Supporting Information for "The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation"

Arnaud Martin¹* and Virginie Orgogozo²

¹: Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, NY 14853, USA.

²: CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France.

*: to whom correspondence should be addressed;

E-mail: heliconiuswing@gmail.com

The Loci of Evolution catalog

This review is accompanied by a catalog of 1008 genetic variants of evolutionary relevance published up to December 2012 (see Supplementary Notes below), deposited in the DRYAD dataset repository (Martin and Orgogozo 2013). This list aims at being used as a bibliographical resource for the exploration of evolutionary genetics literature and for detecting emerging patterns in this fast-evolving field.

The "IL Hotspot" column associates three classes of interlineage hotspots (see Fig. 1D) to each orthologous group. *** (N=357): alleles of orthologous genes for which genotype-to-phenotype association was verified in a cross (Linkage Mapping) for at least two derived alleles. ** (N=254): alleles of orthologous genes where a derived allele was discovered by Linkage Mapping, or where all the entries are associated to Candidate Gene or Association Mapping approaches. * (N=57): putative hotspot genes associated to ambiguous orthology relationships or phenotypic similarities between lineages, shown here for heuristic purposes. Together, the most conservative interlineage hotspot classes (** and ***) span 111 orthologous groups that encompass 60.6% (611/1008) of the alleles in the dataset.

Supplementary Notes

The QTG program: chasing the loci of evolution

The power of geneticists to study variation has dramatically increased over the past two decades. Originally, Quantitative Trait Loci (QTL) mapping studies only aimed at identifying the genetic architecture of phenotypic variation with a subchromosomal resolution. Nowadays many studies aim at directly identifying the causative loci that trigger observable changes in phenotypes (Stern and Orgogozo 2008), and a flurry of technical advances in genomics has opened a Golden Age for this research program (Nadeau and Jiggins 2010). Mapping of natural variation on a large scale should provide a global overview of the genetic changes that constitute the molecular basis of phenotypic evolution. This so-called Quantitative Trait Gene (QTG) or Quantitative Trait Nucleotide (QTN) program (Stern and Orgogozo 2008; Rockman 2011) also benefits from the study of domesticated traits, which is informative about the genotype-phenotype map albeit under artificial conditions.

Two approaches for the QTG program

Biologists find the actual genetic variations that matter for evolution using two broad methodologies that have been classically referred to as "forward" (*syn.* "top-down") and "reverse" (*syn.* "bottom-up") genetic approaches. Forward genetics moves from a difference in phenotypes to the identification of genetic variants. This includes linkage mapping of quantitative and Mendelian traits segregating in crosses, and association mapping in individuals sampled from populations. In contrast, reverse genetics approaches move from the sequence level to differences in phenotype, and are usually based on *a priori* assumptions on gene function. In reality, most studies locate on a continuum between these two extremes: mapped genetic intervals almost always narrow down to a set of candidate genes, and conversely, candidate gene studies sometimes test *a posteriori* a genetic co-segregation with a phenotype. Thus the distinction is not

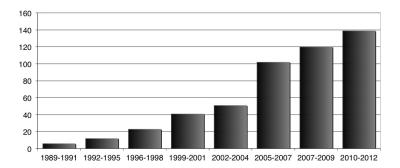
really operational, but it is important to keep in mind that bottom-up approaches are biased towards known genes and that top-down approaches are limited to comparisons between closely related lineages.

The data and its biases

The derivation of meaningful insights from the QTG program has lagged behind, and the swarm of data incites most reviews on the topic to focus on limited subsets of the literature. The need to summarize and classify such information is growing, as a panoramic view of the literature may not only allow the detection of general principles, but may also help us to identify knowledge gaps and define future axes of investigation. Here we synthesized research on the Loci of Evolution into a list of genes and alleles that have been reported to cause phenotypic variation between individuals at the micro- and macro-evolutionary time scales (Martin and Orgogozo 2013).

This updated catalog builds on a previous list of 395 mutations (Stern and Orgogozo 2008), and has now expanded to 1008 entries. To identify relevant studies, we used multiple search methods. We screened every issue of the major journals in evolutionary genetics for the last five years (update from (Stern and Orgogozo 2008), performed countless keyword searches on online search tools, and paid particular attention to citations in primary research articles as well as in review papers.

The list comprises findings from: 1) Linkage Mapping – (top-down) studies that verify genotype-phenotype co-segregation in crosses; 2) Association Mapping – (top-down) genome-wide association studies (GWAS) between between heterogeneous individuals from naturally reproducing populations (these are here limited to variants tightly linked to well-supported candidate genes). 3) Candidate Gene – (bottom-up) studies that, with various arguments, suggest a causal relationship between genotype and phenotype without co-segregation tests.


4

Importantly, we excluded candidate gene studies that lack evidence of sequencelevel change, and for instance, the proposed link between *BMP4* and the microevolution of beak shape in Darwin's finches (Campas et al. 2010) was ignored here, as its differential expression between beak morphs could be due to mutations in upstream regulator genes. To take experimental biases into account, we assigned to each evolutionary change one category among these three, that best reflects the type of evidence associating a given allele to a phenotypic effect.

We attempted to compile a comprehensive list of linkage mapping studies that identified genetic loci responsible for phenotypic evolution (Supplementary Figure 1) as these studies are initially blind in terms of genotype inferences and avoid spurious effects of gene re-discovery due to ascertainment biases. In contrast, the Candidate Gene and Association Mapping categories are still largely incomplete. With a few exceptions, "Candidate gene" studies that identified causal but fixed sequence differences between distant species have not been included. This is not only because compiling the relevant articles would require a unreasonable effort, but also because focusing on microevolutionary time scales avoids the confounding effect of cumulative changes over long times of divergence (see Stern 2000 for a discussion of "evolutionarily-relevant mutations"). We also note that the "Candidate Gene" category also reflects strong ascertainment biases inherent to this approach, as illustrated by the fact that MC1R alleles make a sixth of all entries in this category (70/413=16.9%). The "Association Mapping" category was purely the product of cherry picking, but we kept it for comparative and heuristic purposes. It consists of 101 well-supported variants isolated from genome-wide association studies, among which 55 entries concern human studies, 18 were found in domesticated species (mostly in dog), and 18 relate to experimental evolution studies (mostly in yeast). The catalog is thus primarily based on top-down studies, with about half (494/1008) of entries belonging to the "Linkage Mapping" category. It is also inherently biased towards

5

large-effect QTLs, the low hanging fruits of phenotypic variation (Rockman 2011), and towards shallow phylogenetic levels, because linkage mapping is not feasible in species that do not hybridize.

Supplementary Figure 1. Progress in the discovery of Loci of Evolution by Linkage Mapping. The vertical axis represents numbers of alleles in the main category of the dataset ("Linkage Mapping", 49% of entries in the list).

The list includes cases of domesticated, intraspecific and interspecific variation identified with reasonable confidence at a genic or sub-genic level in pluricellular organisms (plants and animals), as well as in yeasts. Repartition of traits into the broad categories "Physiology", "Morphology" and "Behavior" was assigned based on common sense (Stern and Orgogozo 2008), but inevitably contains some ambiguous cases (e.g. the effects of the Myostatin locus on muscular mass could equally be considered morphological or physiological). Studies of artificial selection (domestication; experimental evolution) were treated separately from natural cases. The "Taxonomic level: Domesticated" category includes examples that relate to adaptation to laboratory conditions (e.g. McGrath et al. 2011) but deleterious mutants obtained in the laboratory were excluded because they are actively maintained for research rather than from commercial use by breeders. However this later statement is not always easy to verify: for instance, it is not clear if the pea strains studied by Gregor Mendel should be considered as mutants or cultivars, but the recent mapping studies of pea color phenotypes were included here (Hellens et al. 2010; Moreau et al. 2012). Thus, the boundary between mutants and *bona fide* selected phenotypes can be blurry. We also

included gene variants that underlie traits considered syndromic in human and mice but maintained by breeders in other species, such as mutations underlying dwarfism in dogs (Parker et al. 2009), or predispositions to deafness linked to equine coat color phenotypes (Hauswirth et al. 2012).

Supplementary Tables

	Animals	Plants	Yeasts	total
Intraspecific	343	113	22	478
Interspecific	92	16	2	110
Intergeneric or higher	44	0	1	45
Domesticated	138	195	20	353
Experimental	5	0	17	22
total	622	324	62	1008

Supplementary Table 1. Number of Loci of Evolution according to their taxon level. The Loci of Evolution catalog (Martin and Orgogozo 2013) is enriched in studies of phenotypic variation between sibling populations, strains and closely-related species. Studies of artificial selection (domestication; experimental evolution) are treated separately from natural cases.

Locus	Mutation	Homoplastic lineages	Variation	Xenobiotic
Ace-1	Gly119Ser	5 (insects)	Intraspecific	Insecticides (organophosphorus)
ERG3	Trp205Stop	4 (yeast lines)	Experimental	Fungicide (nystatin)
ERG6	Gln44Stop Gly127Arg Tyr223Stop	3 (yeast lines) 4 (yeast lines) 4 (yeast lines)	Experimental	Fungicide (nystatin)
Esterase E3	Gly137Asp Trp251Leu/Ser	3 (flies) 2 (blowflies)	Intraspecific	Insecticides (diazinon) Insecticides (malathion)
Na,K-ATPase a	Asn122His Glu111Val Glu111Leu Iso315Val Thr797Ala	5 (insects) 3 (insects) 3 (insects) 2 (insects) 2 (insects)	Interspecific	Host plant toxins (cardenolides)
Nav1.4 channel	Glu945Asp Glu945Asp Glu945Asp	1 (pufferfish) 1 (snake) 1 (bivalve mollusk)	Interspecific Interspecific Intraspecific	Endogenous toxin (tetrodoxin) Salamander toxin (tetrodoxin) Plankton toxin (saxitoxin)
para (kdr)	Leu1014His Leu1014Phe Leu1014Ser Met918Thr Thr929lle	2 (insects) 11 (insects) 2 (mosquitoes) 5 (insects) 3 (2 moths, 1 louse)	Intraspecific	Insecticides (pyrethroids)
Rdl	Ala302Gly Ala302Ser	3 (insects) 11 (insects)	Intraspecific	Insecticides (cyclodienes)
Vkorc1	Leu128Ser/Gln Tyr139Cys	3 (rodents) 2 (rodents)	Intraspecific	Pesticide (warfarin)

Supplementary Table 2. Codon-level hotspots of evolution of resistance to **xenobiotics.** The third column denotes the inferred number of independent apparition of a given mutation (genetic homoplasies). See the Loci of Evolution catalog for references (Martin and Orgogozo 2013).

Locus	TF	Trait	Organism	Allelic seriesª	Variation
			Wheat	-	Domesticated
CBF	yes	Cold resistance	Barley	-	Domesticated
			Arabidopsis	-	Natural
			Turnip	yes	Domesticated
FLC	ves	Flowering time	Cabbage	-	Domesticated
120	yes	r lowening ame	Arabidopsis	yes	Natural
			Capsella	yes	Natural
FRI	no	Flowering time	Oilseed rape	-	Domesticated
	no	r lowening time	Arabidopsis	yes	Natural
			Sunflower	-	Domesticated
FT	no	Flowering time	Wheat	-	Domesticated
	no	Flowening time	Barley	-	Domesticated
			Ryegrass	-	Domesticated
	Arabidopsis		-	Natural	
Ghd7/ZmCCT	yes	Flowering time	Teosinte/Maize	yes	Both
ananzineer	yes	Flowening time	Rice	-	Domesticated
Hd1	yes	Flowering time	Rice	yes	Domesticated
PRR37/Ppd-H1	yes	Flowering time	Barley	-	Domesticated
r mom pa m			Sorghum	yes	Domesticated
			Wheat	-	Domesticated
VRN1	ves	Flowering time	Ryegrass	-	Natural
•••••	ycs		Barley	-	Domesticated
			Wheat	yes	Domesticated
			Barley	yes	Domesticated
ELF3/EAM8	no	Flowering time ^b	Rice	-	Domesticated
			Arabidopsis	yes	Natural
BADH2	no	Fragrance	Rice	yes	Domesticated
		-	Soybean	-	
GS5	no	Grain quality	Rice	yes	Domesticated
Opaque2	yes	Grain quality	Maize	yes	Domesticated
OsSPL16	no	Grain quality	Rice	yes	Domesticated
qSH1/RPL	yes	Grain shattering	Rice	-	Domesticated
-	,		Brassicacae	-	Natural
			Rice	-	
Sh1	yes	Grain shattering	Maize	yes	Domesticated
			Sorghum	yes	

Continued on next page

Gn1a	no	Grain yield	Rice	yes	Domesticated
GW2	no	Grain yield	Rice Wheat	-	Domesticated
TB1/IntC	yes	Grain yield	Teosinte/Maize Barley	yes -	Both Domesticated
VRS1	yes	Grain yield	Barley	yes	Domesticated
phytochrome B	no	Light sensitivity	Sorghum Arabidopsis	-	Domesticated Natural
ALMT	no	Metal tolerance	Rye Wheat	- -	Domesticated
НМАЗ	no	Metal tolerance	Rice <i>Thlaspi</i> Arabidopsis	- - yes	Domesticated Natural Natural
MATE1	no	Metal tolerance	Sorghum Maize	-	Domesticated
An2	yes	Pigmentation	Petunia	yes	Both
DFR	no	Pigmentation	Potato <i>lochroma</i> Morning glory	-	Domesticated Natural Natural
F3'5'H	no	Pigmentation	Potato Pea <i>lochroma</i> <i>Phlox</i> Wild soybean	- yes - -	Domesticated Domesticated Natural Natural Natural
F3'H	no	Pigmentation	Soybean Morning glory <i>Petunia</i>	yes - -	Domesticated Natural Natural
Rc	yes	Pigmentation	Rice	yes	Domesticated
Ruby	yes	Pigmentation	Orange	yes	Domesticated
VvMYBA1-3	yes	Pigmentation	Grapevine	yes	Domesticated
RHT/Dwarf8	yes	Plant stature ^b	Maize Wheat	- yes	Domesticated
Sd1	no	Plant stature ^b	Rice	yes	Domesticated
TFL1	no	Seasonal growth	Soybean Barley Wild strawberry	yes - -	Domesticated Domesticated Natural
Waxy	no	Starch properties	Rice Barley Millet	- - yes	Domesticated

Supplementary Table 3. Hotspots of variation in domesticated plants. Disease resistance traits are not included due to unclear orthology relationships between the corresponding loci (see Martin and Orgogozo 2013). Some cases of natural variation are included for comparison. TF: transcription factor; ^a: the allelic series category denotes the detection of multiple derived alleles of the same gene within one species. For instance, three independent mutations in *VRS1* result in six-rowed barley florets, revealing genetic homoplasy in independent selection events on grain yield (Ramsay et al. 2011); ^b: variants at these loci have pleiotropic effects on plant morphology and flowering time. See the Loci of

Evolution catalog for references (Martin and Orgogozo 2013). Note: color variation relates in particular to modulations of anthocyanin pigment biosynthesis through changes within clusters of transcription factors of the MYB R2R3 and bHLH families, and we refer to the Loci of Evolution catalog and to previous reviews on the topic for a more comprehensive overview (Allan et al. 2008; Streisfeld and Rausher 2011; Martin and Orgogozo 2013). In a nutshell, variations in fruit, flower and plant coloration repeatedly map in both cultivated and wild species to genes encoding transcription factors of the MYB R2R3 and bHLH families (Martin and Orgogozo 2013). Independent episodes of duplication and polyploidization complicate the orthology/paralogy relationships between these factors, somewhat confusing the inference of parallelism between species (Cooley et al. 2011) but this difficulty disappears at the intraspecific level. For instance, two independent transposable element insertions in the promoter of the MYB gene *Ruby* are each responsible for the temperature-dependent coloration of Sicilian and Asian varieties of blood oranges (Butelli et al. 2012). We refer to the Loci of Evolution catalog and to previous reviews on the topic for a more comprehensive overview (Allan et al. 2008; Streisfeld and Rausher 2011; Martin and Orgogozo 2013).

Locus	Trait	Organism	Allelic series*	Variation
ABCG2	Milk production	Cattle Sheep	-	Domesticated
Agouti/ASIP	Pigmentation	many	yes	Both
BCO2	Milk and fat color	Cattle Sheep	-	Domesticated
BMP15	Fertility	Sheep	yes	Domesticated
EDNRB	Pigmentation	Horse Quail	-	Domesticated
FGF5	Hair type	Cat Dog	yes -	Domesticated
FGFR1a	Scale loss	Carp	yes	Domesticated
HMGA2	Growth (body) Growth (body) Growth (ears, skin)	Dog Human Pig	-	Domesticated Natural Domesticated
КІТ	Pigmentation	Cattle Horse Pig	yes yes -	Domesticated
KITLG	Pigmentation	Human Stickleback	-	Natural
KRT71	Hair type	Dog Cat	- yes	Domesticated
MC1R	Pigmentation	many	yes	Both
MITF	Pigmentation	Cattle Dog Horse Quail	- yes	Domesticated
MLPH	Pigmentation	Cat Dog Quail		Domesticated
Myostatin/GDF8	Meat yield Meat yield Meat yield Racing performance Racing performance	Cattle Pig Sheep Horse Dog	yes - yes - -	Domesticated
OCA2	Pigmentation	Human Cavefish	yes yes	Natural
PMEL17	Pigmentation	Chicken	yes	Domesticated
PPAR-Delta	Growth (body) Growth (ears, skin)	Human Pig	-	Natural Domesticated
SLC45A2/MATP	Pigmentation	Chicken Horse Quail Human	-	Domesticated Domesticated Domesticated Natural
TYR	Pigmentation	Cat Human	yes	Domesticated Natural
TYRP	Pigmentation	many	yes	Both
Таqрер	Coat color pattern	Cat Cheetah	yes -	Both Natural

Supplementary Table 4. Hotspots of variation in domesticated animals

Asterisk: the allelic series category denotes the detection of multiple derived alleles of the same gene within one species. For instance, three independent mutations in *PMEL17* underlie strain-defining plumage color phenotypes in chickens (Kerje et al. 2004); the *KITLG* and *OCA2* loci are included here as hotspots of natural variation for comparison with other vertebrate pigmentation hotspots. See the Loci of Evolution catalog for references (Martin and Orgogozo 2013). **Note:** domesticated variation in pigmentation has been particularly well studied. Among 139 known alleles underlying vertebrate color variations, 67 relate to cases of domestication and the remaining 72 relate to natural cases, including in human. Most cloned genes that are associated to pigmentation variation are regulators of melanin synthesis in melanocytes. The melanocortin

receptor MC1R and its secreted antagonist Agouti/ASIP, which act as master switches for the synthesis of dark eumelanin, are well-established hotspots that contribute to 88 alleles out of 139 in the list of vertebrate pigmentation loci, and we refer to the Loci of Evolution catalog and previous review articles for a comprehensive overview of the topic (Manceau et al. 2010; Kronforst et al. 2012; Martin and Orgogozo 2013).

Locus	Trait	Organism	# of lofª	gene deletion nonsec	misse	frameshing	in-frame in d	rE insertion multiple types	Variation
		Heliothis moth	1			1			Intraspecific
ABCC2	Insecticide resistance	Plutella moth	1				1		Intraspecific
		Silkworm	1				1		Intraspecific
ABO	Blood type	Human	4	1	1	2			Intraspecific
AB0	Blood type	Chimpanzee	2				1	1	Intraspecific
An2	Flower coloration	Petunia	6	3		3			Interspecific [°]
		Horse (predomestic)	1			1			Intraspecific
Agouti	Pigmentation	Leopard	1	1					Intraspecific
		Asian Golden Cat	1	1					Intraspecific
		Helicoverpa moth	1	1					Intraspecific
BTR1	Insecticide resistance	Heliothis moth	1					1	Intraspecific
		Pectinophora moth	4		1	1	2		Intraspecific
DFR	Flower coloration	lochroma	1		1				Interspecific ^c
		Morning glory	1					1	Interspecific ^c
F3'5'H	Flower coloration	lochroma	1	1					Interspecific ^c
10011		Wild soybean	1		1				Intraspecific
FLC	Flowering time	Arabidopsis	1	1					Intraspecific
	r lowering time	Capsella	1			1			Intraspecific
FRI	Flowering time	Arabidopsis	19	5		10	1	3	Intraspecific
G6PD	Malaria resistance	Human	3		3				Intraspecific
НМАЗ	Tolerance to cadmium	Arabidopsis	5	1	4				Intraspecific
MC1R	Pigmentation	Cavefish	2		1	1			Intraspecific
OCA2	Pigmentation	Cavefish	2				1	1	Intraspecific
opsin	UV-range vision (loss)	Glaucomys squirrel	1			1			Intergeneric
SWS1		Pteromys squirrel	1				1		Intergeneric
TAS2R38	Gustatory sensation	Human	1		1				Intraspecific
14021100	Gustatory sensation	Chimpanzee	1	1					Intraspecific
Taqpep	Coat color pattern	Black-footed cat	1		1				Interspecific
тацрер		Cheetah	1			1			Intraspecific

Supplementary Table 5. Hotspots of evolution linked to coding loss-offunction mutations. Cases of repeated coding loss-of-function variants underlying natural variation. ^a: minimum number of known independent loss-offunction alleles ; ^b: frameshift mutations resulting in a truncated protein ; ^c: lossof-function variants that have been proposed to drive or reinforce reproductive isolation between phenotypes. See the Loci of Evolution catalog (Martin and Orgogozo 2013) for references and additional examples (*e.g.* MC1R variants).

Supplementary references

- Allan, A. C., R. P. Hellens, and W. A. Laing. 2008. MYB transcription factors that colour our fruit. Trends Plant Sci. 13:99-102.
- Butelli, E., C. Licciardello, Y. Zhang, J. Liu, S. Mackay, P. Bailey, G. Reforgiato-Recupero, and C. Martin. 2012. Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges. Plant Cell 24:1242-1255.
- Campas, O., R. Mallarino, A. Herrel, A. Abzhanov, and M. P. Brenner. 2010. Scaling and shear transformations capture beak shape variation in Darwin's finches. Proc. Nat. Acad. Sci. USA 107:3356-3360.
- Cooley, A., J. Modliszewski, M. Rommel, and J. Willis. 2011. Gene Duplication in Mimulus Underlies Parallel Floral Evolution via Independent trans-Regulatory Changes. Curr. Biol. 21:700-704.
- Hauswirth, R., B. Haase, M. Blatter, S. A. Brooks, D. Burger, C. Drogemuller, V. Gerber, D. Henke, J. Janda, R. Jude, K. G. Magdesian, J. M. Matthews, P.-A. Poncet, V. I. Svansson, T. Tozaki, L. Wilkinson-White, M. C. T. Penedo, S. Rieder, and T. Leeb. 2012. Mutations in *MITF* and *PAX3* cause Splashed White and other white spotting phenotypes in horses. PLoS Genet. 8:e1002653.
- Hellens, R. P., C. Moreau, K. Lin-Wang, K. E. Schwinn, S. J. Thomson, M. W. E. J. Fiers, T. J. Frew, S. R. Murray, J. M. I. Hofer, J. M. E. Jacobs, K. M. Davies, A. C. Allan, A. Bendahmane, C. J. Coyne, G. M. Timmerman-Vaughan, and T. H. N. Ellis. 2010. Identification of Mendel's White Flower Character. PLoS One 5:e13230.
- Kerje, S., P. Sharma, U. Gunnarsson, H. Kim, S. Bagchi, R. Fredriksson, K. Schutz, P. Jensen, G. Von Heijne, and R. Okimoto. 2004. The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics 168:1507-1518.
- Kronforst, M. R., G. S. Barsh, A. Kopp, J. Mallet, A. Monteiro, S. P. Mullen, M. Protas, E. B. Rosenblum, C. J. Schneider, and H. E. Hoekstra. 2012. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Mel. Res. 25:411-433.
- Manceau, M., V. S. Domingues, C. R. Linnen, E. B. Rosenblum, and H. E. Hoekstra. 2010. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365:2439-2450.
- Martin, A., and V. Orgogozo. 2013. Data from: The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Dryad Digital Repository.
- McGrath, P. T., Y. Xu, M. Ailion, J. L. Garrison, R. A. Butcher, and C. I. Bargmann. 2011. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477:321-325.
- Moreau, C., M. J. Ambrose, L. Turner, L. Hill, T. H. N. Ellis, and J. M. I. Hofer. 2012. The b Gene of Pea Encodes a Defective Flavonoid 3' 5' Hydroxylase, and Confers Pink Flower Color. Plant Physiol. 159:759-768.

- Nadeau, N. J., and C. D. Jiggins. 2010. A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet. 26:484-492.
- Parker, H. G., B. M. VonHoldt, P. Quignon, E. H. Margulies, S. Shao, D. S. Mosher, T. C. Spady, A. G. Elkahloun, M. Cargill, P. G. Jones, C. L. Maslen, G. M. Acland, N. B. Sutter, K. Kuroki, C. D. Bustamante, R. K. Wayne, and E. A. Ostrander. 2009. An Expressed Fgf4 Retrogene Is Associated with Breed-Defining Chondrodysplasia in Domestic Dogs. Science 325:995-998.
- Ramsay, L., J. Comadran, A. Druka, D. F. Marshall, W. T. B. Thomas, M. Macaulay, K. MacKenzie, C. Simpson, J. Fuller, N. Bonar, P. M. Hayes, U. Lundqvist, J. D. Franckowiak, T. J. Close, G. J. Muehlbauer, and R. Waugh. 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 43:169-172.
- Rockman, M. V. 2011. The QTN program and the alleles that matter for evolution : All that's gold does not glitter. Evolution 66:1-17.
- Stern, D. 2000. Evolutionary developmental biology and the problem of variation. Evolution 54:1079-1091.
- Stern, D. L., and V. Orgogozo. 2008. The loci of evolution: How predictable is genetic evolution? Evolution 62:2155-2177.
- Streisfeld, M. A., and M. D. Rausher. 2011. Population genetics, pleiotropy, and the preferential fixation of mutations during adaptive evolution. Evolution 65:629-642.