and size...

Differences between twins

immune system cells, gait, arms crossing, voice, heart beat, brain waves...

Some can be attributed to variation in the number of determinant molecules

During terminal differentiation of mouse 3T3-L1 pre-adipocytes, individual TF abundance differs dramatically (from ~250 to >300,000 copies per nucleus) and the dynamic range can vary up to fivefold during differentiation.

Simicevic 2013 Nature

Causes of phenotypic differences ?

Developmental noise can be "good"

Robustness

Robustness

Absence or low variation of a phenotype when faced with an incoming variation

- 1) Of what?
- 2) To what? To either:
 - stochastic variation
 - environmental variation: specify
 - genetic variation: specify

3) How much?

Different phenotypic metrics Coefficient of variation: standard deviation/mean

Historically: quantitative genetics (low variance, canalization) physics/chemistry/engineering (robustness, buffering)

Canalization: mechanisms that make the system follow a certain trajectory

Trait plasticity versus invariance (robustness) at different levels of the genotype-phenotype map

Felix & Barkoulas 2015

b Experiments

Felix & Barkoulas 2015

Causes of robustness

Non-linearity

Redundancy

Cryptic genetic variation

Cryptic genetic variation

First requires defining the *phenotype of interest*

Genetic variation that has no effect on phenotype of interest

... but may be revealed *under some circumstances* by its effect on this phenotype

Cryptic genetic variation (CGV) is defined as standing genetic variation that does not contribute to the normal range of phenotypes observed in a population, but that is available to modify a phenotype that arises after environmental change or the introduction of novel alleles.

Gibson & Dworkin *Nat Rev Gen* 2004

Expressivity of one mutation varies with wild genetic gackground

Dixon & Dixon Dev Dyn 2004

Epigenetics

An epimutation

Wild-type

Peloric

Methylated DNA

Absence of CYCLOIDEA proteins

Presence of CYCLOIDEA proteins

The Genotype-Phenotype Map

The first genotype-phenotype map

Intermediate steps in the genotypephenotype map

Gjuvsland et al. 2013

The genotype-phenotype-fitness map

The Epigenetic Landscape A metaphor for the G-P relationship

Development

Canalization

Genes underlying the landscape

Waddington 1957

A simplistic view

Heritable traits are not always due to genes

The genotype does not determine entirely the phenotype

> The genotype cannot replicate by itself

Genotype and phenotype imply variation

Cortical heredity in Paramecium

Laland 2015

Plasticity: one genotype \rightarrow **several phenotypes**

Daphnia

with helmet

Nemoria arizonaria caterillars

spring: caterpillars feed on catkins

summer: caterpillars feed on leaves

Water crowfoot plant

leaves growing above water

leaves growing below water

Commodore butterly: Michael Wild, CC-BY-SA-3.0 (winter), Svdmolen, CC-BY-SA-3.0 (summer)

helmet

Daphnia: Agrawal et al (1999)

Nemoria arizonaria caterillars: Sadava *et al* (2014)

Water crowfoot plant: J R Crellin, CC BY-NC-ND 3.0

Desert locusts

solitary

gregarious

Commodore butterfly

winter

summer

Complexifications of the G-P map

Genetic Linkage

Epistasis

Supergene

Pleiotropy

GxE Plasticity Large number of alleles Noise Robustness **Cryptic genetic variation Epigenetics**