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We have developed a formalism and a computational method for ana-
lyzing the potential functional consequences of non-synonymous single
nucleotide polymorphisms. Our approach uses a structural model and
phylogenetic information to derive a selection of structure and
sequence-based features serving as indicators of an amino acid poly-
morphim's effect on function. The feature values can be integrated into
a probabilistic assessment of whether an amino acid polymorphism
will affect the function or stability of a target protein. The method has
been validated with data sets of unbiased mutations in the lac repres-
sor and lysoyzyme. Applying our methodology to recent surveys of
genetic variation in the coding regions of clinically important genes,
we estimate that approximately 26-32 % of the natural non-synon-
ymous single nucleotide polymorphisms have effects on function. This
estimate suggests that a typical person will have about 6240-12,800
heterozygous loci that encode proteins with functional variation due to
natural amino acid polymorphism.
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Introduction

Recent surveys of human genetic diversity have
estimated that there are about 250,000-400,000
common single nucleotide polymorphisms (SNPs)
in protein coding sequences of the genome.1,2 Anal-
ysis of their functional effects is a crucial aspect of
current genomic science. Coding SNPs (cSNPs) are
interesting, in part, because some of them, termed
non-synonymous SNPs (nsSNPs), introduce amino
acid polymorphisms into their encoded proteins.
nsSNPs are proportionally less prevalent than
synonymous SNPs that do not affect protein
sequence, presumably as a consequence of selec-
tion against the functional disruptions of amino
acid variation.1,2 However, it might be expected
that a signi®cant fraction of molecular functional
ing author:
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diversity in the human population remains attribu-
table to effects on protein function caused by
nsSNPs. For example, the kinetic parameters of
enzymes, the DNA-binding properties of proteins
that regulate transcription, the signal transduction
activities of transmembrane receptors, and the
architectural roles of structural proteins are all
susceptible to perturbation by nsSNPs and their
associated amino acid polymorphisms. Amino acid
polymorphisms can also in¯uence the ef®cacy and
toxicity of drugs, as has been shown for cyto-
chrome P450 2D6, TPMT, and the b2-adrenergic
receptor among others.3 ± 8

Structural analysis of amino acid polymorphisms
provides a powerful mechanistic explanation of
their effects on function. Very early in the molecu-
lar analysis of genetic variation, the strengths of
structural analysis were demonstrated for the case
of amino acid mutations in hemoglobin. Here, the
molecular basis of the clinical effects caused by
mutations could be inferred as soon as the struc-
tural information became available.9,10 These
pioneering studies recognized crucial links
between the structural disposition of residues and
potential effects of mutations on function, includ-
ing the destabilizing effects of introducing charged
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684 Structure-based Assessment of nsSNPs
residues into the hydrophobic core of a protein,
and the functional disruptions of mutations in
protein residues that contact the iron or the heme
ligands.

As the structure databases have grown and been
analyzed by computational methods, the under-
standing of the relationship between structure and
the effects of amino acid substitution on function
has continued to deepen. Many studies have
shown that a model residue's solvent accessibility
is important for anticipating whether its mutation
will affect function (for example see Bowie et al.11

and Dao-pin et al.12). In a similar way, Alber et al.
demonstrated a strong relationship between mol-
ecular rigidity measured by a crystallographic
B-factor and the tolerance to mutation for the case
of lysozyme.13 Several groups have noted a
systematic intolerance to mutation in residues that
are either extremely conserved in phylogeny or
con®ned in their identity to particular classes of
amino acid residues.14 ± 16 Others point to relation-
ships between functional effects and hydrophobi-
city or residue volume.11 More recently, Sunyaev
et al. have started to examine the relationship
between structural features and either human dis-
ease causing mutations or common human
nsSNPs.17 They identi®ed structural features that
are signi®cantly associated with the disease caus-
ing polymorphisms, and found that a surprisingly
large fraction, about 45 %, of the prevalent nsSNPs
share these structural features. For about half of
these structurally important residues, the poly-
morphism represents an amino acid substitution
that apparently is not found in interspecies vari-
ation.

The current number of known protein structures
is still far less than the number of known human
protein sequences, but this discrepancy does not
diminish the importance of structural analysis for
understanding the effects of nsSNPs and their
amino acid polymorphisms on function. It is
accepted generally that proteins with similar
amino acid sequence will exhibit a high degree of
structural homology, even when they are only dis-
tantly related. For example, in hemoglobin and
myoglobin (sharing only 25 % amino acid identity
in sequence) the structural dispositions of many
corresponding residues are extremely well con-
served. The same principle serves as the under-
lying basis of classi®cations of proteins according
to fold families (e.g. DALI, SCOP)18,19 and struc-
ture prediction methods like threading20,21 and
homology modeling.22,23 Shared structural proper-
ties can be extremely precise, for example in the
conservation of the residues that coordinate the
heme in hemoglobin and myoglobin. They can also
be more general, as when the corresponding resi-
dues in two proteins are both hydrophobic and
buried in the hydrophobic core. For the majority of
proteins, structural information is not available;
but for those proteins with sequence homology to
a protein of known structure, much structural
information can be inferred. For the human gen-
ome, about 30 % of the protein sequences are likely
to be homologous to known crystal or NMR
structures.22 The current high-throughput structure
initiatives and theoretical modeling techniques will
increase this proportion dramatically in the next
few years.24 ± 26

We have identi®ed a set of generic structure and
sequence-based features that serve as predictors of
whether amino acid polymorphisms in a target
protein will affect its function. The values for the
features are useful whether they are derived from
a structure of a target protein or from a structure
of a protein homologous to the target protein. We
have developed a statistical model that uses the
values for the predictive features and training data
to assign a probability that a polymorphism will
affect function. More importantly, we have out-
lined a formalism for evaluating and implementing
structure and sequence-based features of amino
acid polymorphisms as predictors of effects on
function in general. Applying our methods to the
recent surveys of nsSNPs from the Case Western
Reserve University (CWRU) and Whitehead Insti-
tute (WI) genome centers, we make predictions
about potential effects on function for 23 % (50/
216) and 39 % (65/168) of the nsSNPs, respectively.
Extrapolating our analysis of these surveys to the
entire genome, we estimate that 26-32 % of the
natural non-synonymous polymorphisms in the
human population are likely to affect protein func-
tion.

Results

Overview

Our approach is to use structural models and a
standardized analysis of the structural and phylo-
genetic disposition of a modeled polymorphic resi-
due to estimate whether it can be expected to
affect protein function. The approach requires a
formalism that includes the identi®cation of a suit-
able protein structure for three dimensional model-
ing of the target polymorphism, the development
of standard features for analysis of the modeled
polymorphism, and integration the values of the
features into a prediction about a polymorphism's
potential effects on function. Once we have vali-
dated our methods with data sets of exhaustive
unbiased mutations in the lac repressor and lyso-
zyme, we apply them to the analysis of potential
functional effects of amino acid polymorphisms
derived from recently published nsSNPs in clini-
cally relevant proteins.1,2

The predictive features

In order to evaluate the ability of the structure-
based and phylogeny-based features (Table 1,
Materials and Methods and Figure 1 for structural
neighborhoods) to discriminate between mutations
that either affect or do not affect protein function,
we analyzed the feature values for mutations in



Table 1. Features used to described modeled polymorphisms

Feature name Description

A. Continuously-valued environment features
Residue accessibility Solvent accessible area of model residue
Residue relative accessibility Accessibility relative to maximum accessibility for model residue
Relative residue phylogenetic entropya Phylogenetic entropy of model residue normalized to average and SD in phylogenetic

entropy for other residues in the same PDB chain
Neighborhood relative phylogenetic
entropyb

Phylogenetic entropy of model residue's structural neighborhood relative to average
phylogenetic entropy of other collections of the same number of residues from the same
PDB chain

Relative residue B-factor B-factor of model residue normalized to average and SD in B-factor for other residues in
the same chain

Neighborhood relative B-factor2 B-factor of model residue's structural neighborhood relative to average B-factor of other
collections of the same number of residues from the same PDB chain

B. Categorically-valued features
Unusual AA One of the amino acid residues in the polymorphism is not in the phylogenetic profile
Unusual AA by class One of the amino acid residues in the polymorphism is not in the smallest amino acid

class that includes the phylogenetic profile.31

Rare AA The polymorphism includes an amino acid that occurs less than 10% of the time in the
phylogenetic profile

Buried charge The model residue is buried and the polymorphism includes a charged amino acid.
Often a special case of Unusual AA

Turn breaking The polymorphism occurs at a glycine or proline in a turn. Often a special case of
Unusual AA

Helix breaking The polymorphism occurs in a helical region of the model and includes a glycine or
proline. Often a special case of Unusual AA

Conserved position The polymorphism occurs at an absolutely conserved position in phylogeny. Always a
special case of Unusual AA

Near conserved position The polymorphism occurs in a structural neighborhood that includes a conserved
position.

Near heterogen atomc The model for the polymorphism occurs near a ligand in the model
Near interface The model for the polymorphism occurs near a subunit interface in the model

a Phylogenetic entropy (or Information content) � -
XN: Different Amino Acidresidues

i�1

fi ln fi
Where:
fi � Fraction of the sequences having amino acid i at that residue position in the HSSP multiple sequence alignment.

b Neighborhood relative feature �
����
N
p �hVni ÿ hVci�

sVcWhere:
N � Number of residues in the structural neighborhood.
hVni � Average in the value of B-factor or phylogentic entropy for the structural neighborhood (Materials and Methods, Figure 1).
hVci � Average in the value of B-factor or phylogenetic entropy for the PDB chain.
sVc
� Variance in the B-factors or phylogenetic entropy for the PDB chain.

c Heterogen atom is an atom in a non-standard group in a PDB ®le. In this analysis, heterogen atoms typically belong to ligand
molecules.
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the lac repressor and lysozyme mutation data sets
(see Materials and Methods). These mutations rep-
resent changes to 12 or 13 alternative amino acid
residues at every position in the two proteins and
were constructed without a priori knowledge of
their effects on function. As a consequence, the
relationship between their features' values and
effects on function can be considered to be
unbiased; and standard statistical analysis can
assess each feature's relative importance as a
potential indicator of a mutation's effect on func-
tion. For continuously-valued features, e.g. the
``relative crystallographic B-factor'', we judged dis-
crimination between two groups, mutations with
or without effects on function, using Analysis of
Variance (ANOVA)27,28 with F-statistics. This pro-
cedure examines the probability of the null hypoth-
esis that the average values and variances in the
segregated groups of data not statistically different
from the average value and variance in the data as
a whole. For the categorically valued features, e.g.
those indicating ``helix or turn breaking'' propen-
sity and an ``unusual amino acid'' among others,
we judged discrimination using the w2 test
(Table 2).

In general, the continuously-valued environment
features discriminate more strongly than the categ-
orical features between mutations with and with-
out effects on function (Table 2). For the lac
repressor mutations modeled on the lac repressor
structure and the lysozyme mutations modeled on
the lysozyme structure, the statistical ranking of
the environment features is essentially the same,
and the purely structure-based accessibility and B-
factor features are more important than the fea-
tures that draw on phylogenetic information. For
the lac repressor mutations modeled on the hom-
ologous purine repressor structure, the phyloge-
netic features are better predictors than the purely
structure-based features, possibly due to their less



Figure 1. r.m.s.d. in Ca positions in a database of homologous structural neighborhoods. Each data point represents
the average of the r.m.s. in Ca distances in homologous structural neighborhoods with the level of sequence similarity
indicated on the abscissa. The thick line re¯ects a second order ®t to these data points. The thinner lines represent the
second order ®ts to the average r.m.s. distances of Ca positions in corresponding neighborhoods taken from pairs of
homologous proteins with overall levels of sequence similarity as shown (0.20-0.45, 0.45-0.70, or
0.70-0.95 identical amino acid residues in the overall alignment). The distribution of the r.m.s.d. in Ca positions for
structural neighborhoods sharing 0.5 identical residues is shown in the inset (see also Guex et al.22 and Holm &
Sander37).
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critical dependence on precise structural infor-
mation. The absolute statistical signi®cance of the
features in the lac repressor and lysozyme data
sets is also different, and may re¯ect intrinsic func-
tional differences between the two proteins or the
experimental criteria for determining which
mutations affected function. For the phylogenetic
entropy and B-factor features, the neighborhood
measures are roughly equivalent in statistical sig-
ni®cance to the residue measures, emphasizing the
validity of the structural neighborhood construc-
tion and the concept of local structure-based indi-
cators of effects on function.

Among the most signi®cant of the categorically-
valued features, one is structure-based (``buried
charge''), and the other is sequence-based (``unu-
sual amino acid''). Other categorical structure-
based features, for example ``near heterogen atom''
and ``near interface'', are also signi®cant but might
not be expected to be suf®ciently generic for wide
applicability. Alone, the ``turn breaking'' and
``helix breaking'' structural features are not
reliable; they may be predictive in combination
with other features.

The unusual amino acid features convey the idea
that evolution has sampled the set of allowable
substitutions, and that this set can be found in a
multiple alignment of a complete set of sequences
related to the target protein by phylogeny at the
position corresponding to the polymorphic residue.
When the phylogeny is incomplete, amino acid
classes can be used to enumerate the family of tol-
erated amino acid residues in a particular environ-
ment. Indeed, the ``unusual amino acid by class''
feature is a good predictor of effects on function.
Often, the unusual amino acid construction will
imply the hydrophobicity measures considered by
others for evaluating the functional consequences
of mutations. The ef®cacy of the unusual amino
acid features is reinforced by the observation that
the ``rare amino acid'' feature predicts there will
not be an effect on function (Table 2B). We con-
clude that for the lac repressor and lysozyme, the
occurrence of a mutant amino acid in phylogeny,



Table 2. Feature discrimination between effects on function in lac repressor and lysozyme mutations

Lac repressor mutations Lysozyme mutations
LacI model PurR model Lysozyme model

Feature name

A. ANOVA F-test for continuously-valued environment featuresa

Accessibility 9.12E-117 (2) 1.43E-45 (5) 1.39E-28 (2)
Relative accessibility 1.14E-147 (1) 8.22E-44 (6) 2.15E-29 (1)
Relative entropy 4.32E-73 (5) 1.00E-112 (1) 2.45E-17 (5)
Nbhd. relative entropy 7.07E-68 (6) 4.85E-94 (2) 2.80E-09 (6)
Relative B-factor 3.03E-95 (4) 1.04E-75 (3) 1.72E-24 (3)
Nbhd. relative B-factor 2.86E-106 (3) 1.53E-58 (4) 2.77E-24 (4)

B. Chi-squared test for categorical featuresb,c

Unusual AA 1.49E-16� (5) 1.29E-29� (4) 1.32E-05� (5)
Unusual AA by class 9.13E-69� (2) 1.46E-50� (1) 3.30E-09� (4)
Rare AA ND NA 2.53E-25ÿ NA ND NA
Buried charge 1.48E-83� (1) 6.31E-50� (2) 4.40E-18� (1)
Turn breaking 3.63E-08ÿ NA 1.02E-06ÿ NA 5.52E-01� (6)
Helix breaking 2.14E-10� (8) 4.70E-11� (6) 5.01E-01ÿ NA
Conserved position 4.00E-24� (4) 1.37E-10� (7) 3.90E-14� (2)
Near conserved position 2.82E-11� (6) 2.65E-32� (3) 7.00E-10� (3)
Near het atom 1.19E-50� (3) 1.94E-11� (5) ND NA
Interface 1.19E-12� (7) 2.80E-21� (4) ND NA

a ANOVA (Analysis of Variance) test compares the feature variance for mutations with or without effects on function to the
feature variance for all mutations (see Materials and Methods). Values indicate probability of the null hypothesis occuring by chance.
Numbers in parentheses indicate the ranking of the discrimination of each feature. The features with the highest discrimination are
indicated by bold face font.

b Test compares proportion of mutations with or without the feature to the proportion of mutations with or without effects on
function.

c � , the feature is predictive of an effect on function; ÿ, the feature is predictive of no effect on function.
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even infrequently, suggests its tolerance by a par-
ticular structural environment.

Correlation between environment features

While the environment features pertaining to
solvent accessibility, crystallographic B-factor, and
phylogenetic entropy are good predictors of a
polymorphism's effect on function, they are
expected also to exhibit some degree of correlation.
To study these relationships, we computed corre-
lation coef®cients for each pair of these features for
residues in the lac repressor, purine repressor, and
lysozyme crystal structures (Table 3A). The maxi-
mum correlation value is found for ``accessibility''
and ``relative accessibility'' (0.93-0.96), and the cor-
relation values between residue and neighborhood
versions of the relative B-factor or the relative phy-
logenetic entropy are also very high (0.51-0.81).
The smallest correlation is found between the phy-
logenetic entropy features and either the accessibil-
ity features or the B-factor features. The minimum
correlation, found for the comparison of ``relative
phylogenetic entropy'' and ``neighborhood relative
B-factor'' in the lysozyme structure, was very low
(0.09). Qualitatively, some of these ®ndings are
expected from the literature. For example, solvent
inaccessible residues are known to be more rigid
and therefore have a lower B-factor (13, see also
Materials and Methods). The current analysis pro-
vides quantitative measures of the relationship
between pairs of the environment features.
An exploratory study using principal component
analysis suggested that the majority of the variance
(0.51-0.56) in the group of continuously-valued
environment features could be attributed to a
single eigenvector with roughly equal proportions
of the accessibility and B-factor features and
slightly less of the phylogenetic entropy features
(Table 3B). An approximate additional 0.35-0.38 of
the variance can be attributed to the second and
third eigenvectors, and these typically treated the
two B-factor features as equivalent, the two phylo-
genetic entropy features as equivalent, and the two
accessibility features as equivalent (see coef®cients,
Table 3B). In the third eigenvector, there is some
unequal splitting of the variance between residue
and neighborhood versions of the phylogenetic
entropy.

Together with the ANOVA of effects on function
in the lac repressor and lysozyme data sets, this
result suggests that the combination of one of the
two B-factor features, one of the two phylogenetic
entropy features, and one of the two accessibility
features will provide a set of parameters that
describe the environment of the polymorphic resi-
due with minimal redundancy and that are useful
for predicting whether it will affect function. This
conclusion was supported below by additional
techniques (see maximum likelihood approach in
Materials and Methods). Both the correlation anal-
ysis and the principal component analysis were
performed on the entire database of structural
neighborhoods (Figure 1) with essentially the same
results (see Materials and Methods).



Table 3. Correlation and principal component analysis of environment features

a For residues in the indicated crystal structure, the correlation coeffecient (cc) was computed as:

cc � 1

N

XN

i�1

�f1i
ÿ hf1i��f2i

ÿ hf2i�
sf1sf2

Where:

fji � value of feature j for ith residue; j � 1; 2

hfji � average of feature; j

sf1 � variance in feature j

N � Number of residues in the structure

b Principal component analysis performed as described by Lebaut et al.50
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Argument for a probabilistic model for
anticipating the effects of polymorphisms

We considered two alternative approaches for
using the predictive features to anticipate whether
polymorphisms will affect function. In the ®rst
approach, whether a polymorphism will or will
not affect function would be determined by
whether the values of its predictive features meet
certain, predetermined criteria. For example, a
polymorphic residue's relative phylogenetic entro-
py might be less than some threshold, or it might
be within some small distance of an enzyme active
site. Our ®rst predictive method (data not shown),
and independently the method of Sunyaev et al.,17

used this specialized form of annotation. It is very
informative; but it may not be suf®ciently general.
The criteria may be hard to de®ne in a generic way
and some polymorphisms that fall short of the cri-
teria may still affect function. The alternative
approach would try to assign a probability of an
effect on function to any modeled polymorphism
according to an integrated assessment of the values
of its predictive features. The probability value
could be interpreted to re¯ect the indeterminacy in
the prediction or, more practically, to rank candi-
date polymorphisms according to a likelihood or
con®dence level for an effect on function.

Our simple probabilistic model would combine
structural and sequence information, in the form
of the predictive features, with the lac repressor
and lysozyme mutation data for anticipating
which polymorphisms will affect function. We
reasoned that if the features are suf®ciently gen-
eric and re¯ect the most fundamental aspects of
protein structure, the relationship between their
values and effects on function may have been
sampled in an unbiased way by the lac repres-
sor and lysozyme mutation studies. For example,
the lower the relative B-factor for a structural
neighborhood and thus the more rigid, the more
likely it is intolerant to mutation. The likelihood
of a mutation causing an effect on function in
this neighborhood could be estimated quantitat-
ively by comparison to mutations in neighbor-
hoods with similar B-factors in the lac repressor
and lysozyme data sets. To a ®rst approxi-
mation, a generic relationship between parameter
values and effects on function may be valid for
many different proteins, especially since we have
used relative rather than absolute measures in
the design of the B-factor and phylogenetic
entropy features. As shown below, it is a fairly
accurate description of both lac repressor and
lysozyme in spite of their distinct functions.

The probabilistic model

Therefore, in the simple probabilistic model, the
probability that a test polymorphism (or mutation)
will affect protein function is estimated as the pro-
portion of mutations in a training data set that
affect protein function from among those with pre-
dictive feature values similar to the feature values
of the test mutation. Here, the training data are the
lac repressor and/or lysozyme data sets. For
example, the probabilistic model might use
``solvent accessibility'', ``relative residue B-factor'',
and the unusual amino acid as predictive features.
A polymorphism of glutamate to valine might
occur in a residue with moderate solvent accessibil-
ity, a relatively low B-factor, and for which a gluta-
mate residue but not valine appear in its
phylogeny, so that the polymorphism meets the
requirements of containing an unusual amino acid.
The probability that this polymorphism will affect
protein function would be estimated as the pro-
portion of mutations in the lac repressor and/or
lysozyme data sets that affect protein function
from among those that also have moderate solvent
accessibility, relatively low B-factors, and meet the
criteria for being an unusual amino acid.

An example of a two-feature
probabilistic model

To illustrate a two predictive features version of
the probabilistic model, we computed probability
values from the lac repressor and lysozyme
mutations using only one categorically-valued
sequence-based feature, unusual amino acid, and
one continuously valued structure-based feature,
relative B-factor, with a 1 SD stringency for aver-
aging (Figure 2, Materials and Methods). For the
mutations in both data sets, the same trend in
probability with respect to the relative B-factor is
observed, whether meeting the criteria for unusual
amino acid or not. The local slopes of the two
curves are similar (R2 � 0.92, unusual amino acid,
R2 � 0.94, no unusual amino acid). The slight
difference in calibration (about 0.15 probability
units in regression analysis, not shown) for the
curves from the two data sets is likely derived
either from the weaker statistical signi®cance of
relative B-factor in the lysozyme data set or from
the relatively poor phylogeny for evaluating the
unusual amino acid feature for the lysozyme data
set (®ve sequences in multiple alignment) com-
pared to the lac repressor data set (20 sequences in
the multiple alignment) (Table 2A). The lower stat-
istical power of the unusual amino acid feature for
predicting effects in the lysozyme data compared
to the lac repressor data was found also in the w2

tests (Table 2B).

Accuracy of the probabilistic model

In order to evaluate the accuracy of the probabil-
istic model, we needed to convert the probability
values for whether a polymorphism would affect
function into a prediction. To do this, we predicted
that a polymorphism with probability of 0.5 or
greater would affect function at a con®dence level
equal to the probability value. Conversely, we pre-
dicted that a polymorphism with a probability
value of less than 0.5, would not affect on function



Figure 2. A two-feature example of the probabilistic model. The probability of an effect on protein function was
computed dependent on the relative crystallographic B-factor for the modeled polymorphic residue, whether or not
the polymorphism represents and unusual amino acid in phylogeny, and whether the training data are the lac repres-
sor mutations modeled on the lac repressor structure or the lysozyme mutations modeled on the lysozyme structure.
For relative B-factors values along the abscissa, probability values were estimated as the proportion of training
mutations that affect protein function from among those within 1 SD in the relative B-factor and having an appropri-
ate value of the unusual amino acid feature.
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with a con®dence level equal to one minus the
probability value. Predictions could be judged
according to their con®dence level, and we report
here standard measures to assess their accuracy:
the number of correct and incorrect predictions of
an effect and of no effect, the overall misclassi®-
cation rate, the misclassi®cation rate in predicting
an effect, the misclassi®cation rate in predicting no
effect (see legend to Tables 4, 5 and 6 and Materials
and Methods).

We devised two types of validation tests of the
probabilistic prediction models. In the ®rst, termed
homogeneous cross-validation, each of the data
sets was divided into two unequal parts, a training
subset and a test subset. The training subset, com-
prising 90 % of the mutation data, was used for
selecting the subset of features by a maximum like-
lihood approach (Materials and Methods) and for
computing probability values, and the test subset,
comprising the remaining 10 % of the mutation
data, was used exclusively to test the predictions.
Performed either with the lysozyme mutations
modeled on the lysozyme structure or the lac
repressor mutations modeled on the lac repressor
structure, the homogeneous cross-validation test
showed very signi®cant predictive accuracy
(Figure 3(a), Table 4). The overall misclassi®cation
rate ranges from a high value (0.25 lac repressor,
0.27 lysozyme) for predictions made with at least a
0.50 con®dence level to a low value (0.05 lac
repressor, 0.07 lysozyme) for predictions made at
the 0.95 con®dence level. For both, the interpret-
ation of the probability value in terms of a con®-
dence level for predictions is validated as is the
maximum likelihood selection of categorical fea-
tures. High predictive accuracy was also found for
the lac repressor data modeled on the homologous
purine repressor. The best structural neighbor-
hoods in this model are about 60 % identical in
sequence to the lac repressor, and we note that
there was no increase in the predictive accuracy for
structural neighborhoods with higher sequence
similarity between the target protein and the
model (data not shown).

The second validation method, termed hetero-
geneous cross-validation, was more stringent and



Table 4. Cross-validation of probabilistic model for prediction effects of polymorphisms: homogeneous cross-validation

Lysozyme mutations, lysozyme model (PDB: 7lzm)a
Lac repressor mutations, lac repressor model (PDB:

1lbh)b
Lac repressor mutations, purine repressor model (PDB:

2pua)c

Minimum prediction probability Minimum prediction probability Minimum prediction probability

Prediction Actual 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

Effect Effect 3 8 24 37 43 10 34 52 66 78 36 58 83 100 115
No effect 0 2 9 14 24 0 8 17 24 27 1 9 17 29 48

No Effect No Effect 2 15 37 46 63 90 122 142 156 169 41 76 107 123 142

Effect 1 7 10 18 28 3 5 22 32 43 0 4 19 30 51
Overall misclassified

fraction 0.17 0.28 0.24 0.28 0.33 0.03 0.08 0.17 0.20 0.22 0.01 0.09 0.16 0.21 0.28
Predictions of an effect

misclassified
fraction 0.00 0.20 0.27 0.27 0.36 0.00 0.19 0.25 0.27 0.26 0.03 0.13 0.17 0.22 0.29
Predictions of no effect

misclassified
fraction 0.33 0.32 0.21 0.28 0.31 0.03 0.04 0.13 0.17 0.20 0.00 0.05 0.15 0.20 0.26

The environment features for all tests were ``relative accessibility'', ``residue relative phylogenetic entropy'', and ``neighborhood relative B-factor.`` The categorical features for the lysozyme
mutations were selected by the maximum likelihood approach from among ``buried charge'', ``unusual amino acid'', ``unusual amino acid by class'', ``turn breaking'', ``helix breaking'', ``con-
served position'' and ``near conserved position.`` The categorical features for the Lac Repressor mutations were selected from the group used for lysozyme combined with the ``near heterogen
atom'' and ``near interface'' features.

a The categorical features were ``buried charge'', ``unusual amino acid by class'', ``helix breaking'', ``near conserved''. The fraction of test mutations with too little training data for prediction
with these categorical features was 0.04.

b The categorical features were from maximum likelihood from ``unusual amino acid by class'', ``near heterogen atom'', ``near interface''. The fraction of test mutations with too little training
data for prediction with these categorical features was 0.11.

c The categorical features were ``buried charge'', ``helix breaking'', ``near conserved position'', and ``near interface''. The fraction of test mutations with too little training data for prediction
with these categorical features was 0.03.



Table 5. Cross-validation of probabilistic model for prediction effects of polymorphisms: heterogeneous cross-validation: categorical features from maximum likelihood

Training data: Lysozyme mutations, lysozyme model (PDB: 7lzm)a
Lac repressor mutations, lac repressor model (PDB:

1lbh)b Lysozyme mutations, lysozyme model (PDB: 7lzm)c

Test data: Lac repressor mutations, lac repressor model (PDB: 1lbh) Lysozyme mutations, lysozyme model (PDB: 7lzm)
Lac repressor mutations pur repressor model

(PDB: 2pua)

Minimum prediction probability Minimum prediction probability Minimum prediction probability
Prediction Actual 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

Effect Effect 68 227 358 483 551 30 70 156 271 341 5 9 20 45 69
No Effect 10 33 101 233 345 8 13 49 108 166 0 1 1 76 79

No Effect No Effect 101 259 515 666 786 232 368 436 534 644 201 328 631 654 667
Effect 9 27 109 132 182 90 135 183 233 328 68 107 262 283 299

Overall misclassified
fraction 0.10 0.11 0.19 0.24 0.28 0.27 0.25 0.28 0.30 0.33 0.25 0.24 0.29 0.34 0.34

Predictions of an effect
misclassified

fraction 0.13 0.13 0.22 0.33 0.39 0.21 0.16 0.24 0.28 0.33 0.00 0.10 0.05 0.63 0.53
Predictions of no effect

misclassified
fraction 0.08 0.09 0.17 0.17 0.19 0.28 0.27 0.30 0.30 0.34 0.25 0.25 0.29 0.30 0.31

The environment features for all tests were ``relative accessibility'', ``residue relative phylogenetic entropy'', and ``neighborhood relative B-factor.`` The categorical features in all tests were
selected by the maximum likelihood approach from among ``buried charge'', ``unusual amino acid'', ``unusual amino acid by class'', ``turn breaking'', ``helix breaking'', ``conserved position'' and
``near conserved position.

a The categorical features selected were ``buried charge'', ``unusual amino acid by class'', ``helix breaking'', and ``near conserved position.`` The fraction of test mutations with too little training
data for prediction with these categorical features was 0.42.

b The categorical features selected were ``buried charge'', ``unusual amino acid by class'', and ``turn breaking''. The fraction of test mutations with too little training data for prediction with
these categorical features was 0.09.

c The categorical features selected were ``buried charge'', ``unusual amino acid by class'', ``helix breaking'', and ``near conserved position.`` The fraction of test mutations with too little training
data for prediction with these categorical features was 0.70.



Table 6. Cross-validation of probabilistic model for prediction effects of polymorphisms: heterogeneous cross-validation: unusual amino acid categorical feature only

Training data: Lysozyme mutations, lysozyme model (PDB: 7lzm)a
Lac repressor mutations, lac repressor model (PDB:

1lbh)b Lysozyme mutations, lysozyme model (PDB: 7lzm)c

Test data: Lac repressor mutations, lac repressor model (PDB: 1lbh) Lysozyme mutations, lysozyme model (PDB: 7lzm)
Lac repressor mutations pur repressor model

(PDB: 2pua)

Minimum prediction probability Minimum prediction probability Minimum prediction probability
Prediction Actual 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

Effect Effect 0 90 321 794 997 0 17 47 306 405 0 109 369 613 748
No Effect 0 17 129 394 594 0 7 12 124 216 0 34 124 250 372

No effect No effect 60 388 648 976 1226 245 435 587 656 676 92 378 738 973 1177
Effect 13 47 96 174 229 90 159 228 292 307 26 167 370 518 599

Overall misclassified
fraction 0.18 0.12 0.19 0.24 0.27 0.27 0.27 0.27 0.3 0.33 0.22 0.29 0.31 0.33 0.34
Predictions of an effect
misclassified fraction NA 0.16 0.29 0.33 0.37 NA 0.29 0.2 0.29 0.35 NA 0.24 0.25 0.29 0.33
Predictions of no effect
misclassified fraction 0.18 0.11 0.13 0.15 0.16 0.27 0.27 0.28 0.31 0.31 0.22 0.31 0.33 0.35 0.34

The environment features for all tests were ``relative accessibility'', ``residue relative phylogenetic entropy'' , and ``neighborhood relative B-factor'', and the single categorical feature was
``unusual amino acid''.

a The fractions of the test mutations with too little training data for these features was 0.06.
b The fractions of the test mutations with too little training data for these features was 0.02.
c The fractions of the test mutations with too little training data for these features was 0.21.
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tested the accuracy of predictions made using
lac repressor mutation training data and lyso-
zyme mutation test data, or vice versa. The accu-
racy here was slightly worse than the accuracy
in the homogeneous cross-validation tests but
still very signi®cant. For all predictions (i.e.
those made with a con®dence level of 0.50 or
better), the misclassi®cation rates are 0.28, 0.35,
0.33. for lac repressor mutations modeled on lac
repressor structure, the lac repressor mutations
modeled on the purine repressor structure, and
the lysozyme mutations modeled on the lyso-
zyme structure, respectively (Figure 3(b), Table 5).
As with the homogeneous cross-validation, the
accuracy improves with increasing con®dence of
predictions to about 0.10-0.27 for the more con®-
dent predictions (Table 5, minimum prediction
probability 0.9, Figure 3(b)). Again, predictions
on the lac repressor data modeled with the pur-
ine repressor structure and lysozyme training
data were not more accurate for structural
neighborhoods exhibiting higher levels of
sequence similarity. For comparison, the level of
accuracy for our two-state predictions (effect or
no effect) in the heterogeneous cross-validation is
comparable to the accuracy of residue solvent
accessibility predictions scored for two states
(buried or exposed) or secondary structure pre-
dictions scored for three states (helix, sheet, and
other).29

A shortcoming of the use of as many as seven
predictive features (Table 5) in the heterogeneous
cross-validation was a comparative dearth of lyso-
zyme training mutations with appropriate feature
values for making predictions on the lac repressor
mutations (0.42 and 0.72 lac repressor test
mutations modeled on the lac repressor and purine
repressor structures, respectively, with too few
lysozyme training mutations to make a prediction).
This limitation could be overcome by considering a
probablistic model with three environment features
and only the most general polymorphism-speci®c
categorical feature, namely unusual amino acid.
The results were almost as good as those from the
three categorical feature model, and predictions
could be made for nearly all mutations (0.06 and
0.21 failure rate for lac repressor mutations mod-
eled on the lac repressor and purine repressor
structures, respectively) (Figure 3(b) and (c),
Tables 5 and 6). For the probabilistic model we
describe, more complete characterization of each
test mutation through the use of a greater number
of features, will always demand more training
data.

Application of the probabilistic model to the
SNP surveys from Case Western Reserve
University and the Whitehead Institute

The signi®cant accuracy of the predictions made
on the lac repressor and lysozyme mutations, even
with the heterogeneous cross-validation on the
purine repressor model of the lac repressor, indi-
cated that it would be reasonable to apply the
modeling and predictions to the nsSNPs in the
recent CWRU and WI SNP surveys.1,2 The poly-
morphic residues in these data sets were mapped
onto structures of homologous proteins by comple-
tely automated procedures. Applying strict criteria
for sequence similarity between the target protein
and the model protein (Materials and Methods),
we ®nd that 23 % and 39 % of the nsSNPs in the
CWRU and WI data sets, respectively, could be
represented by residues in crystal structures from
the PDB/RCSB. These values could be increased to
45 % and 50 %, respectively, by inclusion of theor-
etical models and NMR structures from the PDB/
RCSB, but these additional models were not used
for predictions. The rate of homologous matches in
the structure database for the WI SNPs is higher
than the estimates of 30 % for other genome-wide
surveys,22 probably due to the historical emphasis
on studying the proteins chosen for the SNP sur-
veys for clinical reasons. We used the combined lac
repressor and lysozyme mutations as a training
data set in a probabilistic model for anticipating
which polymorphisms would affect function that
included the environment features ``relative acces-
sibility'', ``relative phylogenetic entropy'', and
``relative neighborhood B-factor''. Two separate
groups of categorical features were selected by
maximum likelihood for use with these environ-
ment features. One was selected from a group that
contained the near heterogen atom and near inter-
face features to describe polymorphisms near
ligands or subunit interfaces, and the other was
selected from a group with these two special cases
omitted (Table 7). The probabilistic model was
applied to each of the structural models for the
CWRU and WI polymorphisms to yield a pre-
dicted probability that each would affect protein
function (Table 7). Some modeled polymorphisms
(2-22 % CWRU and 9-10 % WI, depending of
whether features ``A'' or ``B'' were used) could not
be assigned probability values due to an insuf®-
cient number (i.e. less than four) of similar-valued
mutations in the lac repressor and lysozyme train-
ing data sets (see also heterogeneous cross-vali-
dation section and Materials and Methods). With a
few exceptions, the probability values computed
with features ``A'' and features ``B'' were very
similar (Table 7).

CWRU and WI polymorphisms with significant
likelihood of affecting function

The analysis of functional effects of the nsSNPs
from the CWRU and WI surveys indicates that
while most are unlikely to affect function, a few of
them are likely to affect function (Table 7, top part
of A and B, probability > � 0.5 with Features A,
Figure 4, Figure 5) and we discuss the top three
from each survey. One high scoring polymorph-
ism, an alanine residue to serine in dopamine beta-
hydroxylase (DBH), was detected in both SNP sur-
veys. The DBH structure was represented by the



Table 7. A selection of non-synonymous SNPs from the CWRU and WI surveys with high and low predicted probability of affecting function

Features Aa Features Bb

UID Pos aa1 aa2 hugo snp-handle Freq pdb str_id Prob npoints Rank Prob npoints Rank

A. Modeled CWRU nsSNPs
DBH 304 A S DBH CHAK00402 0.1 1phm 0.33 0.80 10 1 NDc

M59783 42 H L ALDR1 CHAK00110 0.05 2acs 1.00 0.75 4 2 0.95 38 1
D28235 488 E G PTGS2 CHAK00333 0.05 1cx2 0.79 0.71 146 3 0.66 122 4
DBH 303 L P DBH CHAK00401 0.05 1phm 0.19 0.69 13 4 ND3
M32332 37 A T ICAM2 CHAK00582 0.05 1zxq 1.00 0.67 128 5 0.67 109 3
J00098 126 D H APOA1 CHAK00131 0.05 1av1 1.00 0.61 44 6 0.61 44 5
M33107 145 Q E KLK1 CHAK00596 0.35 1sgf 0.71 0.60 5 7 0.57 7 6
M33108 193 V E KLK1 CHAK00598 0.05 1sgf 0.83 0.53 218 8 0.46 199 9
M33107 77 R H KLK1 CHAK00595 0.05 1sgf 0.79 0.51 277 9 0.44 273 12
M61887 130 C W SELE CHAK00439 0.05 1esl 1.00 0.50 88 10 0.50 88 7
X15324 244 L R AGT CHAK00093 0 1atu 0.18 0.50 36 11 0.50 40 8
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
J00098 184 R P APOA1 CHAK00132 0.05 1av1 1.00 0.08 12 42 NDc

M33108 186 K E KLK1 CHAK00597 0.25 1sgf 0.67 0.07 72 43 0.13 39 30
DBH 197 A T DBH CHAK00396 0.1 1phm 0.50 0.06 34 44 0.07 43 34
L13436 771 Q E NPR3 CHAK00907 0 3lck 0.57 0.05 41 45 0.08 150 33
M59783 288 T I ALDR1 CHAK00116 0.05 2acs 1.00 0.04 68 46 0.13 249 29

B. Modeled WI nsSNPs
DBH 304 A S DBH WIAF-10793 5-15 % 1phm 0.33 0.80 10 1 NDc

L32771 1820 M I F5 WIAF-11349 5% 1kcw 0.36 0.73 157 2 0.71 146 4
L20590 291 F S ANX3 WIAF-11441 ND 1axn 1.00 0.71 185 3 0.66 150 5
V00520 105 S C GH1 WIAF-10591 5% 1hwg 1.00 0.64 39 4 0.61 31 7
M90103 168 E K MPL WIAF-11243 5% 1cn4 0.43 0.63 133 5 0.56 112 10
L32769 1685 T S F5 WIAF-11536 ND 1kcw 0.62 0.63 194 6 0.41 140 13
M10014 191 G R FGG WIAF-11492 ND 1fzf 1.00 NDc 0.65 20 6
L20589 251 P L ANX3 WIAF-11120 5% 1axn 1.00 0.51 87 7 0.39 62 14
M10014 410 M V FGG WIAF-11477 ND 1fzf 1.00 0.50 4 8 0.86 14 2
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
J02933 295 V D F7 WIAF-11117 5% 1cvw 1.00 0.02 43 49 0.14 197 29
M21999 589 L Q F13A1 WIAF-11052 5% 1qrk 1.00 0.00 21 50 0.00 24 46
M22000 652 Q E F13A1 WIAF-11088 15-50 % 1qrk 0.92 0.00 22 51 0.00 29 47
M32996 331 G S CETP WIAF-11016 5% 1bp1 0.57 0.00 37 52 0.00 48 48
M68516 105 K E PCI WIAF-11196 5% 2pai 1.00 0.00 7 53 0.00 56 50

The Table shows all nsSNPs with greater than a probability of 0.5 of affecting function with Features A (top), and the ®ve nsSNPs with the lowest probability of affecting function with
Features A (bottom). The combined lac repressor and lysozyme mutations were used as training data for computing probability values. The column headings refer, in order, to: The unique iden-
ti®er for the coding DNA sequence in Genbank, the position of the polymorphic amino acid in the translated coding sequence, the alternative amino acids encoded by the polymorphism, the
HUGO locus identi®er, the SNP identi®er, the allele frequency, the PDB identi®er, the fraction of residues in the structural neighborhood that are identical in the target protein and in the model,
the probability of an effect on function using the features indicated, the number of mutations in the training data set with appropriate feature values for computing the probability of an effect on
function, and the rank of the probability value using the features indicated.

a Features A were ``buried charge'', ``unusual amino acid'', ``unusual amino acid by class'', and ``turn breaking'' selected by maximum likelihood from among ``buried charge'', ``unusual
amino acid'', ``unusual amino acid by class'', ``turn breaking'', ``conserved position'', ``helix breaking'', and ``near conserved position''.

b Features B were ``buried charge'', ``unusual amino acid by class'', ``near heterogen atom'', and ``near interface'', selected by maximum likelihood from among the same group used to select
Features A combined with ``near heterogen atom'', and ``near interface''

cND refers to predictions for modeled nsSNPs that could not be made because of insuf®cient training data (less than four training mutations) with similar feature values.
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crystal structure of the homologous peptidylgly-
cine monooxygenase (PDB: 1phm), and this moder-
ately prevalent SNP is modeled as an arginine
residue that is only partially exposed to solvent
(relative accessibility of 0.27). The model residue
has low relative B-factors (ÿ0.22 SD residue, ÿ3.28
SD neighborhood), and intermediate to high phylo-
genetic entropy values (1.41 SD residue, ÿ0.10 SD
neighborhood). In spite of the great chemical
difference between arginine in the structural model
and either an alanine or serine residue, the serine
from the polymorphism but not alanine or arginine
residue represents an unusual amino acid in the
phylogeny of nine sequences. Polymorphisms in
aldose reductase (ALDR1) and prostoglandin
synthase 2 (PTGS2) from the modeling of the
CWRU nsSNPS also appear likely to have an effect
on function. The histidine to leucine residue
change in ALDR1 is modeled at a histidine residue
of an aldose reductase structure (PDB: 2acs) and
has very low solvent accessibility (2.0 AÊ 2 or 0.01
relative accessibility), relative B-factors (ÿ0.79 resi-
due, ÿ3.00 neighborhood), and relative phyloge-
netic entropy (ÿ0.75 residue, ÿ3.67 neighborhood).
It represents a buried charge but does not rep-
resent an unusual amino acid. It is however part of
the sequence matching the PROSITE entry PS00079
(aldoketo_reductase_1) of the enzyme's active site.
The glutamic acid to glycine polymorphism in
PTGS2 modeled as a glutamic acid on the structure
of the mouse cyclooxygenase-2 (PDB: 1cx2) rep-
resents a change at a ``conserved position'' in a
relatively conserved neighborhood (ÿ1.58 s.d.) that
is also inaccessible (12 AÊ 2 or 0.06 relative accessibil-
ity) with a low neighborhood relative B-factor
(ÿ1.50 SD). In the WI data set, the polymorphism
with the second highest score is a methionine to
isoleucine residue change in Factor V (F5), which
when modeled on the structure of the related ceru-
loplasmin (PDB: 1kcw, 37 % sequence similarity
overall) represents the introduction of an unusual
amino acid (phylogeny of eight sequences) in a
buried (0 AÊ 2, 0.0 relative accessibility), rigid (rela-
tive B-factors: ÿ0.86 residue, ÿ2.27 neighborhood)
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and conserved (relative phylogenetic entropy:
ÿ1.48 residue, ÿ0.73 neighborhood) residue and
neighborhood. The third most likely polymorph-
ism to affect function is a phenylalanine to serine
change in annexin III also in a buried (0 AÊ 2, 0.0
relative accessibility), rigid (relative B-factors:
ÿ0.82 residue, ÿ1.91 neighborhood), and con-
served (relative phylogenetic entropy: ÿ0.61 resi-
due, ÿ0.14 neighborhood) part of the structure
(PDB: 1axn, 100 % sequence identity). The serine of
the polymorphism represents an unusual amino
acid in a phylogeny of 51 sequences.

Conversely, some of the polymorphisms have
low probability values for an effect on function
(Table 7A and B , bottom part, 5 models with low-
est probability in each data set). As expected, these
polymorphisms are modeled as solvent accessible
residues in parts of structure that are relatively
variable in sequence, and have high relative
B-factors; and the values of their categorical par-
ameters do not indicate an effect on function.
Population genetics of nsSNPs predicted to
affect function

If the rate of non-synonymous cSNPs occurring
in the population is proportionately lower than the
rate of synonymous cSNPs due to the more
immediate and potentially deleterious functional
consequences of amino acid variation, it might be
expected that polymorphisms with a greater prob-
ability of affecting function would have dispropor-
tionately high representation among the nsSNPs
with low allele prevalence.1,2,30 We analyzed this
possibility, again using ANOVA and F-statistics,
by examining the average probability values for
predictions in three SNP prevalence categories
(Table 8). Indeed, the predicted probability of an
effect on function is lower in the high prevalence
categories for both data sets but, with so few high
frequency alleles, it does not reach statistical sig-
ni®cance. Moreover, the medium frequency allele
in the WI data (N � 9) in the WI data has a higher
average probability of affecting function than the
low frequence allele (N � 26). When the two data
sets are combined, the P-value improves to 0.36.



Figure 3. Cross validation tests of the probabilistic model. All ®gures represent plots of the misclassi®cation frac-
tion rate (see also Table 4) for predictions made using the probabilistic model at the minimum con®dence levels indi-
cated. Misclassi®cation rates are plotted in increments of 0.05 in prediction con®dence level units, instead of the 0.10
intervals in the table. The trend in prediction accuracy for test was also crudely ®t by linear regression. The environ-
ment features for all tests were ``relative accessibility'', ``relative phylogenetic entropy'', and ``neighborhood relative
B-factor.`` (a) Homogeneous cross-validation. For this test, 90 % of the mutations from a single data set were used as
the training data, and the remaining 10 % of the mutations from the same data set were used as the test data (see
also Table 4). The categorical features were chosen by the maximum likelihood method. They were ``unusual amino
acid by class'', ``near heterogen atom'', and ``interface'', for the lac repressor mutations modeled on the lac repressor,
and ``buried charge'', ``unusual amino acid by class'', ``helix breaking'', and ``near conserved'' for the lysozyme
mutations modeled on the lysozyme structure, and ``buried charge'', ``helix breaking'', ``near conserved'', and ``near
interface'' for the lac repressor mutations modeled on the purine repressor. (b) Heterogeneous cross-validation with
maximum likelihood selection of categorical features. The outcome of the lysoyzme mutations were predicted with
the lac repressor mutations as training data and vice versa (see also Table 5). When the lysozyme mutations modeled
on the lysozyme structure were used as training data, the categorical features selected by maximum likelihood were
``buried charge'', ``unusual amino acid by class'', ``helix breaking'', and ``near conserved position''. When the lac
repressor mutations modeled on the lac repressor structure were used as training data, the categorical features
selected by maximum likelihood were ``buried charge'', ``unusual amino acid by class'', ``turn breaking''. (c) Hetero-
geneous cross-validation with only one categorical feature. The same test as performed in (b) with the single categori-
cal feature unusual amino acid for all comparisons (see also Table 6).
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Overall, the structure-based probabilistic anal-
ysis (Tables 7 and 8) suggests that proportions of
modeled polymorphisms expected to affect func-
tion are 0.31-0.32 and 0.26-0.27 (depending on
which categorical features are used) for the CWRU
and WI data sets respectively. These values are
considerably lower than the approximately 0.41-
0.44 of the mutations that affect function in the
combined lysozyme and lac repressor data sets.
Taking together with the CWRU and WI authors'

estimates of about 24,000-40,000 heterozygous loci
in a typical person due to nsSNPs, these results

suggest most people are expected to have about
6240-12,800 nsSNPs with effects on protein func-

tion due to amino acid variation.



Figure 4. Histogram of probability values for an effect on function in modeled CWRU and WI nsSNPs. Probability
values were determined from a probabilistic model using the combined modeled lysozyme and lac repressor
mutation data sets as training data and the environment features ``relative accessibility'', ``relative phylogenetic
entropy'', and ``neighborhood relative B-factor'' (see also Table 5). In addition, the categorical features (Features A,
Table 5) ``buried charge'', ``unusual amino acid'', ``unusual amino acid by class'', and ``turn breaking'' were chosen
by maximum likelihood applied the combined data set. To generate the histogram, probability values for modeled
polymorphisms were segregated into bins having 0.1 probability units width, and the number of polymorphisms in
each bin was graphed as the proportion of all modeled polymoprhisms in the corresponding data set (out of 46 for
CWRU and 58 for WI).
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Discussion

Others have noted the importance of structural,
physical, and phylogenetic aspects of residues for
Table 8. Segregation of the probability of an effect on functi

Data summary
CWRU

Allele prevalence Count
Average

probability Cou

Low (<�0.05) 39 0.32 26
Med (0.05-0.15) 4 0.28 9
High (>0.15) 3 0.27 10
All alleles 46 0.32 45

P-value (ANOVA) 0.86

Data for predictions made with features ``A'' (Table 7). ANOVA
among three allele prevalence classes by computine an F-value. P-V
ence in average predicted probability among alleles in the different
predicting their tolerance to amino acid substi-
tution, but as far as we know, the current study
and the report from Sunyaev et al.17 are the ®rst
attempts to enumerate an extensive list of predic-
on over nsSNP prevalence classes

WI CWRU�WI

nt
Average

probability Count
Average

probability

0.22 65 0.28
0.30 13 0.29
0.17 13 0.19
0.27 91 0.27

0.41 0.36

compares estimates of the variance in the predicted probability
alue is probability of the null hypothesis, i.e. no statistical differ-
frequency groups.



Figure 5. Images of the structural models for polymorphisms in the CWRU and WI SNP surveys with high prob-
ability values of affecting protein function. Each structural model (either of the target protein or a protein homolo-
gous to the target protein, see Table 5) is shown in a standard RIBBONS representation51 (Target Proteins: PDB ID
pairs were dopamine beta-hydroxylase (DBH):1phm, aldose reductase (ALDR1): 2acs, prostoglandin synthase 2
(PTGS2): 1cx2, Factor V (F5): 1kcw, and annexin III (ANX3): 1axn). The model residue for each nsSNP is shown in
red space ®lling representation. Other annotations include matches to PROSITE patterns (green space ®lling represen-
tation), Calcium atoms (purple spheres in ANX3 model), Copper atoms (purple spheres in DBH and F5 models) and
ligands (ball-and-stick representation, heme for PTGS2, NAP for ALDR1). Although not indicated in the ®gure, the
polymorphism in ALDR1 is part of a PROSITE match (PS00079) to the enzyme's active site.
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tive features and to develop a formalism for quan-
titatively evaluating their performance in predic-
tions. We found a group of continuous and
categorical, structure and sequence-based features
that are strong predictors of an effect on function
for mutations in the lac repressor and in lyso-
symze. For the lac repressor mutations, when the
feature values were derived from the structure of
the homologous purine repressor with only 30 %
sequence identity, they remained very strong pre-
dictors of effects on function. In cross-validation
studies, we found that feature values could be cali-
brated for signi®cantly accurate predictions on
both the lac repressor mutations and the lysozyme
mutations. This generic calibration suggested the
use of the predictive features for estimating a prob-
ability that nsSNPs in the recent CWRU and WI
surveys would affect function. From the estimated
probability values, we expect that the proportion
of nsSNPs affecting function is substantial, about
26-32 %, and that nsSNPs may account for a signi®-
cant source of molecular functional variation in
human populations.

Through statistical analysis (Tables 2 and 3) and
cross-validation (Tables 4, 5 and 6, Figure 3), we
attempted to assess the generality of the predictive
features for indicating effects on protein function.
The similar statistical ranking of the features on the
lac repressor and lysozyme mutations supports
their general nature (Table 2), as do the cross-vali-
dation tests (Tables 5 and 6). But the absolute
strength of the prediction signi®cance in the two
mutation data sets differs. These differences might
be related to intrinsic differences in the tolerance of
the two proteins to mutation, or to intrinsic differ-
ences in the experimental criteria for determining
functional effects in the two data sets.

In the assessment of the functional consequences
of natural amino acid polymorphisms, the struc-
ture-based approach we describe provides a sig-
ni®cant enhancement over predictions based solely
on the knowledge that about 40 % of random
amino acid mutations affect function. To begin, the
procedure is more accurate. The accuracy based on
randomly assigning 40 % of the mutations to an
effect on function and 60 % to no effect on function
would lead to an overall misclassi®cation rate of
0.48, with misclassi®cation rates of predicting an
effect or no effect on function of 0.60 and 0.40,
respectively. These values are considerably worse
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than those observed with the probabilistic model
(Tables 4, 5 and 6, Figure 3), especially for the
higher con®dence predictions. Indeed, the
improved accuracy with increasing prediction con-
®dence validates the idea of ranking candidate
polymorphisms according to their probability of an
effect on function. This kind of ordering is imposs-
ible in a method that only considers the average
likelihood of an effect on function among random
mutations. SNP-derived amino acid polymorph-
isms are strongly non-random (see disproportion
of nsSNPs in rare alleles in the work by Cargill
et al.1 and Halushka et al.2); and to the extent that
the structure-based approach accurately captures
the functional consequences of mutations, the cur-
rent methodology is vastly more informative for
this class of amino acid variation than simple
extrapolation of the aggregate behavior of random
mutations.

We would therefore claim not to have found a
universal calibration of the features for predicting
effects on function on all proteins, but rather one
that is likely to be reasonably robust for well-
behaved globular proteins for which there are
homologous crystallographic structural models.
Other structural classes of proteins (or folds) might
have biological functions with different tolerance
to amino acid polymorphisms. For example, the
tolerance to mutation of structurally extended or
dynamic but critical parts of proteins may not be
revealed by low crystallographic B-factors. Predic-
tions of effects on membrane proteins may require
a different calibration of the feature values than are
used for the small globular proteins.

Nevertheless, the features and approach we
describe can be adapted for these circumstances
through the our formalism, and even without
modi®cation, the features may be remarkably gen-
eral (Table 1). For example, the use of relative
measures for the B-factor and entropy features
instead of absolute measures may allow respecta-
bly accurate comparisons among many different
proteins and their distinct structures and folds.
Conserved residues and neighborhoods will
always be intolerant to amino acid substitution,
and burying charges in hydrophobic cores will
always be destabilizing. The methods would be
strengthened by more unbiased mutation data sets
in proteins with a wide range of fold
classi®cations.18,19 It might also be particularly
helpful to have experimental data pertaining to the
effects on function of exchanging each amino acid
for every other amino acid in a wide variety of
structural environments.

However, even as more complete sets of struc-
ture-based features, phylogeny-based features, and
new mutation data become available, there may be
an intrinsic limitation to the approach we describe.
A long history of mutagenesis studies suggests
that the effects of some mutations will not be
understood in terms of the features that are
analyzed in this work (for a discussion, see Ness
et al.,31 for examples, see Crameri et al.,32 Chang
et al.33 and Spiller et al.34). For example, solvent
accessible mutations with a high degree mobility
can affect protein solubility, interactions with other
molecules, or internal dynamics and folding, or
even transcription and translation all in ways that
may not be identi®ed by structure or phylogeny-
based features.

The current methodology ®nds potential appli-
cation in the understanding of genetic effects in
the development and improvement of
pharmaceuticals.35 At the outset of drug design,
it can help anticipate functional variability in
protein drug targets due to nsSNPs that might
cause heterogeneous interactions of lead com-
pounds. During the clinical phase of developing
candidate drugs, it can help provide an expla-
nation for variability in ef®cacy or in toxicity
that may be due to genetic variability in phar-
macological pathways. Finally, once an approved
drug has been used by thousands of patients,
the method can be used retrospectively to devel-
op hypotheses for identifying particular poly-
morphisms that will serve as indicators of a
drug's ef®cacy; and screening patients for critical
polymorphisms could become a requisite aspect
of drug prescription.

The genetic origins of nsSNPs are likely to be
heterogeneous and may re¯ect neutral genetic
events that become ®xed, selective pressures that
existed in another time, population bottlenecks, or
genetic con®gurations that confer advantages in
the current environment.10 Unlike the lac repressor
and lysozyme mutations, they are biased and their
functional history can be dif®cult to recreate. Due
to selection against the deleterious effects of amino
acid substitutions, nsSNPs remaining in the popu-
lation are less likely to have an effect on function
than unbiased mutations
view supports this conclusion by estimating that
an average of 26-32 % of the CWRU and WI
nsSNPs encode amino acid variation that might
not be tolerated in the modeled structural enviorn-
ment (Figure 4) (compared with 41 % and 44 % for
the lac repressor and lysozyme respectively).
Although the number of high frequency nsSNP
alleles was limiting in our statistical tests, the
greater predicted probability of effects on function
for nsSNPs with lower allele frequency suggests
that our predictions re¯ect the expected in¯uence
of genetic history on function. Con®rmation of our
predictions will await more nsSNP allele frequency
and functional data, and of course, experimental
validation of our computational methods.

Our estimates of the effects of natural poly-
morphisms suggests that about 6240-12,800
nsSNPs will cause heterogeneous protein function.
If our predictions are approximately correct and
the functional nsSNPs are distributed uniformly
over the estimated 30,00036,37 proteins encoded by
the human genome, this level of functional hetero-
geneity would be manifest in many biochemical
and signal transduction pathways. Non-coding
and synonymous cSNPs affecting functions like
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transcription and splicing will also contribute to
heterogeneous biological function. And determin-
ing the relative functional importance of these
SNPs and the non-synonymous ones is an import-
ant goal of ongoing genomic studies. In the mean-
time, the tools, formalism, and estimates we
describe for the analysis of the nsSNPs can help
understand the functional basis of natural biologi-
cal variation in the human population.

Materials and Methods

Data sets

In order to evaluate structure-based features as
potential indicators of effects on protein function, we
considered the previously described exhaustive muta-
genesis of lac repressor (about 4000 mutations) and T4
lysozyme (about 2000 mutations).16,30 These data sets
are unbiased in the sense that: (i) the mutations
included 12 or 13 changes for each residue (depending
on the identity of the natural residue) or roughly two-
thirds of the possible mutations in the two proteins;
(ii) the 12 or 13 changes represent substitutions into
each of the recognized chemical classes of amino acid
residues; (iii) the measurements of the effects of the
mutations on function were standardized; and (iv) the
mutations were not selected for their effects on func-
tion. For our analysis, outcome of the mutations was
viewed in a binary fashion: either the mutation
affected protein function or it did not. For example, a
leucine to histidine mutation at position 133 of lyso-
zyme caused an effect at 37 �C but not at 25 �C. This
mutation was scored as having an effect. In spite of
the different functions of the lac repressor and lyso-
zyme, and the different criteria for determining effects
on function, the proportions of mutations in the data
sets with effects on function were very similar, 0.41
and 0.44, respectively. The mutations were mapped
onto the structure of lysozyme (PDB ID: 7lzm) or the
structure of lac repressor (PDB ID: 1lbh) carboxy-
terminal domain as appropriate through a sequence
correspondence established by a BLAST alignment.
The lac repressor mutations were also mapped onto
the crystal structure of the purR repressor (PDB ID:
2pua), sharing about 30 % sequence identity with the
lac repressor, also through the sequence correspon-
dence established by a BLAST alignment. The BLAST
sequence correspondence differs from the structural
correspondence de®ned by the FSSP database at seven
residues out of about 333.39

Structural neighborhoods

We suspected that the primary effects of amino acid
polymorphisms would be local, and focussed our anal-
ysis on structural models that included the polymorphic
residue itself and residues that are within a small dis-
tance of the polymorphic residue (for an example, see
Bordo40 for a previous implementation of this concept).
Collectively, these nearby residues are termed the struc-
tural neighborhood. Formally, we de®ned the structural
neighborhood as the collection of residues having at
least one atom within 5 AÊ of at least one atom in the
model for the polymorphic residue.

To assess the structural similarity of homologous
neighborhoods, we examined pairs of structurally
aligned homologous proteins from the FSSP database
to derive a comprehensive database of homologous
structural neighborhoods.39,41 Each collection of subject
and representative structures in the FSSP database
was cleaned by eliminating subject structures that
were essentially the same in sequence. The eliminated
structures included cases of crystal structures of sev-
eral mutant forms of subject proteins, cases of crystal
structures of varying resolution of the same subject
protein, and cases of crystal structures of subject pro-
teins solved with a selection of different ligand mol-
ecules. For each residue in each representative
structure in the cleaned database, an equivalent resi-
due was found in each of the subject structures
through the sequence correspondence established by a
BLAST alignment. The structural neighborhood for
each residue in the representative structure was also
determined, and related to a corresponding structural
neighborhood in the subject structures also through
the BLAST alignment. Phylogenetic data, secondary
structure, and accessibility for each residue from the
representative structures and its structural neighbor-
hood were supplied by the appropriate HSSP ®le.42 In
all, about 350,000 representative structure residues and
structural neighborhoods, their corresponding subject
structures' residues and structural neighborhoods, their
B-factor, their phylegenetic data, and their solvent
accessibility were collected.

Using the FSSP coordinate transformations for the
subject structures, the r.m.s.d. values for Ca atoms in
corresponding residues of all homologous structural
neighborhods were computed. These values were then
compared to the fraction of identical residues in the
homologous structural neighborhoods. With our pro-
cedure, the r.m.s. distance values underestimate the
accuracy of representing a structural neighborhood
with the corresponding structural neighborhood in a
homologous proteins since the structural alignment for
each structural neighborhood pair was not optimized
beyond the alignment for the entire, homologous pro-
teins. Nevertheless, it is clear that alpha carbon pos-
itions in homologous structural neighborhoods
typically resemble each other even for low levels of
sequence similarity, e.g. 1.5 AÊ and 2.0 AÊ average
r.m.s.d. for 50 % and 30 % sequence identity respect-
ively (Figure 1). The relationship between neighbor-
hood sequence similarity and either the average
structural similarity (Figure 1) or the distribution of
the r.m.s.d. values (Figure 1, inset) can be used to
provide con®dence in the structural accuracy of the
models of structural neighborhoods used to analyze
polymorphisms. We note that a single calibration of
structural neighborhood similarity as a function of
sequence similarity appears to be valid for related
proteins whether they are very similar in sequence or
quite different (compare 0.70-0.95 sequence identity
curve with 0.25-0.40 sequence identity curve). Since
our structural neighborhood alignments are derived
from the structural alignments of entire proteins,39,41 it
is not surprising that the r.m.s.d. values for our struc-
tural neighborhoods are in accordance with similar
analyses performed for homology modeling of entire
proteins (for example, see Table 1 in the work by
Guex et al.).22

The predictive features

We considered an array of structure-based and
sequence-based features of amino acid polymorphisms
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that might serve as generalized predictors of effects on
function. Some features were known from the literature,
others were of our own devising. The features fell into
two broad classes.

Features in the ®rst class convey an intrinsic toler-
ance of a particular residue position in a protein
structure to amino acid substitution. These features
include the molecular rigidity represented by the crys-
tallographic B-factor of the model polymorphic residue
and its structural neighborhood,13,43 the degree phylo-
genetic conservation represented by the phylogenetic
information content or entropy for the polymorphic
residue and its structural neighborhood (for example,
Walker et al.44 and Sander & Schneider40), the solvent
accessibility for the polymorphic residue (see Bourie
et al.11), and its proximity to ligand or cofactor mol-
ecules (Table 1). For the features pertaining to the
crystallographic B-factor and phylogenic entropy, we
considered relative measures to facilitate normalization
of comparisons among different structures, e.g. for
structures with very different average B-factors or
phylogenetic entropy. Together, the six most generic
of the features in this class were termed environment
features. They were relative B-factor, neighborhood
relative B-factor, relative phylogenetic entropy, neigh-
borhood relative phylogenetic entropy, solvent accessi-
bility, and relative solvent accessibility as de®ned by
Rost & Sander.45 All six environment features are con-
tinuously-valued. The remaining features in this class
near heterogen atom (i.e. an atom in a non-standard
group in a PDB ®le), near interface, and ``near con-
served position'' are categorically-valued, assuming the
value ``yes'' or 1 if certain structural criteria are met
and ``no'' or 0 if not.

Features in the second class are properties of a
polymorphism that indicate its potential effect on
function due to the chemical differences of the alterna-
tive amino acids, sometimes in combination with the
structural environment. These features are all categori-
cally-valued. Among others, they include designations
for a polymorphism that introduces a charged amino
acid at a residue position that is inaccessible to sol-
vent in the model structure (buried charge),12 poly-
morphisms that substitute a glycine or a proline
amino acid in a region of helical secondary structure
in the model (helix breaking), polymorphisms that
occur at the conserved glycine or proline in a turn
(turn breaking), and polymorphisms that introduce an
amino acid that is not represented in the phylogenetic
pro®le of the polymorphic residue (unusual amino
acid) or its amino acid class (unusual amino acid by
class)46 (Table 1B). Amino acid substitution matrices
(e.g. BLOSUM, PAM)47,48 could also be used to pro-
vide information about allowable mutations; but
because the unusual amino acid feature is evaluated
for each polymorphic residue, it will likely more accu-
rately integrate the empirical subtlety of each particu-
lar structural environment. None of the structural
aspects of any of the features relies on the detailed
atomic con®guration of the model, making them suit-
able when only structures of homologous proteins are
available.

Automated construction of models for
polymorphic residues

The basis of all of our analysis is the mapping of a
target polymorphic residue onto the crystal structure
of a target protein or its homolog, followed by the
assessment of a set of structure-based and sequence-
based features for the modeled polymorphic residue.
The correspondence between the target polymorphic
residue and a residue in a homologous structure was
determined by a BLAST (v. 2.0.649) alignment, select-
ing from among possible alignments so as to optimize
the overall sequence similarity between the target pro-
tein and the model protein. Only alignments with sig-
ni®cant P-values (i.e. <10ÿ10) or a sequence similarity
of about 30 % overall amino acid identity were con-
sidered informative. Once the model protein and resi-
due were identi®ed, the corresponding PDB ®le was
analyzed to extract B-factors and construct structural
neighborhoods. The atomic B-factors for each residue
were averaged to de®ne residue B-factors. These resi-
due B-factors were normalized by subtracting their
average value in the corresponding PDB chain, and
dividing by the variance to derive the ``relative resi-
due B-factor'' or used in the formula in Table 1 to
derive the ``neighborhood relative B-factor'' feature.
Proximity to ligand atoms, e.g. heterogen atoms and
matches to PROSITE50 motifs was also assessed. Phy-
logenetic data and additional structural information
needed to evaluate the predictive parameters, includ-
ing solvent accessibility and residue secondary struc-
ture, were extracted from the HSSP ®le42

corresponding to the model structure selected from
the PDB. In the HSSP ®les, the phylogenetic data con-
sists of a multiple alignment of sequences from
SWISS-PROT sharing at least 30 % amino acid identity
with the sequence of the model structure. Phylogenetic
entropy extracted from the HSSP ®les was normalized
as for the B-factors. For residues modeled on the lac
repressor, the purine repressor, and lysozyme struc-
tures, the values for accessibility and relative accessi-
bility were normalized by averages and variances (as
for the B-factors) determined for each protein separ-
ately. Relative accessibility was determined by divid-
ing the model residue's solvent accessibility from the
HSSP ®le by the maximum solvent accessibility for
the model residue according established values.45 For
models of the polymorphic residues from the CWRU
and WI SNP surveys, the values for accessibility and
relative accessibility were normalized to typical aver-
age values (42 AÊ 2 and 0.26, respectively), and var-
iances (44 AÊ 2 and 0.26, respectively) for these
parameters. Current versions of the method always
normalize accessibility and relative accessibility with
average values and variances derived from the PDB
structure used to model the polymorphic residue. The
entire procedure of mapping mutations onto exact or
homologous crystal structures was automated.

Probabilistic model

We used data sets of training mutations to estimate
the probability that a test polymorphism in a target
protein has an effect on its function. The training
mutations were the unbiased mutations in lac repres-
sor and lysozyme modeled on their respective crystal
structures as described above. Approaches using crys-
tal structures of homologous proteins for determining
feature values for the training mutations were not stu-
died here except for the homogeneous cross-validation
tests of the lac repressor mutations modeled on the
purine repressor. For each test polymorphism in a tar-
get protein, environment and categorical feature values
were assessed from structural models of the target
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protein when possible, or from the structure of a pro-
tein homologous to the target protein. The probability
that the test polymorphism affects the function of the
target protein was estimated as the fraction of
mutations in the training data set with effects on their
protein's function from among those that had: (i) their
selected continuously-valued environment feature
values within a speci®ed stringency (measured as a
cartesian distance, sometimes termed the bandwidth in
local regression analysis)51 from the selected environ-
ment feature values for the modeled test polymorph-
ism; and (ii) categorical feature values that were
identical to the categorical feature values for the mod-
eled test polymorphism. We studied the stringency
parameter for comparing environment feature values
and found good performance with a cartesian distance
of about one standard deviation (1 SD) between the
selected environment feature values of the training
mutations and the selected environment feature values
of the target polymorphism. As commonly found in
local averaging methods, stringency values signi®-
cantly less than about 1 SD in the environment fea-
tures caused too little averaging, while greater values
caused undifferentiated predictions of effects on func-
tion (data not shown).51 If there were fewer than four
training mutations with appropriate feature values, no
prediction was made.

Principal component analysis and correlation
between environment features

The computation of correlation coef®cients and prin-
cipal component was performed as described by
Lebart et al.52 using environment feature values com-
puted from the automated modeling from the lac
repressor structure (PDB ID:1lbh), the purine repressor
structure (PDB ID: 2pua), and the lysozyme structure
(PDB ID: 7lzm). We also examined correlation coef®-
cients and principal components for environment fea-
ture values in the database of structural
neighborhoods. We gave special attention to the B-fac-
tor and phylogenetic entropy features since high
degree of correlation would suggest that conserved
residues or neighborhoods are necessarily more rigid,
and conversely that variable residues or regions of a
protein are more ¯exible. Like the the lac repressor
and lysozyme cases (Table 3), moderate correlation
was found. It is maximal for the correlation of the
neighborhood relative B-factor and neighborhood phy-
logenetic entropy (0.35) and minimal for the corre-
lation of relative B-factor and relative phylogenetic
entropy (0.26). The full correlation and principal com-
ponent analysis for the database of structural neigh-
borhoods is available upon request.

Choice of features

The most complete probabilistic model would use all
of the predictive features and might provide the most
accurate basis for judging a polymorphism's functional
effects, but it would also contain redundant descriptions
of each polymorphism caused by the correlation between
pairs of the parameters. It would also require a large
amount of training data for calibration. The complexity
of the model can be minimized by identifying a reduced
set of the most important features to be used as predic-
tors. We noted in the ANOVA (Table 2) and in the prin-
cipal component analysis (Table 3) that a robust
description of the environment of a modeled poly-
morphic residue should include one accessibility feature,
one phylogenetic entropy feature, and one B-factor fea-
ture. Based on the relative predictive values of the fea-
tures (Table 2), we chose relative accessibility, relative
phylogenetic entropy, and for the B-factor, either relative
B-factor or relative neighborhood B-factor. The tests that
are reported use the relative neighborhood B-factor.

The choice of features used with each training data set
could also be selected by a maximum likelihood method.
Here, we used the probabilistic model to compute the
accumulated log likelihood of the observed effects on
function in the training data set, and compared this
value to the log likelihood of the observed effects esti-
mated solely with knowledge of the fraction of
mutations in the training data with effects on function:
The best combination of features was selected as the
one affording the probabilistic model the greatest
improvement in predicting the likelihood of the training
data. Combinations of features causing too few training
mutations with appropriate feature values for computing
more than 10 % of the pi values were not considered.

To reduce the number of combinations of features
tested in the maximum likelihood procedure, we typi-
cally ®rst identi®ed the set of three environment features
that optimized the likelihood of the training data, and in
a second step, up to about four categorical features that
together with the selected environment features
optimized the likelihood of the training data. As with
the ANOVA and the correlation tests, we found that the
best set of three-environment features typically included
one of the two accessibility features, one of the two phy-
logenetic entropy features, and one of the two B-factor
features. With these environment features, the categorical
features providing the maximum likelihood of the
.
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observed data typically included the unusual amino
acid, buried charge, and conserved position features, and
for the tetrameric lac repressor with its bound ligand
(IPTG) or the purine repressor bound to DNA and its
ligand (6MP), the near interface and near heterogen
atom features (see also Tables 4, 5, 6 and 7).

Computational considerations

To speed computation of probability values, the con-
tinuously-valued environment feature values were
indexed according to the formula:

E:V: Index � Int round e:v:�
binning factor

bandwidth

� �� �
Where:

e:v: � environment feature value

Bandwidth � 1:0s for all applications presented

Binning factor � 5=2� bandwidth

This procedure returns ®ve discrete environment feature
indices for every two bandwidth intervals. As each new
test mutation was encountered by the program, the
ordered n-tuple of environment feature indices and the
categorical feature values was determined. If a new fea-
ture value n-tuple corresponding to a test mutation did
not exist in the cache, its probability of an effect on func-
tion was estimated from the training data. Then the n-
tuple, its corresponding probability value, and the num-
ber of training mutations used in the probability deter-
mination were added to the cache. Probability values for
test mutations with feature value n-tuples pre-existing in
the cache were determined from cached values.

Programming and software

Scripts for all entire procedure were written in Python
v.1.4 and Awk, and implemented on an SGI, Inc. O2

computer running under IRIX6.4. All statistical analysis
including the ANOVA and w2 tests were performed with
Microsoft Excel. The molecular graphics (Figure 5) were
prepared using RIBBONS.53
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