Doing computational science better

Some sources of Inspiration
Some tools
Getting help

A VIGIS

Some sources of Inspiration

OPEN @ ACCESS Freely available online P1.OS computationAL BlOLOGY

A Quick Guide to Organizing Computational Biology
Projects

William Stafford Noble'*

OPEN 8 ACCESS Freely available online

Education

PLOS COMPUTATIONAL BIOLOGY

A Quick Guide to Organizing Computational Biology

Projects

William Stafford Noble'*

msims

doc

ms-analysis.html

ms-analysis.c

paper 2009-01-14

makefile

msms.tex
msms.pdf

yeast

README
}'Cﬂﬁi‘..“-qt

worm

wor I'I'LSLlI'

veast.ms2 worm.ms2

data SIC

makefile

README

bin

Pﬂfﬁc-ﬁqf.p}'

results

notebook.html

ms-analysis /\

2009-01-15 2009-01-23

runall runall
summarize

T~

split] split2 split3

OPEN @ ACCESS Freely available online P1.OS computationAL BlOLOGY

Education

A Quick Guide to Organizing Computational Biology
Projects msms

doc data SIC bin results

ms-analysis.html makefile parse-sqt.py notebook. html

‘ ms-analysis.c ms-analysis /\

2009-01-14 2009-01-15 2009-01-23

/\

yeast worm split] split2 split3
README README

\'C:‘IHT.SL][' \\.'Ul'l'l'l,Sth

veast.ms2 worm.ms2

In each results folder:

escript: getResults.rb or WHATIDID. txt
* ntermediates
® output

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

6. Don’t repeat yourself (or others).

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

. Write programs for people, not computers.
. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1
2
3
4
5
6
V4
8

. Write programs for people, not computers.

. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

. Optimize software only after it works correctly.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1
2
3
4
5
6
V4
8
9

. Write programs for people, not computers.

. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

. Optimize software only after it works correctly.

. Document the design and purpose of code rather than its mechanics.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah T, C. Titus Brown ¥, Neil P. Chue Hong ¢, Matt Davis ¥, Richard T. Guy !,

Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson T

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.

2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

6. Don’t repeat yourself (or others).

7. Plan for mistakes.

8. Optimize software only after it works correctly.

9. Document the design and purpose of code rather than its mechanics.
10. Conduct code reviews.

arX1v:1210.0530v3 [cs.MS] 29 Nov 2012

RUby.

(or maybe python)

RUby.

(or maybe python)

“Friends don't let friends do Perl” - reddit user

Programming better

* “being able to use understand and improve your code in 6
months & In 60 years' - approximate Damian Conway

Programming better

* “being able to use understand and improve your code in 6
months & In 60 years' - approximate Damian Conway

* variable naming

Programming better

* “being able to use understand and improve your code in 6
months & In 60 years' - approximate Damian Conway

* variable naming

» coding width: 100 characters

Programming better

“being able to use understand and Improve your code in 6
months & In 60 years' - approximate Damian Conway

variable naming
coding width; 100 characters

indenting

<ul id="bigBarNavigation">
HOME
</1i>CONTACT US</
<a hrefs"/about">ABOUT US

Conﬁjsmq mess. ..

<ul id="bigBarNavigation">
HOME</11>
CONTACT US

ABOUT US
<div class="subMenu">
<! Just an example to
show 1ndentation >
</div>
</1i>

Nice and Clean. mmmmmmmm. ..

Programming better

“being able to use understand and Improve your code in 6
months & In 60 years' - approximate Damian Conway

| | 1 id="bigBarNavigation”
variable naming L igseavarion

</1li>CONTACT US</

ABOUT US

coding width: 100 characters Conﬁjgmq mess. .

i n d e nti ng <ul id="bigBarNavigation">

HOME</11i>
CONTACT US</1i>

ABOUT US

oW Conventlons —eg “Google R S-t>/|e” <div class="subMenu">

<! Just an example to

nttps://github.com/hadley/devtools/wiki/ v e

</1i>

S_t e
Nice and Clean. mmmmmmmm...

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style

Programming better

“being able to use understand and Improve your code in 6
months & In 60 years' - approximate Damian Conway

<ul id="bigBarNavigation”>

variable naming Asa ek O

</1li>CONTACT US</
ABOUT US

coding width: 100 characters Conﬁjgmq mess. .

. d : <ul id="bigBarNavigation">
| n e ntl ng HOME</11i>
CONTACT US</1i>

ABOUT US

» Follow conventions -eg “"Google R Style” v Closs e
or https://github.com/hadley/devtools/wiki/ v

S_t e </ul: v
* Versioning: DropBox &_http://github.com/

Nice and Clean. mmmmmmmm...

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

Programming better

“being able to use understand and Improve your code in 6
months & In 60 years' - approximate Damian Conway

<ul id="bigBarNavigation”>

variable naming Asa ek O

</1li>CONTACT US</
ABOUT US

coding width: 100 characters Conﬁjgmq mess. .

. d : <ul id="bigBarNavigation">
| n e ntl ng HOME</11i>
CONTACT US</1i>

ABOUT US

» Follow conventions -eg “"Google R Style” v Closs e
or https://github.com/hadley/devtools/wiki/ v

S_t e </ul: v
* Versioning: DropBox &_http://github.com/

Nice and Clean. mmmmmmmm...

» Automated testing. e.g.:

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

Programming better

“being able to use understand and Improve your code in 6
months & In 60 years' - approximate Damian Conway

<ul id="bigBarNavigation”>

variable naming Asa ek O

</1li>CONTACT US</
ABOUT US

coding width: 100 characters Conﬁjgmq mess. .

¢ <:j 3 <ul id="bigBarNavigation">
| n e ntl ng HOME</11i>
CONTACT US</1i>

ABOUT US

» Follow conventions -eg “Google R Style”

<! Just an example to

or https://github.com/hadley/devtools/wiki/ | =~ vaw 777
Style

* Versioning: DropBox &_http://github.com/

Nice and Clean. mmmmmmmm...

preprocess snps <- function(snp table, testing=FALSE) {

» Automated testing. €.g.; it (testing) |

run a bunch of tests of extreme situations.
quit if a test gives a weird result.

}

real part of function.

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

A few tools

® OO0 untitled "
New Open Recent Save Print Undo Redo Cut Copy Paste Search Preferences Help

This is my project intro

Yes oh yes ants are the best
Results

Lorem ipsum **dolor sit amet**, consectetur adipiscing elit. Morbi a quam et urna fringill
a facilisis. Sed commodo, turpis et luctus pellentesque, nisl nunc luctus mauris, ut sollici
tudin enim massa eu dolor. Phasellus interdum neque porta lorem vehicula auctor. Etiam j
usto magna, aliquam at tempus non, adipiscing vitae nibh. Integer pharetra laoreet eros, a_
t ultrices leo gravida vel. Integer sollicitudin nibh eros, ut ullamcorper tellus. *Nu//a ac tor
tor sed massa bibendum accumsan et fringilla ligula®. Etiam at metus lorem, vitae euismo.
d metus. Maecenas sollicitudin elit eget nulla consequat fermentum tincidunt ipsum adipi_
scing. Donec ut fringilla turpis. Nunc augue purus, elementum id imperdiet et, volutpat v
el magna. Donec euismod libero non augue varius sed venenatis magna tempor. Suspendi
sse rhoncus felis velit, et scelerisque risus.

They really are

Uh-huh
.Jthis_script shows_what _happens > output

They really really are
Ok good job because:

* bla
* blabla
* blablabla

Conclusion
You win: Ants are cool. | want to look at them and crush them and sequence them and ge

notype them. |
ek

Take notes in Markdown to html, pdf,

Take notes in Markdown

® OO0 untitled "
New Open Recent Save Print Undo Redo Cut Copy Paste Search Preferences Help

This is my project intro
Yes oh yes ants are the best
Results

Lorem ipsum **dolor sit amet**, consectetur adipiscing elit. Morbi a quam et urna fringill
a facilisis. Sed commodo, turpis et luctus pellentesque, nisl nunc luctus mauris, ut sollici
tudin enim massa eu dolor. Phasellus interdum neque porta lorem vehicula auctor. Etiam j
usto magna, aliquam at tempus non, adipiscing vitae nibh. Integer pharetra laoreet eros, a_
t ultrices leo gravida vel. Integer sollicitudin nibh eros, ut ullamcorper tellus. *Nu//a ac tor
tor sed massa bibendum accumsan et fringilla ligula®. Etiam at metus lorem, vitae euismo
d metus. Maecenas sollicitudin elit eget nulla consequat fermentum tincidunt ipsum adipi_
scing. Donec ut fringilla turpis. Nunc augue purus, elementum id imperdiet et, volutpat v
el magna. Donec euismod libero non augue varius sed venenatis magna tempor. Suspendi
sse rhoncus felis velit, et scelerisque risus.

They really are

Uh-huh
.Jthis_script shows_what _happens > output

They really really are
Ok good job because:

* bla
* blabla
* blablabla

Conclusion

You win: Ants are cool. | want to look at them and crush them and sequence them and ge
notype them. |

T

to html, pdf,

MiML Freview.

This is my project intro

Yes oh ves ants are the best

Results

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi a qua
urna fringilla facilisis. Sed commodo, turpis et luctus pellentesque, nisl
nunc luctus mauris, ut sollicitudin enim massa eu dolor. Phasellus
interdum neque porta lorem vehicula auctor. Etiam justo magna, aliqua
at tempus non, adipiscing vitae nibh. Integer pharetra laoreet eros, at
ultrices leo gravida vel. Integer sollicitudin nibh eros, ut ullamcorper tell
Nulla ac tortor sed massa bibendum accumsan et fringilla ligula. Eti
metus lorem, vitae euismod metus. Maecenas sollicitudin elit eget nulla
consequat fermentum tincidunt ipsum adipiscing. Donec ut fringilla tu
Nunc augue purus, elementum id imperdiet et, volutpat vel magna. Don
euismod libero non augue varius sed venenatis magna tempor.
Suspendisse rhoncus felis velit, et scelerisque risus.

They really are
Uh-huh

./this_script_ shows_what_happens > output

They really really are
Ok good job because:

e bla
¢ blabla
¢ blablabla

Conclusion

You win: Ants are cool. I want to look at them and crush them and seque
them and genotype them.

knrtr (Swea\/e>Analyzing & Reporting in a single file.

MyFile.Rnw

knrtr (Swea\/e>Analyzing & Reporting in a single file.

MyFile.Rnw

\documentclass{article}
\usepackage [sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=

this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path="'figure/minimal-', fig.align='center', fig.show='hold')
options(replace.assign=TRUE,width=90)

@

\title{A Minimal Demo of knitr}
\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE, cache=TRUE>>=
set.seed(1121)

(x=rnorm(20))

mean(x);var(x)

@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots, cache=TRUE, echo=TRUE>>=

two plots side by side

par(mar=c(4,4,.1,.1),cex.lab=.95, cex.axis=.9,mgp=c(2,.7,0),tcl=-.3, las=1)
boxplot(x)

hist(x,main="")

@

kntr (SWGaVG)AnaIyzing & Reporting in a single file.

MyFile.Rnw #ih in R

; L library(knitr)
\documentclass{article
e oty knit (“MyFile.Rnw")
—--> creates MyFile.tex

\usepackage{url}
\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=

this is equivalent to \SweaveOpts{...} . .
opts_chunk$set(fig.path="'figure/minimal-', fig.align='center', fig.sho ### i1n Shell o
options(replace.assign=TRUE,width=90)

e pdflatex MyFile. tex

\title{A Minimal Demo of knitr} # - _> creates MYFile o pdf

\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. 0K, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE, cache=TRUE>>=
set.seed(1121)

(x=rnorm(20))

mean(x);var(x)

@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots, cache=TRUE, echo=TRUE>>=

two plots side by side

par(mar=c(4,4,.1,.1),cex.lab=.95, cex.axis=.9,mgp=c(2,.7,0),tcl=-.3, las=1)
boxplot(x)

hist(x,main="")

@

kntr (SWGaVG)AnaIyzing & Reporting in a single file.

MyFile.Rnw #ih in R

; L library(knitr)
\documentclass{article
Nrrescage il o) knit (“MyFile.Rnw")
—--> creates MyFile.tex

\usepackage{url}
\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=

this is equivalent to \SweaveOpts{...} . .
opts_chunk$set(fig.path="'figure/minimal-', fig.align='center', fig.sho ### i1n Shell o
options(replace.assign=TRUE,width=90)

e pdflatex MyFile. tex

\title{A Minimal Demo of knitr} # - _> creates MYFile o pdf

\author{Yihui Xie}

\maketitle A Minimal Demo of knitr

You can test if \textbf{knitr} works with this minimal demo. 0K, let's
get started with some boring random numbers: Yihui Xie

<<boring-random, echo=TRUE, cache=TRUE>>= February 26, 2012
set.seed(1121)

(x=rnorm(20))
mean(x):var(x) You can test if knitr works with this minimal demo. OK, let’s get started with

@ numbers:

set.seed(1121)

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots (x <- rnorm(20))

and histograms recorded by the PDF device:

_ ## [1] 0.14496 0.43832 0.15319 1.08494 1.99954 -0.81188 0.16027
<<boring-plots, cache=TRUE, echo=TRUE>>= ## [10] -0.02531 0.15088 0.11008 1.35968 -0.32699 -0.71638 1.80977
two plots side by side , ## [19] 0.13272 -0.15594
par(mar=c(4,4,.1,.1),cex.lab=.95, cex.axis=.9,mgp=c(2,.7,0),tcl=-.3, las=
boxplot(x) mean (x)
hist(x,main="")

@ ## [1] 0.3217

DO | | 11d ¢t | N i var (x)

knItr (Swea\/e>Analyzing & Reporting in a single file.

MyFile.Rnw

\documentclass{article}
\usepackage [sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=

this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path="figure/minimal-', fig.align='center', fig.shc
options(replace.assign=TRUE,width=90)

@

\title{A Minimal Demo of knitr}
\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE, cache=TRUE>>=
set.seed(1121)

(x=rnorm(20))

mean(x);var(x)

@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots, cache=TRUE, echo=TRUE>>=

two plots side by side

par(mar=c(4,4,.1,.1),cex.lab=.95, cex.axis=.9,mgp=c(2,.7,0),tcl=-.3, las
boxplot(x)

hist(x,main="")

@

Do the above chunks work? You should be able to compile the \TeX{}

A Minimal Demo of knitr
Yihui Xie
February 26, 2012

You can test if knitr works with this minimal demo. OK, let’s get started with s
numbers:

set.seed(1121)
(x <- rnorm(20))

[1] 0.14496 0.43832 0.15319 1.08494 1.99954 -0.81188 0.16027 0
[10] -0.02531 0.15088 0.11008 1.35968 -0.32699 -0.71638 1.80977 O
[19] 0.13272 -0.15594

mean (x)
[1] 0.3217
var (x)
[1] 0.5715
The first element of x is 0.145. Boring boxplots and histograms recorded by the PD

two plots side by side (option fig.show=’hold’)

par(mar = c(4, 4, 0.1, 0.1), cex.lab = 0.95, cex.axis = 0.9,
mgp = c(2, 0.7, 0), tcl = -0.3, las = 1)

boxplot (x)

hist(x, main =)

2.0 o 8 -

1.5

1.0

0.5

Frequency
i
1

0.0

-0.5

Plotting In R

Plotting In R

* R's graphs suck:
* embarassingly ugly
* require tweaking in lllustrator --> hard to automate.
» counterinturtive & inconsistent APl --> hard to switch
between e.g. histogram and density plot.
* hard to customize.

» --> Need for something beautiful, easy & effortless.

ooplot/Z: beautiful &
(almost) effortless R plots

= mtcars
mpg cyl disp hp gsec vs am gear carb

Mazda Rx4 21.8 166.8 118 16.46 8 1 4
Mazda RxX4 Wag 21. 166.8 118 17.82
Datsun 718 22. 185.8 93 15.61
Hornet 4 Drive 21. 2h8.8 118 19.44
Hornet Sportabout 18. J68.8 175 17.02
VYaliant 13. 225.8 185 28.22
Duster 366 14. J68.8 245 15.84
248D 24. 146. 28.8a

238 22. 1448. 22.90

288 19. 167. 15.38

288c 17. 167. 15.98
4585E 16. 275. 17.48
45851 17. 275. 17.668
45a5LC 15. 275. 15.68
Cadillac Fleetwood 18. 472. 17.98
Lincoln Continental 1. 17.82
Chrysler Imperial 14. 17.42
Fiat 128 32 . 19.47
Honda Civic 38. 13.52
Toyota Corolla 19.94

O bbb BNWDHONDDBEWE-Js®®
D ODDDDDDO B RADDOD B DD
OO 00NN D VOO ®
BB B WWNWMWWMWWWWWNWW W W W
P RNV WW B WWWWWwWwWwWwNNN
PR RO OORRPRRRORPROR RO
PR R OOOOODOODODODDOOO R K
BB B WWWWWWDH D BB WWWWH B
P NP AR WDWWDERBNNARNE R L&A

ooplot.Z: beautiful &
(almost) effortless R plots

= mtcars
mpg cyl disp hp gsec vs am gear carb

Mazda Rx4 21.8 166.8 118 16.46 8 1 4
Mazda RX4 YWag 21. 1668.8 118 17.82
Datsun 718 22. 185.8 93 15.61
Hornet 4 Drive 21. 2h8.8 118 19.44
Hornet Sportabout 18. J68.8 175 17.02
VYaliant 13. 225.8 185 28.22
Duster 366 14. J68.8 245 15.84
248D 24. 146. 28.8a

238 22. 1448. 22.90

288 19. 167. 15.38

288c 17. 167. 15.98
4585E 16. 275. 17.48
4585L 17. 275. 17.668
45a5LC 15. 275. 15.68
Cadillac Fleetwood 18. 472. 17.98
Lincoln Continental 18. 17.82
Chrysler Imperial 14. 17.42
Fiat 128 32 . 19.47
Honda Civic 38. 13.52
Toyota Corolla 19.94

|
6

factor(cyl)

O bbb BNWDHONDDBEWE-Js®®
D ODDDDDDO B RADDOD B DD
OO 00NN D VOO ®
BB B WWNWMWWMWWWWWNWW W W W
P RNV WW B WWWWWwWwWwWwNNN
PR RO OORRPRRRORPROR RO
PR R OOOOODOODODODDOOO R K
BB B WWWWWWDH D BB WWWWH B
P NP AR WDWWDERBNNARNE R L&A

ggplot (mtcars, aes(factor(cyl))) + geom bar()

ooplot.Z: beautiful &

(almost) effortless R plots I.I

Mazda Rx4 21.8 166.8 118 16.46 8 1 4
Mazda RxX4 Wag 21. 1668. 17.82
Datsun 718 22. 183. 15.61
Hornet 4 Drive 21. 2h8. 19.44
Hornet Sportabout 18. 368, 17.02
VYaliant 13. 225. 28.22
Duster 366 14. 368. 15.84
248D 24. 146. 28 .88
238 22. 1448. 22 .98
288 19. 167. 15.368
2a8C 17. 167. 15.96
4585E 16. 275. 17.468
4585L 17. 275. 17.66
45a5LC 15. 275. 15.688
Cadillac Fleetwood 18. 472. 17.98
Lincoln Continental 18. 17.82
Chrysler Imperial 14. 17.42
Fiat 128 32 . 19.47
Honda Civic 38. 13.52
Toyota Corolla 19.96

116

93
116
175
165
245

factor(cyl)

factor(gear)
3
4
. |

I I
4 6

factor(cyl)

O bbb BNWDHONDDBEWE-Js®®
DODDODONND DL DLDDDO DL O D
OO 0NNV D IO ®
BB B WWNWMWWMWWWWWNWW W W W
P RNV WW B WWWWWwWwWwWwNNN
PR RO OORRPRRRORPROR RO
PR R OOOOODOODODODDOOO R K
BB B WWWWWWDH D BB WWWWH B
P NP AR WDWWDERBNNARNE R L&A

ggplot (mtcars, aes(factor(cyl))) + geom bar()

ggplot (mtcars, aes(factor(cyl), fill=factor(gear))) + geom bar()

factor(am)
B o
B 1

factor(éyl)

Fair
Good
Very Good

Premium

Ideal

SOFTWARE Open Access

ggbio: an R package for extending the grammar of
graphics for genomic data

chri
chr2
chr3
chr4
chr5
chré
chr7
chr8
chr9
chr10
chri1
chri2
chr13
chri4
chr15
chr16
chr17
chri18
chr19
chr20
chr21
chr22 | . !

a-’g
i

10 11 12 131415161718192(2122 X Y

original

Coverage
o N A O OO N M O ©
1 1 1 1 1 1 1 1 1 1

W

strand
-
. -

W
o o
1 1

extending
Coverage

N
o
1

e
o
1

O_

I | I | I
76.2984 Mb 76.2985 Mb 76.2986 Mb 76.2987 Mb 76.2988 Mb

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

start _ . ’é

Getting help.

Getting help.

Getting help.

* In real life: Make friends with people. Talk to them.

Getting help.

* In real life: Make friends with people. Talk to them.

* Online:

Getting help.

* In real life: Make friends with people. Talk to them.

* Online:
» Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...

Getting help.

* In real life: Make friends with people. Talk to them.

* Online:
» Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...
* Programming: http://stackoverflow.com

http://stackoverflow.com/
http://stackoverflow.com/

Getting help.

* In real life: Make friends with people. Talk to them.

* Online:
» Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...
* Programming: http://stackoverflow.com
» Bioinformatics: http://www.biostars.org

http://stackoverflow.com/
http://stackoverflow.com/
http://www.biostars.org/
http://www.biostars.org/

Getting help.

* In real life: Make friends with people. Talk to them.

* Online:
» Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...
* Programming: http://stackoverflow.com
* Bioinformatics: http://www.biostars.org
* Sequencing-related: http://seganswers.com

http://stackoverflow.com/
http://stackoverflow.com/
http://www.biostars.org/
http://www.biostars.org/
http://seqanswers.com/
http://seqanswers.com/

= l () www.biostars.org/?since=this%20month&sort=answers

&0 77 Ia >

'ﬂﬁf‘§‘ &% & Yannick Wurm 1.6k log out
' **
@i Blostar
ok berbivhegal Posts
ShowAll MyTags BestOf News Questions® Unanswered™® Forum' Tutorials Tools Videos Jobs®

Limit to: this month <previous « first ® page 1 of 28 ¢ last ® next>

152 21 4.0k Where to advertise or find bioinformatics jobs

votes [0 views job career 3.0 years ago by Istvan Albert ¢¢ 28,190 *2+14+35 * 9 days ago by richa_patel6787 0

Data Selection With/Without Databases (Large Data Sets, ORMs, and Speed)
database python sglite data 23 months ago by Sequencegeek 600 +1+9 ¢ 6 days ago by kweted0 0

65 BREN 806

votes answers views

Counting n's within fasta
fasta counting perl 11 months ago by Poe 46017 * 24 days ago by David Langenberger 1,400 +1¢5

LUl 658

answers views

28

53 10 1.9k Transcription Factor Enrichment
Vot el VO transcription transcript| sequence enrichment

2.4 years ago by Dave Bridges 960 +3+10 ¢ 16 days ago by Maciej Jonczyk 290 +1+6

How to detect and query poly-allelic SNPs?
snp allelel maq biomart dbsnp
3.0 years ago by Michael Dondrup ¢¢ 18,230 + 1+9+29 23 days ago by Erik Garrison 620 +*3+6

28 [1.7k

votes answers views

48 366 Forum: Proposal: Biostar wants to run YOUR ads. Feedback requested.
votes views 'omm‘ DIOS!U'

23 days ago by Istvan Albert +¢ 28,190 *2+14+35 * 22 days ago by Pawel Szczesny 2,110+3+10
10 220 Extract according to row

20 days ago by 2011101101 50 +5 « 20 days ago by Plerre Lindenbaum ¢ 44,470 +4+33+78

BE B

74 387 Forum: How to be helpful as a BioStar moderator/editor?
Votes VieWS forum biostar advice moderation editing 17 days ago by aidan-budd ¢ 1,610 6
16 234 Find nearest gene upstream using mysql and perl program

» votes views myssql upstream 14 days ago by anon111 20+3 ¢ 8 days ago by Istvan Albert ¢4 28,190 *2+14+35

about faq rss Search

New Post!

Planet®

Sort by: answers

Recent Votes

e A: Useful Bash commands to handle
FASTA files

o C: get agraphical representation of
number of reads in BAM file for a certain
genomic region

o A: Arelots of bioinformaticians
embedded in wet labs? Any ideas on
sources of demographic data on
bioinformaticians?

e A: Are lots of bioinformaticians
embedded in wet labs? Any ideas on
sources of demographic data on
bioinformaticians?

¢ A:How to make visual graphs to
represent common transcription factor
binding sites in different enhancers?

e C:get agraphical representation of
number of reads in BAM file for a certain
genomic region

e A:get agraphical representation of
number of reads in BAM file for a certain
genomic region

e A: Reference database for short lllumina
reads

o Differential peaks between replicates

e C: get a graphical representation of
number of reads in BAM file for a certain
genomic region

Recent Tags * See All

bed rna-seq
clustering
chip-seq entrez
cds sequencing

Reader =6 ers Badges About FAQ 1 Yannick Wurm Logout

http:/ /www.google.com/reader/view/
#overview-page

Recent My Tags Questions Unanswered (11) Tools Videos Planet (8) Forum Tutorials Search New Post!

Question: extracting sequence from a 3GB fasta file

Hi,
How to extract fasta sequence from an huge 3gb fasta file by giving sequence id as input using perl, Thanks in advance.

12 sequence retrieval fasta perl

created 2.1 years ago
by Divya 20+1+4

last edit by Lars Juh!
Jensen ¢

similar posts ¢ permalink ® comment ¢ revisions

1 I've modified your original question, as it was not very clear. You should put an example of your input file and an example of your
output. Is your input file a fasta file?

reply ® written 2.1 years ago by Giovanni M Dall'Olio ¢ 10941+ 15+ 35

11 answers

If | read your question correctly, you have many sequences in a large file and you want to retrieve certain sequences by
some ID.

1 5 One way to do this using Perl is first to index the file. If you install Bioperl and its accessory scripts, you can do this
using bp_index.pl:

This example assumes that your fasta sequences are in myfile.fa in the current directory and you want to create the

index file, mylndex, also in the current directory: created 2.1 years ago

, ‘ by Neilfws ¢¢
bp_index.pl -dir . ~fmt fasta myIndex myfile.fa 2884 1-20+49

You can then retrieve by ID using bp_fetch.pl. Assuming that you are in the same directory and you want the sequence
with ID myID, something like:

'bp_fetch.pl -dir . -fmt fasta myIndex:myID

It's been some time since | used these tools, so you should check the syntax and read up on them at the Bioperl

REREERRVanted o set up a BLAS

SESie =

RERERRanted to set up a BLAST server,

Anurag Priya, Mee
engineering student, K

nanical

naragpur

http://www.iitkgp.ac.in/
http://www.iitkgp.ac.in/

RERERRanted to set up a BLAST server,

Anurag Priya, Mee
engineering student, K

Aim: An open source
idiot-proof web-interface
for custom BLAST

nanical

naragpur

http://www.iitkgp.ac.in/
http://www.iitkgp.ac.in/

http://www.sequenceserver.com/

. Installing
gem install sequenceserver

http://www.sequenceserver.com/
http://www.sequenceserver.com/

http://www.sequenceserver.com/

. Installing

gem install sequenceserver

2. Configure.

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+4+/bin/
database: /Users/me/blast databases/

http://www.sequenceserver.com/
http://www.sequenceserver.com/

http://www.sequenceserver.com/

. Installing
gem install sequenceserver

2. Configure.

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+4+/bin/
database: /Users/me/blast databases/

ER e,

sequenceserver

#H# Launched SequenceServer at: http://0.0.0.0:4567

http://www.sequenceserver.com/
http://www.sequenceserver.com/
http://0.0.0.0:4567
http://0.0.0.0:4567

http://www.sequenceserver.com/

. Installing

gem install sequenceserver

(requires a BLAST+ install)

Do you have BLAS [-formatted databases! If not:

2. Configure.

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+4+/bin/
database: /Users/me/blast databases/

ER e,

sequenceserver

#H# Launched SequenceServer at: http://0.0.0.0:4567

http://www.sequenceserver.com/
http://www.sequenceserver.com/
http://0.0.0.0:4567
http://0.0.0.0:4567

http://0.0.0.0:4567 BLAST Sequence(s)

>Mmysequence

ACCACACACACAGATATAGAGATAGAGATAGAG

>MyOTherSequence
acaccacgaggatagaagagagalagagagagagagagacacaglagacaglatagacagatia

Detacted: nucleotide sequencea(s).

Nucleotide databases Protein databases

Acromyrmex echnatior genome 2.0 (JAcromyrmex echinatior proteins 3.8
Acromyrmex echnatior predcted transcripts 3.8 (JAtta cephalotes protens 1.2

Atta cephalotes genome [|Camponotus fiordanus protens 3.3
Atta cephalotes predcted transcrpts 1.2 (JHarpegnathos saitator protens 3.3
Camponotus fioridanus genome 3.3 [/|Lnepthema humile proteins 1.2
Camponotus flordanus predcted transcrpts 3.3 ((JPogonomyrmex barbatus protens 1.2
Camponotus floridanus transcriptome (assembled from RNA) ([JSolenopsis invicta proteins 2.2.3
Harpegnathos saltator genome 3.3 ()iOutgroup] Ap's melifera protens prerelease-2
Harpegnathos saltator predcted transcripts 3.3 [()iCutgroup] Nasonia vitripennis proteins 1.2
Harpegnathos saltator transcrptome (@assembled from RNA)

Lnepthema humie genome 4

Lnepthema humie predicted transcripts 1.2

Ny‘andera pubens transcrptome (@ssembied from RNA)

Pogonomyrmex barbatus genome 03

Pogonomyrmex barbatus predcted transcrpts 1.2

Solenops's nvicta genome Si_gnfF

Solenops's nvicta predcted transcrpts 2.2.3

{Other ants] Genbank down'oad 2011-08-06

Outgroup] Aps melifera genome 4.5

Outgroup) Aps me! fera predcted transcrpts prereease-2

Outgroup) Bombus terrestrs genome 1.1

Outgroup) Nasona vitripenns genome 2.0

Outgroup] Nasona vitripenns predcted transcrpts 1.2

‘Raw unassembled reads] Lnepithema hum e genome

‘Raw unassembied reads] Lnepthema hum e transcrptome

Raw unassembled reads) Pogonomyrmex barbatus genome

Raw unassembled reads) Pogonomyrmex barbatus transcrptome

‘Raw unassembied reads] Soenops's nvicta genome

Advanced Parameters:

http://0.0.0.0:4567
http://0.0.0.0:4567

Lets try something

REGccreview

* Examine a style guide

» Set up SequenceServer BLAST server

» take notes In Markdown & convert them to pdf

» perform analysis in R/knitr report and make pretty output

* make graphs In ggplot

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.
2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

6. Don’t repeat yourself (or others).

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

. Write programs for people, not computers.
. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1
2
3
4
5
6
V4
8

. Write programs for people, not computers.

. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

. Optimize software only after it works correctly.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah 7, C. Titus Brown ¥, Neil P. Chue Hong ?, Matt Davis ¥, Richard T. Guy !,
Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson 17

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1
2
3
4
5
6
V4
8
9

. Write programs for people, not computers.

. Automate repetitive tasks.

. Use the computer to record history.

. Make incremental changes.

. Use version control.

. Don’t repeat yourself (or others).

. Plan for mistakes.

. Optimize software only after it works correctly.

. Document the design and purpose of code rather than its mechanics.

Best Practices for Scientific Computing

Greg Wilson *, D.A. Aruliah T, C. Titus Brown ¥, Neil P. Chue Hong ¢, Matt Davis ¥, Richard T. Guy !,

Steven H.D. Haddock **, Katy Huff '', lan M. Mitchell **, Mark D. Plumbley %, Ben Waugh 9,
Ethan P. White ***, Paul Wilson T

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,

and that improve scientists’ productivity and the reliability of their
software.

1. Write programs for people, not computers.

2. Automate repetitive tasks.

3. Use the computer to record history.

4. Make incremental changes.

5. Use version control.

6. Don’t repeat yourself (or others).

7. Plan for mistakes.

8. Optimize software only after it works correctly.

9. Document the design and purpose of code rather than its mechanics.
10. Conduct code reviews.

arX1v:1210.0530v3 [cs.MS] 29 Nov 2012

