Parsing In Unix
egrep, sed, awk &
regex
Patrick Fuchs

B

Université Paris Diderot Institut Jacques Monod UFR Sciences du Vivant
03/2013 Université Paris Diderot — Paris 7 1

DIDEROT

PPPPPP

PA R ! givers e

o o A~ W D E

Outline

Parsing

Regular expressions

egrep: line by line

sed: stream editor - very fast
Stream redirection

awk: very powerful = programming

language

Parsing

Definition: syntactic analysis
= mining data in text file(s) using
- Unix tools: egrep, sed, awk, etc.

—> with a specific grammar: regular expression (regex)

Very powerful when used with Unix pipes (1)

Also usable in scripting languages (python, perl, R, etc)

Basic grep

General syntax: grep expression filename

Read filename (=text file) line by line, and print the current
line if it contains expression

Example: grep "ATOM" 1MSE.pdb

—> output all lines containing ATOM

Basic grep (2)

e grep on multiple files: grep expression filel file2 file3

[fuchs@rome OEB2012]$ grep LOCUS *.gbk

NC 001133.gbk:LOCUS NC 001133 230208 bp DNA linear PLN 16-JUN-2008
NC 001806.gbk:LOCUS NC 001806 152261 bp DNA linear VRL 24-AUG-2010
[fuchs@rome OEB2012]$

« (Good practice: always use quotes!
grep ACCESSION X92210 file.gbk

grep "ACCESSION X92210" file.gbk

« Useful options:
-1 : return file name only that match expression

—v . return lines that don’t match expression
—-n : return line numbers where expression matches
-1 : case insensitive

Combine grep and find

Search recursively all files containing a word:

find . —name "*.gbk" -exec grep -1 Drosophila {} \;

Regular expressions

Regular expression (regex) = filter strings with a
specific grammar

egrep, sed, awk handle natively regex

egrep "7ATOM" 1MSE.pdb
- "ATOM IS a regex

Python, Perl, R also have libraries dedicated to
regex

Syntax of regular expressions

regex are made of:
- normal characters (interpreted normally)

- metacharacters = special characters which means
something for the parsing program

Example:
egrep "7"ATOM" 1MSE.pdb

- ~ means beginning of line
- ATOM means ATOM
=» print to screen all lines starting with the word ATOM

03/2013 Université Paris Diderot — Paris 7

Syntax of regular expressions

Metacharacters

A beginning of line

S end of line

: any character

[ABC] AorBorC

(AB|AC|AZ) ABorAC orAZ

[A-Z] any upper case letter

[a-2z] any lower case letter

[0-9] any numeral character
[*AB] any character except Aor B
\ escape the next metacharacter

egrep ' (ALA|GLY)' 1MSE.pdb
-> print to screen all lines containing ALA or GLY

03/2013 Université Paris Diderot — Paris 7

Syntax of regular expressions (2)

Metacharacters (counting)

* O or n times
1 1 time or more
? O or 1time

{n} n times
{n,m} ntomtimes
{n,} atleastntimes

Applies to the previous character or to the expression
between ()

egrep 'A{3,}"'" NC 001133.gbk
- print any line containing at least 3 consecutive A

egrep = extended grep

General syntax: grep 'regex' filename

Read filename (=text file) line by line, and print the
current line if it matches regex

(same as grep but able to interpret regex; grep -E IS
equivalent to egrep)

Example:
egrep ' (ALA|GLY)' 1MSE.pdb
= print to screen all lines containing ALA or GLY

good pratice: Always use single quotes
egrep 'tgttagtgtt$' NC 001133.gbk
egrep "tgttagtgtt$" NC 001133.gbk

egrep = extended grep

General syntax: grep 'regex' filename

Read filename (=text file) line by line, and print the
current line if it matches the regex

(same as grep but able to interpret regex)

GOOD ©!

Example:
egrep ' (ALA|GLY)' 1MSE.pdb
= print to screen all lines containing ALA or GLY

- . WRONG ®!
good pratice: always use single quotes
egrep 'tgttagtgtt$S' NC 001133.gbk /
2

7+ earen W ~+ 4+ N~~~ T\T(“ AN11 2
C\jJ_CJ_\/ b\jbbu\jb\jbbkﬂ U U L L </

k]
07

S}

03/2013 Université Paris Diderot — Paris 7 12

Powerful example: get DNA sequence
from a gbk file using egrep

egrep '" +[0-9]+ [atgc]+S' file.gbk

-2 If it doesn’t work, remove before the Windows

carriage returns:
tr -d '"\r' < file.gbk > file OK.gbk

and rerun:
egrep '~ +[0-9]+ [atgc]+$' file OK.gbk

sed program

sed (stream editor, son of ed)

non interactive editor: sed reads a file (or stream) line by line
and eventually does an action on the line

very powerful, very fast

General syntax: sed [options] 'command' filename

Good practice:
« option -r to have full regex (as in egrep)

« always use single guotes

sed: substitution

General syntax; sed -r 's/regex/repl/g' filename
regex IS In indicated between //
s IS a sed command= substitute

g Is a sed command= global (substitute all occurrences of
regex In the line)

Example:
sed -r 's/"foo/fee/g' file

-> replace all occurrences of “foo by fee in £ile and print
output to screen

sed. multiple substitutions

General syntax: Use option -e

sed -r —e 's/regexl/repll/g' -e \
's/regex2/repl2/g' filename
equivalent to

sed -re 's/regexl/repll/g' -e \
's/regex2/repl2/g' filename

Possible to combine any number of substitutions

Example:

sed -re 's/"atg//g' -e 's/ggg/ttt/g' file

—> replace all occurrences of ~atg by nothing, then replace
all occurrences of ggg by ttt in £ile and print output to

screen

sed:. same substitution on

multiple files

General syntax:
sed —-r 's/regex/repl/qg' filel file2 file3

Example:
sed -r 's/"LOCUS/JOKE/g' *.gbk

-> replace all occurrences of “LOCUS by HELLO In every
gbk file and print all the output to screen

vi: substitution

Same syntax as sed ©

While typing text in vi, if one wants to do an automatic
substitution:

Esc
:%$s/regex/repl/g

sed:. partial printing (1)

General syntax:
sed -rn 'EXPRp' filename

sed —-rn 'EXPR1,EXPR2p' filename

—-n: activates partial printing

p IS a sed command= print

EXPR, EXPR1 & EXPR2 can be a line number or a regex
between //

Examples:

sed -rn '/regexl/,/regex2/p' file

- print all lines of £1i1e starting from 15t occurrence of
regex1l up to 1St occurrence of regex?2

sed:. partial printing (2)

sed —-rn '/regexl/p' file
-> print all lines of file matching regex1 (same as egrep)

sed —rn '1l,10p' file
=> print lines 1 to 10 to screen

sed —rn 'lbp' file
= print line 15 to screen

sed —-rn '100,Sp' file
- print lines 100 to last line to screen
Beware: here, $ =last line # $ In a regex

sed. partial printing (3)

sed —-rn '/regex1l/,100p' file
- print all lines from the 15! occurrence of regex1 up to
line 100

sed —-rn '10, /regexl/p' file
= print all lines from line 10 to the 15t occurrence of
regexl

sed. deleting lines

General syntax:
sed —-r 'EXPRdA' filename

sed —-r 'EXPR1,EXPR2d' filename

d Is a sed command = delete
EXPR, EXPR1 & EXPR2 = line number or regex between //

Examples:

sed -r '/regexl/d' file

-> delete all lines matching regex1 and print output to
screen

(i.e. print all lines except those matching regex1,

file Is not modified)

sed: deleting lines (2)

sed '100d' file
-> delete line 100 and print output to screen

sed '10,20d' file
—> delete lines 10 to 20 and print output to screen

sed. quitting

General syntax:
sed -r 'EXPRg' filename

g Is a sed command= quit
EXPR Is a line number or a regex between //

Examples:
sed '100g' file
= print all lines up to line 100

sed —-r '"/regex/q' file
- print all lines up to 1stoccurrence of regex

Beware: don’t use a double address with command g

sed: transliterate

General syntax:
sed 'y/source/dest/' filename

y IS a sed command= transliterate

Transliterate the characters which appear in source to
the corresponding character in dest

Examples:
sed 'y/atgc/tacg/' file
—>replace aby t,tbya,gbycandc byg

sed: modify input file directly

Option -1i: modifies directly the filtered file (no output on
stdout)

Examples:

sed -ri 's/foo/fee/g' file

-> replaces all occurrences of foo by fee In file
(beware, £ile is modified!)

sed —-rni '/regexl/,/regex2/p' file

-> prints all lines of £1i1e starting from 15t occurrence of
regex1 until 15t occurrence of regex?2

(beware, £ile is modified!)

sed. modify many input files

Option -s: combined with -1, modifies directly each file
(no output on stdout)

Examples:

sed -ris 's/LOCUS/JOKE/g' *.gbk

-> replaces all occurrences of LOCUS by JOKE In each
gbk file (beware, each gbk file is modified!)

L ast recommendations

1) During substitution, regex are greedy!
Beware with + and *

Search ‘ATG+’ in ‘AAATCCTAATATGGGTA’

replaces 'AAATCCTAATGGGTA’

although ‘AAATCCTAATGGGTA’ or ‘AAATCCTAATGGGTA
both match the regex!

2) Beware of ambiguous regex with + and *!

03/2013 Université Paris Diderot — Paris 7

28

Unix streams

Unix streams refer to instructions going into or flowing out
of processes

* stdin: standard input (keyboard)
* stdout: standard output (screen)
 stderr: standard error (screen)

Text terminal

The standard streams for input, output, and error

http://en.wikipedia.org/wiki/Redirection_(computing)

What does this mean?

Many Unix commands read stdin (keyboard) and give
output to stdout (screen) by default

cat invoked without
argument reads stdin and
gives output to stdout

Another example

Why Is there no output?

Why is there output?

Type Ctrl-D to quit

Stream redirection

< stdin redirection from a file
> stdout redirection to a file
>> stdout redirection at the end of a file

Examples:

ls -1 /etc > toto (beware if toto exists!)
ls -1 /bin >> toto (beware If toto exists!)

cat < toto

Same output?

/ Unix feature

cat < toto

Yes! ...but, formerly different

cat toto

\ cat feature

S0 IS stdin redirection useful?

Yes! Some unix programs read standard
iInput only

Example:
tr -d '"\r' < file

So Is cat useful?

Yes! Useful for concatenation:
cat filel file?2 file?3

cat filel file2 > output

Unix developers are fun, try that one:
tac file

Reverse a string

rev =» reverse lines of file(s) or stream

Examples:
more toto

Want chocolate

me too!
rev toto

etalocohc tnaW

loot em
echo \

"T love chocolate" | rev
etalocohc evol I

Using > and >> safely

set -0 noclobber

- Prevents ‘1s > file’tooverwrite file
If It already exists

Save it to your ~/ .bashrc to have it
always active

Filter commands

head file: 10 firstlines

tail file: 10 lastlines

grep expression file:you already know ©
sort file: alphabetical sorting (by default)

wc file:word counter

Examples

sort —nk 2 file -> sort by numerical order the
second column of file

wc —1 file -2 give the number of lines of file

03/2013 38

VERY useful pipes

cmdl | cmd2 =P connects stdout of cmdl to
stdin of cmd?2

Examples
ls =1 | sort
ls -1 /etc | grep csh

Remarks:
« Never provide a file name for the 2" command!

« One can use as many pipes as wanted:
ls -1 /etc | grep csh | sort

03/2013

39

Powerful example

Parse a sequence from a gbk file and
evaluate the reverse complement:

sed -n '/"ORI/,/"\/\//p' file.gbk | \
sed -r '/~ (ORI|\/\/)/d" | \

sed -r 's/[0-9 1//g"' | \

sed -r ':a;N;$!ba;s/\n//g' | \

sed 'vy/atgc/tacg/' | rev

Powerful example (2)

Same example using tac and tr

sed -n '/"ORI/,/"\/\//p' file.gbk | \
sed -r "/?(ORI|\/\/)/d" | \

sed -r 's/[0-9 1//g"' | \

sed 's/./&\n/g' | tac | \

tr -d '\n' | sed 'y/atgc/tacg/'

Other redirections

cmd << flag reads stdin until flag
cmd >& file redirection of stdout and stderrto file

cmd 1> filel 2> file2 redirection of stdout to
filel and of stderrto file?2

/dev/null ="black hole" of the computer (always empty)

03/2013 Université Paris Diderot — Paris 7 42

s << useful? Yes!

without << with <<

profit confl.pdb conf2.pdb [fuch=s@rome 1% profit confl.pdb confz.pdb << EO

FPEPPPE FFFFFF
FP PP FF

PP FF
FEPPF rr FFEFF
BPE rr FF

FE rr FF

FE rr oooo EFF

FFFEFFF ii
FF FF FF
FF FF
FPFFFF rr

FF

FF
Protein Least Sguares Fi FF

Version 2.2
Copvright (c) Dr. Andrew C.R. Martin,] Version 2.2

Eeading reference structure... ! yrigh () Dr. Andrew C.R. Martin,
BEeading mobile structure...

ProFit> fit eading reference structure...
Fitting structures... Reading mobile structure. ..

EM5: 1.3827

CPU heater

yes = print v indefinetly to the screen

CPU is working hard for nothing ©
ves > /dev/null

ves >& /dev/null &

redirect stdin \ L
— £ - \ yes working in the

and stderr
background

Next week

awk!

hint: named from authors (Aho, Weinberger,
Kernighan)

Thanks for your attention!

awk program

Very powerful parsing program including classical features
(variables, loops, tests...) = real programming language

In this course we’'ll study mainly awk with the command
line... but possible to write scripts

Same concept as egrep and sed: awk reads a file or flow
line by line and does an action if a test is true

General Syntax: awk 'test{action(s)}' file

With a pipe: cmdl | awk 'test{action(s)}"

Basic example

Equivalent of egrep:
awk 'S0 ~ /regex/{print $0}' file

regex indicated between / / (like in sed)
; command separator within

Good practice:

1) always use awk —--posix (posix is a norm for regex, e.g.
extended metacharacters suchs as {} are supported)

2) always use single guotes

Variables in awk

General variables:
var=1

var=3.14
var="toto"

Predifined variables: apply to the current line (= line beeing
read by awk)

$0 (whole) current line

NR line number

FS field separator (default: any combination of space(s)
and/or tabulation(s))

NF number of fields (of current line)

$x field x (x runs from 1 to NF)

FILENAME (note the upper case)

Recall: awk

Tests In awk

A test can be done
- on a numerical value

equal to
not equal

> greater than
< lower than
>= greater or equal
<= lower or equal
- ONn aregex

~N

matches

I~ doesn’t match

03/2013

Université Paris Diderot — Paris 7

'"test {command (s) }"

file

49

Tests In awk (2)

Examples
awk 'S0 ~ /”ORIGIN/ {print S$O0}' file
awk 'Sl ~ /ORIGIN/ {print $0}' file

awk 'NR == 10 {print $0}' file
awk 'NR >= 10 {print $0}' file
awk 'S0 !~ /ORIGIN/ {print $0}' file

Boolean operators: && (and), | | (or), ! (not)
awk 'S0 ~ /7~ *[0-9]+/ && NF == 10 {print $0}' file

Actions In awk

_ comma adds a space
» Actions always between {} between the arguments

« Examples of actions /
— text printing: {print "bonjour", $2}
{print "bonjour" _ $2}
— variable modification: {var=var+1} 1o comma
: o =» arguments
— variable definition: {1i=2} concatenated
— Combining actions: {print $0 ; i=0}
— Use other functions \

* pre-defined awk functions semi-column =
- other tests, loops, etc... command separator

Default behavior

* No test — every line is considered
awk '"{print $1}' file

* Only a regex between // — whole line ($0) Is tested
for regex matching

awk '/"ATOM/{print $0}' file (equivalentto)
awk 'S0 ~ /"ATOM/{print $S0}' file

* No action — print (whole) current line ({print $0})
awk '$1 == /ATOM/' file (equivalent to)
awk '$1 == /ATOM/ {print $0}' file

Print part of a file

//,// supported (like in sed)
awk '/7ORIGIN/,/\/\//'" NC 001806.gbk

From line 5 to 10 (inclusive)
awk 'NR ==1,NR == 10" NC 001806.gbk

Some real examples

Get lines with coordinates from a pdb file
awk '/"~ATOM/' 1MSE.pdb

Get Ca X,Y,z coordinates from a pdb file

awk '/AATOM/ && $3 == "CA" {print $7, $8, $9}' 1MSE.pdb

Get DNA sequence from a gbk file

awk '/~ +[0-9]1+ [atgc]+$/ {S$1="" ; print S$SO}"' \
file.gbk

Some real examples (2)

Get DNA sequence from a gbk file on a

single line

awk '/~ 4+[0-9]1+ [atgc 1+S/ \
- {gsub(/[0-9 1/,"",$0) ; \
printf "%$s", $0}' file.gbk

\

multiple formatted continue command
regex printing on next line
substitution

03/2013 Université Paris Diderot — Paris 7 55

Modify field separator

—F option allows changing field separator:
awk —F: "{print $1}' /etc/passwd

no space after —-F

Use \ when field separator might be interpreted by
bash

awk —F\" '{print $2}' file

Also doable using rs variable within awk execution:
awk '/” +gene +[0-9]/{sub(/ +gene +/,"",$0)\
; FS="." ; print $1,53}"\NC 001806.gbk

single regex
substitution

Next week teaser

awk scripting!

Thanks for your attention!

awk scripting

awk scripting = use option -1
awk —-f myscript.awk file

Block of instructions defined between {}
Instruction separator: ; (same line) or new
line

Two special "areas":

— before awk starts to read and process the 1st
line: BEGIN {instructions}

— after reading and processing of the last line:
END{instructions}

A real example

» Calculate center of mass of a protein (Ca
only):

awk 'BEGIN {x=0 ; y=0 ; z=0 ; count=0}

/"ATOM/ {count++ ; x+=$6 ; y+=S$7 ; z+=38}

END {print x/count,y/count, z/count}’
1BTA.pdb

Problem: the line gets very long!

\ not mandatory at
the command line

Rewriting of the COM extractor

extract CA_com.awk

BEGIN ({

x=0 ; y=0 ; z=0
count=0

}

/~"ATOM/ {

count++

x+=36 ; y+=S7 ; z+=38
}

END {
print x/count , y/count , z/count

}

More
readable ©

Run Ca COM extractor

[fuchs@rome ~]$ awk -f extract CA COM.awk 1BTA.pdb
0.109569 0.174148 0.0783382

name of file to
output awk script process

[fuchs@rome ~]S cat 1BTA.pdb | awk -f extract CA COM.awk
0.109569 0.174148 0.0783382

also usable with pipes!

03/2013 Université Paris Diderot — Paris 7

61

