
Doing computational science better

Some sources of inspiration
Some tools
Getting help

A vous

Some sources of inspiration

• even better : with Markdown.

Education

A Quick Guide to Organizing Computational Biology
Projects
William Stafford Noble1,2*

1 Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Computer Science and

Engineering, University of Washington, Seattle, Washington, United States of America

Introduction

Most bioinformatics coursework focus-
es on algorithms, with perhaps some
components devoted to learning pro-
gramming skills and learning how to
use existing bioinformatics software. Un-
fortunately, for students who are prepar-
ing for a research career, this type of
curriculum fails to address many of the
day-to-day organizational challenges as-
sociated with performing computational
experiments. In practice, the principles
behind organizing and documenting
computational experiments are often
learned on the fly, and this learning is
strongly influenced by personal predilec-
tions as well as by chance interactions
with collaborators or colleagues.

The purpose of this article is to describe
one good strategy for carrying out com-
putational experiments. I will not describe
profound issues such as how to formulate
hypotheses, design experiments, or draw
conclusions. Rather, I will focus on
relatively mundane issues such as organiz-
ing files and directories and documenting
progress. These issues are important
because poor organizational choices can
lead to significantly slower research pro-
gress. I do not claim that the strategies I
outline here are optimal. These are simply
the principles and practices that I have
developed over 12 years of bioinformatics
research, augmented with various sugges-
tions from other researchers with whom I
have discussed these issues.

Principles

The core guiding principle is simple:
Someone unfamiliar with your project
should be able to look at your computer
files and understand in detail what you did
and why. This ‘‘someone’’ could be any of a
variety of people: someone who read your
published article and wants to try to
reproduce your work, a collaborator who
wants to understand the details of your
experiments, a future student working in
your lab who wants to extend your work
after you have moved on to a new job, your
research advisor, who may be interested in

understanding your work or who may be
evaluating your research skills. Most com-
monly, however, that ‘‘someone’’ is you. A
few months from now, you may not
remember what you were up to when you
created a particular set of files, or you may
not remember what conclusions you drew.
You will either have to then spend time
reconstructing your previous experiments
or lose whatever insights you gained from
those experiments.

This leads to the second principle,
which is actually more like a version of
Murphy’s Law: Everything you do, you
will probably have to do over again.
Inevitably, you will discover some flaw in
your initial preparation of the data being
analyzed, or you will get access to new
data, or you will decide that your param-
eterization of a particular model was not
broad enough. This means that the
experiment you did last week, or even
the set of experiments you’ve been work-
ing on over the past month, will probably
need to be redone. If you have organized
and documented your work clearly, then
repeating the experiment with the new
data or the new parameterization will be
much, much easier.

To see how these two principles are
applied in practice, let’s begin by consid-
ering the organization of directories and
files with respect to a particular project.

File and Directory Organization

When you begin a new project, you
will need to decide upon some organiza-
tional structure for the relevant directo-
ries. It is generally a good idea to store
all of the files relevant to one project

under a common root directory. The
exception to this rule is source code or
scripts that are used in multiple projects.
Each such program might have a project
directory of its own.

Within a given project, I use a top-level
organization that is logical, with chrono-
logical organization at the next level, and
logical organization below that. A sample
project, called msms, is shown in Figure 1.
At the root of most of my projects, I have a
data directory for storing fixed data sets, a
results directory for tracking computa-
tional experiments peformed on that data,
a doc directory with one subdirectory per
manuscript, and directories such as src
for source code and bin for compiled
binaries or scripts.

Within the data and results directo-
ries, it is often tempting to apply a similar,
logical organization. For example, you
may have two or three data sets against
which you plan to benchmark your
algorithms, so you could create one
directory for each of them under data.
In my experience, this approach is risky,
because the logical structure of your final
set of experiments may look drastically
different from the form you initially
designed. This is particularly true under
the results directory, where you may
not even know in advance what kinds of
experiments you will need to perform. If
you try to give your directories logical
names, you may end up with a very long
list of directories with names that, six
months from now, you no longer know
how to interpret.

Instead, I have found that organizing
my data and results directories chro-
nologically makes the most sense. Indeed,

Citation: Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. PLoS Comput
Biol 5(7): e1000424. doi:10.1371/journal.pcbi.1000424

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 31, 2009

Copyright: ! 2009 William Stafford Noble. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: The author received no specific funding for writing this article.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: william-noble@u.washington.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2009 | Volume 5 | Issue 7 | e1000424

• even better : with Markdown.

Education

A Quick Guide to Organizing Computational Biology
Projects
William Stafford Noble1,2*

1 Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Computer Science and

Engineering, University of Washington, Seattle, Washington, United States of America

Introduction

Most bioinformatics coursework focus-
es on algorithms, with perhaps some
components devoted to learning pro-
gramming skills and learning how to
use existing bioinformatics software. Un-
fortunately, for students who are prepar-
ing for a research career, this type of
curriculum fails to address many of the
day-to-day organizational challenges as-
sociated with performing computational
experiments. In practice, the principles
behind organizing and documenting
computational experiments are often
learned on the fly, and this learning is
strongly influenced by personal predilec-
tions as well as by chance interactions
with collaborators or colleagues.

The purpose of this article is to describe
one good strategy for carrying out com-
putational experiments. I will not describe
profound issues such as how to formulate
hypotheses, design experiments, or draw
conclusions. Rather, I will focus on
relatively mundane issues such as organiz-
ing files and directories and documenting
progress. These issues are important
because poor organizational choices can
lead to significantly slower research pro-
gress. I do not claim that the strategies I
outline here are optimal. These are simply
the principles and practices that I have
developed over 12 years of bioinformatics
research, augmented with various sugges-
tions from other researchers with whom I
have discussed these issues.

Principles

The core guiding principle is simple:
Someone unfamiliar with your project
should be able to look at your computer
files and understand in detail what you did
and why. This ‘‘someone’’ could be any of a
variety of people: someone who read your
published article and wants to try to
reproduce your work, a collaborator who
wants to understand the details of your
experiments, a future student working in
your lab who wants to extend your work
after you have moved on to a new job, your
research advisor, who may be interested in

understanding your work or who may be
evaluating your research skills. Most com-
monly, however, that ‘‘someone’’ is you. A
few months from now, you may not
remember what you were up to when you
created a particular set of files, or you may
not remember what conclusions you drew.
You will either have to then spend time
reconstructing your previous experiments
or lose whatever insights you gained from
those experiments.

This leads to the second principle,
which is actually more like a version of
Murphy’s Law: Everything you do, you
will probably have to do over again.
Inevitably, you will discover some flaw in
your initial preparation of the data being
analyzed, or you will get access to new
data, or you will decide that your param-
eterization of a particular model was not
broad enough. This means that the
experiment you did last week, or even
the set of experiments you’ve been work-
ing on over the past month, will probably
need to be redone. If you have organized
and documented your work clearly, then
repeating the experiment with the new
data or the new parameterization will be
much, much easier.

To see how these two principles are
applied in practice, let’s begin by consid-
ering the organization of directories and
files with respect to a particular project.

File and Directory Organization

When you begin a new project, you
will need to decide upon some organiza-
tional structure for the relevant directo-
ries. It is generally a good idea to store
all of the files relevant to one project

under a common root directory. The
exception to this rule is source code or
scripts that are used in multiple projects.
Each such program might have a project
directory of its own.

Within a given project, I use a top-level
organization that is logical, with chrono-
logical organization at the next level, and
logical organization below that. A sample
project, called msms, is shown in Figure 1.
At the root of most of my projects, I have a
data directory for storing fixed data sets, a
results directory for tracking computa-
tional experiments peformed on that data,
a doc directory with one subdirectory per
manuscript, and directories such as src
for source code and bin for compiled
binaries or scripts.

Within the data and results directo-
ries, it is often tempting to apply a similar,
logical organization. For example, you
may have two or three data sets against
which you plan to benchmark your
algorithms, so you could create one
directory for each of them under data.
In my experience, this approach is risky,
because the logical structure of your final
set of experiments may look drastically
different from the form you initially
designed. This is particularly true under
the results directory, where you may
not even know in advance what kinds of
experiments you will need to perform. If
you try to give your directories logical
names, you may end up with a very long
list of directories with names that, six
months from now, you no longer know
how to interpret.

Instead, I have found that organizing
my data and results directories chro-
nologically makes the most sense. Indeed,

Citation: Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. PLoS Comput
Biol 5(7): e1000424. doi:10.1371/journal.pcbi.1000424

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 31, 2009

Copyright: ! 2009 William Stafford Noble. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: The author received no specific funding for writing this article.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: william-noble@u.washington.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2009 | Volume 5 | Issue 7 | e1000424

with this approach, the distinction be-
tween data and results may not be useful.
Instead, one could imagine a top-level
directory called something like experi-
ments, with subdirectories with names like
2008-12-19. Optionally, the directory
name might also include a word or two
indicating the topic of the experiment
therein. In practice, a single experiment
will often require more than one day of
work, and so you may end up working a
few days or more before creating a new
subdirectory. Later, when you or someone
else wants to know what you did, the
chronological structure of your work will
be self-evident.

Below a single experiment directory, the
organization of files and directories is
logical, and depends upon the structure
of your experiment. In many simple
experiments, you can keep all of your files
in the current directory. If you start
creating lots of files, then you should
introduce some directory structure to store
files of different types. This directory
structure will typically be generated auto-
matically from a driver script, as discussed
below.

The Lab Notebook

In parallel with this chronological
directory structure, I find it useful to
maintain a chronologically organized lab
notebook. This is a document that resides
in the root of the results directory and
that records your progress in detail.
Entries in the notebook should be dated,
and they should be relatively verbose, with
links or embedded images or tables
displaying the results of the experiments
that you performed. In addition to de-
scribing precisely what you did, the
notebook should record your observations,
conclusions, and ideas for future work.
Particularly when an experiment turns out
badly, it is tempting simply to link the final
plot or table of results and start a new
experiment. Before doing that, it is
important to document how you know
the experiment failed, since the interpre-
tation of your results may not be obvious
to someone else reading your lab note-
book.

In addition to the primary text describ-
ing your experiments, it is often valuable
to transcribe notes from conversations as
well as e-mail text into the lab notebook.

These types of entries provide a complete
picture of the development of the project
over time.

In practice, I ask members of my
research group to put their lab notebooks
online, behind password protection if
necessary. When I meet with a member
of my lab or a project team, we can refer
to the online lab notebook, focusing on
the current entry but scrolling up to
previous entries as necessary. The URL
can also be provided to remote collabo-
rators to give them status updates on the
project.

Note that if you would rather not create
your own ‘‘home-brew’’ electronic note-
book, several alternatives are available.
For example, a variety of commercial
software systems have been created to
help scientists create and maintain elec-
tronic lab notebooks [1–3]. Furthermore,
especially in the context of collaborations,
storing the lab notebook on a wiki-based
system or on a blog site may be appealing.

Figure 1. Directory structure for a sample project. Directory names are in large typeface, and filenames are in smaller typeface. Only a subset of
the files are shown here. Note that the dates are formatted ,year.-,month.-,day. so that they can be sorted in chronological order. The
source code src/ms-analysis.c is compiled to create bin/ms-analysis and is documented in doc/ms-analysis.html. The README
files in the data directories specify who downloaded the data files from what URL on what date. The driver script results/2009-01-15/runall
automatically generates the three subdirectories split1, split2, and split3, corresponding to three cross-validation splits. The bin/parse-
sqt.py script is called by both of the runall driver scripts.
doi:10.1371/journal.pcbi.1000424.g001

PLoS Computational Biology | www.ploscompbiol.org 2 July 2009 | Volume 5 | Issue 7 | e1000424

• even better : with Markdown.

Education

A Quick Guide to Organizing Computational Biology
Projects
William Stafford Noble1,2*

1 Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Computer Science and

Engineering, University of Washington, Seattle, Washington, United States of America

Introduction

Most bioinformatics coursework focus-
es on algorithms, with perhaps some
components devoted to learning pro-
gramming skills and learning how to
use existing bioinformatics software. Un-
fortunately, for students who are prepar-
ing for a research career, this type of
curriculum fails to address many of the
day-to-day organizational challenges as-
sociated with performing computational
experiments. In practice, the principles
behind organizing and documenting
computational experiments are often
learned on the fly, and this learning is
strongly influenced by personal predilec-
tions as well as by chance interactions
with collaborators or colleagues.

The purpose of this article is to describe
one good strategy for carrying out com-
putational experiments. I will not describe
profound issues such as how to formulate
hypotheses, design experiments, or draw
conclusions. Rather, I will focus on
relatively mundane issues such as organiz-
ing files and directories and documenting
progress. These issues are important
because poor organizational choices can
lead to significantly slower research pro-
gress. I do not claim that the strategies I
outline here are optimal. These are simply
the principles and practices that I have
developed over 12 years of bioinformatics
research, augmented with various sugges-
tions from other researchers with whom I
have discussed these issues.

Principles

The core guiding principle is simple:
Someone unfamiliar with your project
should be able to look at your computer
files and understand in detail what you did
and why. This ‘‘someone’’ could be any of a
variety of people: someone who read your
published article and wants to try to
reproduce your work, a collaborator who
wants to understand the details of your
experiments, a future student working in
your lab who wants to extend your work
after you have moved on to a new job, your
research advisor, who may be interested in

understanding your work or who may be
evaluating your research skills. Most com-
monly, however, that ‘‘someone’’ is you. A
few months from now, you may not
remember what you were up to when you
created a particular set of files, or you may
not remember what conclusions you drew.
You will either have to then spend time
reconstructing your previous experiments
or lose whatever insights you gained from
those experiments.

This leads to the second principle,
which is actually more like a version of
Murphy’s Law: Everything you do, you
will probably have to do over again.
Inevitably, you will discover some flaw in
your initial preparation of the data being
analyzed, or you will get access to new
data, or you will decide that your param-
eterization of a particular model was not
broad enough. This means that the
experiment you did last week, or even
the set of experiments you’ve been work-
ing on over the past month, will probably
need to be redone. If you have organized
and documented your work clearly, then
repeating the experiment with the new
data or the new parameterization will be
much, much easier.

To see how these two principles are
applied in practice, let’s begin by consid-
ering the organization of directories and
files with respect to a particular project.

File and Directory Organization

When you begin a new project, you
will need to decide upon some organiza-
tional structure for the relevant directo-
ries. It is generally a good idea to store
all of the files relevant to one project

under a common root directory. The
exception to this rule is source code or
scripts that are used in multiple projects.
Each such program might have a project
directory of its own.

Within a given project, I use a top-level
organization that is logical, with chrono-
logical organization at the next level, and
logical organization below that. A sample
project, called msms, is shown in Figure 1.
At the root of most of my projects, I have a
data directory for storing fixed data sets, a
results directory for tracking computa-
tional experiments peformed on that data,
a doc directory with one subdirectory per
manuscript, and directories such as src
for source code and bin for compiled
binaries or scripts.

Within the data and results directo-
ries, it is often tempting to apply a similar,
logical organization. For example, you
may have two or three data sets against
which you plan to benchmark your
algorithms, so you could create one
directory for each of them under data.
In my experience, this approach is risky,
because the logical structure of your final
set of experiments may look drastically
different from the form you initially
designed. This is particularly true under
the results directory, where you may
not even know in advance what kinds of
experiments you will need to perform. If
you try to give your directories logical
names, you may end up with a very long
list of directories with names that, six
months from now, you no longer know
how to interpret.

Instead, I have found that organizing
my data and results directories chro-
nologically makes the most sense. Indeed,

Citation: Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. PLoS Comput
Biol 5(7): e1000424. doi:10.1371/journal.pcbi.1000424

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published July 31, 2009

Copyright: ! 2009 William Stafford Noble. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: The author received no specific funding for writing this article.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: william-noble@u.washington.edu

PLoS Computational Biology | www.ploscompbiol.org 1 July 2009 | Volume 5 | Issue 7 | e1000424

with this approach, the distinction be-
tween data and results may not be useful.
Instead, one could imagine a top-level
directory called something like experi-
ments, with subdirectories with names like
2008-12-19. Optionally, the directory
name might also include a word or two
indicating the topic of the experiment
therein. In practice, a single experiment
will often require more than one day of
work, and so you may end up working a
few days or more before creating a new
subdirectory. Later, when you or someone
else wants to know what you did, the
chronological structure of your work will
be self-evident.

Below a single experiment directory, the
organization of files and directories is
logical, and depends upon the structure
of your experiment. In many simple
experiments, you can keep all of your files
in the current directory. If you start
creating lots of files, then you should
introduce some directory structure to store
files of different types. This directory
structure will typically be generated auto-
matically from a driver script, as discussed
below.

The Lab Notebook

In parallel with this chronological
directory structure, I find it useful to
maintain a chronologically organized lab
notebook. This is a document that resides
in the root of the results directory and
that records your progress in detail.
Entries in the notebook should be dated,
and they should be relatively verbose, with
links or embedded images or tables
displaying the results of the experiments
that you performed. In addition to de-
scribing precisely what you did, the
notebook should record your observations,
conclusions, and ideas for future work.
Particularly when an experiment turns out
badly, it is tempting simply to link the final
plot or table of results and start a new
experiment. Before doing that, it is
important to document how you know
the experiment failed, since the interpre-
tation of your results may not be obvious
to someone else reading your lab note-
book.

In addition to the primary text describ-
ing your experiments, it is often valuable
to transcribe notes from conversations as
well as e-mail text into the lab notebook.

These types of entries provide a complete
picture of the development of the project
over time.

In practice, I ask members of my
research group to put their lab notebooks
online, behind password protection if
necessary. When I meet with a member
of my lab or a project team, we can refer
to the online lab notebook, focusing on
the current entry but scrolling up to
previous entries as necessary. The URL
can also be provided to remote collabo-
rators to give them status updates on the
project.

Note that if you would rather not create
your own ‘‘home-brew’’ electronic note-
book, several alternatives are available.
For example, a variety of commercial
software systems have been created to
help scientists create and maintain elec-
tronic lab notebooks [1–3]. Furthermore,
especially in the context of collaborations,
storing the lab notebook on a wiki-based
system or on a blog site may be appealing.

Figure 1. Directory structure for a sample project. Directory names are in large typeface, and filenames are in smaller typeface. Only a subset of
the files are shown here. Note that the dates are formatted ,year.-,month.-,day. so that they can be sorted in chronological order. The
source code src/ms-analysis.c is compiled to create bin/ms-analysis and is documented in doc/ms-analysis.html. The README
files in the data directories specify who downloaded the data files from what URL on what date. The driver script results/2009-01-15/runall
automatically generates the three subdirectories split1, split2, and split3, corresponding to three cross-validation splits. The bin/parse-
sqt.py script is called by both of the runall driver scripts.
doi:10.1371/journal.pcbi.1000424.g001

PLoS Computational Biology | www.ploscompbiol.org 2 July 2009 | Volume 5 | Issue 7 | e1000424

In each results folder :
•script: getResults.rb or WHATIDID.txt
•intermediates
•output

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.
9. Document the design and purpose of code rather than its mechanics.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.
9. Document the design and purpose of code rather than its mechanics.
10. Conduct code reviews.

Ruby.

(or maybe python)

Ruby.

“Friends don’t let friends do Perl” - reddit user

(or maybe python)

Programming better
• “being able to use understand and improve your code in 6

months & in 60 years” - approximate Damian Conway

Programming better

• variable naming

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

Programming better

• variable naming

• coding width: 100 characters

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

Programming better

• variable naming

• coding width: 100 characters

• indenting

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

Programming better

• variable naming

• coding width: 100 characters

• indenting

• Follow conventions -eg “Google R Style”
or https://github.com/hadley/devtools/wiki/
Style

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style

Programming better

• variable naming

• coding width: 100 characters

• indenting

• Follow conventions -eg “Google R Style”
or https://github.com/hadley/devtools/wiki/
Style

• Versioning: DropBox & http://github.com/

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

Programming better

• variable naming

• coding width: 100 characters

• indenting

• Follow conventions -eg “Google R Style”
or https://github.com/hadley/devtools/wiki/
Style

• Versioning: DropBox & http://github.com/

• Automated testing. e.g.:

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

Programming better

• variable naming

• coding width: 100 characters

• indenting

• Follow conventions -eg “Google R Style”
or https://github.com/hadley/devtools/wiki/
Style

• Versioning: DropBox & http://github.com/

• Automated testing. e.g.:

• “being able to use understand and improve your code in 6
months & in 60 years” - approximate Damian Conway

preprocess_snps <- function(snp_table, testing=FALSE) {
 if (testing) {
 # run a bunch of tests of extreme situations.
 # quit if a test gives a weird result.
 }
 # real part of function.
}

https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/hadley/devtools/wiki/Style
https://github.com/
https://github.com/

A few tools

Take notes in Markdown to html, pdf,

Take notes in Markdown to html, pdf,

knitr (sweave)Analyzing & Reporting in a single file.

MyFile.Rnw

knitr (sweave)

\documentclass{article}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=
this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path='figure/minimal-', fig.align='center', fig.show='hold')
options(replace.assign=TRUE,width=90)
@

\title{A Minimal Demo of knitr}

\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE,cache=TRUE>>=
set.seed(1121)
(x=rnorm(20))
mean(x);var(x)
@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots,cache=TRUE,echo=TRUE>>=
two plots side by side
par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3,las=1)
boxplot(x)
hist(x,main='')
@

Do the above chunks work? You should be able to compile the \TeX{}
document and get a PDF file like this one: \url{https://github.com/downloads/
yihui/knitr/knitr-minimal.pdf}.
The Rnw source of this document is at \url{https://github.com/yihui/knitr/blob/
master/inst/examples/knitr-minimal.Rnw}.

\end{document}

Analyzing & Reporting in a single file.

MyFile.Rnw

in R:
library(knitr)
knit(“MyFile.Rnw”)
--> creates MyFile.tex

in shell:
pdflatex MyFile.tex
--> creates MyFile.pdf

knitr (sweave)

\documentclass{article}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=
this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path='figure/minimal-', fig.align='center', fig.show='hold')
options(replace.assign=TRUE,width=90)
@

\title{A Minimal Demo of knitr}

\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE,cache=TRUE>>=
set.seed(1121)
(x=rnorm(20))
mean(x);var(x)
@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots,cache=TRUE,echo=TRUE>>=
two plots side by side
par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3,las=1)
boxplot(x)
hist(x,main='')
@

Do the above chunks work? You should be able to compile the \TeX{}
document and get a PDF file like this one: \url{https://github.com/downloads/
yihui/knitr/knitr-minimal.pdf}.
The Rnw source of this document is at \url{https://github.com/yihui/knitr/blob/
master/inst/examples/knitr-minimal.Rnw}.

\end{document}

Analyzing & Reporting in a single file.

MyFile.Rnw

in R:
library(knitr)
knit(“MyFile.Rnw”)
--> creates MyFile.tex

in shell:
pdflatex MyFile.tex
--> creates MyFile.pdf

knitr (sweave)

\documentclass{article}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=
this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path='figure/minimal-', fig.align='center', fig.show='hold')
options(replace.assign=TRUE,width=90)
@

\title{A Minimal Demo of knitr}

\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE,cache=TRUE>>=
set.seed(1121)
(x=rnorm(20))
mean(x);var(x)
@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots,cache=TRUE,echo=TRUE>>=
two plots side by side
par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3,las=1)
boxplot(x)
hist(x,main='')
@

Do the above chunks work? You should be able to compile the \TeX{}
document and get a PDF file like this one: \url{https://github.com/downloads/
yihui/knitr/knitr-minimal.pdf}.
The Rnw source of this document is at \url{https://github.com/yihui/knitr/blob/
master/inst/examples/knitr-minimal.Rnw}.

\end{document}

A Minimal Demo of knitr

Yihui Xie

February 26, 2012

You can test if knitr works with this minimal demo. OK, let’s get started with some boring random
numbers:

set.seed(1121)

(x <- rnorm(20))

[1] 0.14496 0.43832 0.15319 1.08494 1.99954 -0.81188 0.16027 0.58589 0.36009

[10] -0.02531 0.15088 0.11008 1.35968 -0.32699 -0.71638 1.80977 0.50840 -0.52746

[19] 0.13272 -0.15594

mean(x)

[1] 0.3217

var(x)

[1] 0.5715

The first element of x is 0.145. Boring boxplots and histograms recorded by the PDF device:

two plots side by side (option fig.show=’hold’)
par(mar = c(4, 4, 0.1, 0.1), cex.lab = 0.95, cex.axis = 0.9,

mgp = c(2, 0.7, 0), tcl = -0.3, las = 1)

boxplot(x)

hist(x, main = "")

●

●

−0.5

0.0

0.5

1.0

1.5

2.0

x

Fr
eq
ue
nc
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

Do the above chunks work? You should be able to compile the TEX document and get a PDF file like
this one: https://github.com/downloads/yihui/knitr/knitr-minimal.pdf. The Rnw source of this
document is at https://github.com/yihui/knitr/blob/master/inst/examples/knitr-minimal.Rnw.

1

Analyzing & Reporting in a single file.

MyFile.Rnw

in R:
library(knitr)
knit(“MyFile.Rnw”)
--> creates MyFile.tex

in shell:
pdflatex MyFile.tex
--> creates MyFile.pdf

knitr (sweave)

\documentclass{article}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{url}

\begin{document}

<<setup, include=FALSE, cache=FALSE, echo=FALSE>>=
this is equivalent to \SweaveOpts{...}
opts_chunk$set(fig.path='figure/minimal-', fig.align='center', fig.show='hold')
options(replace.assign=TRUE,width=90)
@

\title{A Minimal Demo of knitr}

\author{Yihui Xie}

\maketitle
You can test if \textbf{knitr} works with this minimal demo. OK, let's
get started with some boring random numbers:

<<boring-random,echo=TRUE,cache=TRUE>>=
set.seed(1121)
(x=rnorm(20))
mean(x);var(x)
@

The first element of \texttt{x} is \Sexpr{x[1]}. Boring boxplots
and histograms recorded by the PDF device:

<<boring-plots,cache=TRUE,echo=TRUE>>=
two plots side by side
par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3,las=1)
boxplot(x)
hist(x,main='')
@

Do the above chunks work? You should be able to compile the \TeX{}
document and get a PDF file like this one: \url{https://github.com/downloads/
yihui/knitr/knitr-minimal.pdf}.
The Rnw source of this document is at \url{https://github.com/yihui/knitr/blob/
master/inst/examples/knitr-minimal.Rnw}.

\end{document}

A Minimal Demo of knitr

Yihui Xie

February 26, 2012

You can test if knitr works with this minimal demo. OK, let’s get started with some boring random
numbers:

set.seed(1121)

(x <- rnorm(20))

[1] 0.14496 0.43832 0.15319 1.08494 1.99954 -0.81188 0.16027 0.58589 0.36009

[10] -0.02531 0.15088 0.11008 1.35968 -0.32699 -0.71638 1.80977 0.50840 -0.52746

[19] 0.13272 -0.15594

mean(x)

[1] 0.3217

var(x)

[1] 0.5715

The first element of x is 0.145. Boring boxplots and histograms recorded by the PDF device:

two plots side by side (option fig.show=’hold’)
par(mar = c(4, 4, 0.1, 0.1), cex.lab = 0.95, cex.axis = 0.9,

mgp = c(2, 0.7, 0), tcl = -0.3, las = 1)

boxplot(x)

hist(x, main = "")

●

●

−0.5

0.0

0.5

1.0

1.5

2.0

x

Fr
eq
ue
nc
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

Do the above chunks work? You should be able to compile the TEX document and get a PDF file like
this one: https://github.com/downloads/yihui/knitr/knitr-minimal.pdf. The Rnw source of this
document is at https://github.com/yihui/knitr/blob/master/inst/examples/knitr-minimal.Rnw.

1

Analyzing & Reporting in a single file.

MyFile.Rnw

Plotting in R

Plotting in R
• R’s graphs suck:
• embarassingly ugly
• require tweaking in Illustrator --> hard to automate.
• counterintuitive & inconsistent API --> hard to switch

between e.g. histogram and density plot.
• hard to customize.

• --> Need for something beautiful, easy & effortless.

ggplot2: beautiful &
(almost) effortless R plots

ggplot2: beautiful &
(almost) effortless R plots

 ggplot(mtcars, aes(factor(cyl))) + geom_bar()

0

5

10

4 6 8
factor(cyl)

co
un
t

ggplot2: beautiful &
(almost) effortless R plots

 ggplot(mtcars, aes(factor(cyl))) + geom_bar()

0

5

10

4 6 8
factor(cyl)

co
un
t

0

5

10

4 6 8
factor(cyl)

co
un
t

factor(gear)

3

4

5

ggplot(mtcars, aes(factor(cyl), fill=factor(gear))) + geom_bar()

SOFTWARE Open Access

ggbio: an R package for extending the grammar of
graphics for genomic data
Tengfei Yin1, Dianne Cook2 and Michael Lawrence3*

Abstract
We introduce ggbio, a new methodology to visualize and explore genomics annotations and high-throughput
data. The plots provide detailed views of genomic regions, summary views of sequence alignments and splicing
patterns, and genome-wide overviews with karyogram, circular and grand linear layouts. The methods leverage the
statistical functionality available in R, the grammar of graphics and the data handling capabilities of the
Bioconductor project. The plots are specified within a modular framework that enables users to construct plots in a
systematic way, and are generated directly from Bioconductor data structures. The ggbio R package is available at
http://www.bioconductor.org/packages/2.11/bioc/html/ggbio.html.

Rationale
Visualization is an important component of genomic
analysis, primarily because it facilitates exploration and
discovery, by revealing patterns of variation and relation-
ships between experimental data sets and annotations.
Data on the genome fall into two classes: annotations,
such as gene models, and experimental measurements,
such as alignments of high-throughput sequencing data.
The unique and unifying trait of all genomic data is that
they occupy ranges on the genome. Associated with the
ranges is usually multivariate meta-information both at
the feature level, such as a score or functional annotation,
and at the sample level, such as gender, treatment, cancer
or cell type. These data ranges can range in scale from
hundreds to billions of data points, and the features are
dispersed along genomes that might be many gigabases
in length. Visualization tools need to slice and dice and
summarize the data in different ways to expose its differ-
ent aspects and to focus on different resolutions, from a
sensible overview of the whole genome, to detailed infor-
mation on a per base scale. To help focus attention on
interesting features, statistical summaries need to be
viewed in conjunction with displays of raw data and
annotations.
Various visualization tools have been developed, most of

which are implemented in the form of a genome browser.

Data are typically plotted along with annotations with
genomic coordinates on the horizontal axis with other
information laid out in different panels called tracks.
Examples of genome browsers include the desktop-based
browsers Integrated Genome Browser [1,2] and Integrative
Genomics Viewer [3,4]. There are also web-based genome
browsers, including Ensembl [5], UCSC Genome Browser
[6], and GBrowse [7], and several new web-based brow-
sers, like Dalliance, which rely on technologies like
HTML5 and Scalable Vector Graphics [8], or Adobe
Flash, like DNAnexus [9]. Other software, like Circos [10],
provide specialist functionality. R also has some new tools
for visualizing genomic data, GenomeGraphs [11] and
Gviz [12]. They all have advantages for different purposes:
some are fast, while others have easier user interfaces.
Some are interactive, offer cross-platform support or sup-
port more file formats.
Data graphics benefit from being embedded in a statisti-

cal analysis environment, which allows the integration of
visualizations with analysis workflows. This integration is
made cohesive through the sharing of common data mod-
els [13]. In addition, recent work on a grammar of data
graphics [14,15] could be extended for biological data. The
grammar of graphics is based on modular components
that when combined in different ways will produce differ-
ent graphics. This enables the user to construct a combi-
natoric number of plots, including those that were not
preconceived by the implementation of the grammar.
Most existing tools lack these capabilities.

* Correspondence: lawrence.michael@gene.com
3Department of Bioinformatics, Genentech, 1 Dna Way South San Francisco,
CA 94080, USA
Full list of author information is available at the end of the article

Yin et al. Genome Biology 2012, 13:R77
http://genomebiology.com/content/13/8/R77

© 2012 Yin et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

plot chromosome space
p <- autoplot(seqinfo(dn))
make sure you pass rect as geom otherwise you just get background
p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

values(dn)$pvalue <- rnorm(length(dn))
p + layout_karyogram(dn, aes(x = start, y = pvalue), ylim = c(10, 30), geom = "line",

color = "red")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg
3

5

C

p

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg
3

5

C

Figure 11.9: Using Seqinfo to generate a white chromosome space, then adding RNA-editing site and then
use a fake value to shown as lines.

228

ctcf.sub <- subsetByOverlaps(cstest$ctcf, gr.wh)
p1 <- autoplot(ctcf.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage",

geom = "area")
ctcf.ext.sub <- subsetByOverlaps(ctcf.ext, gr.wh)
p2 <- autoplot(ctcf.ext.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage",

geom = "area")
tracks(original = p1, extending = p2)

or
ig

in
al 0

2

4

6

8

0

2

4

6

8

+
−

C
ov

er
ag

e strand
+
−

ex
te

nd
in

g

0

10

20

30

0

10

20

30

+
−

C
ov

er
ag

e strand
+
−

76.2984 Mb 76.2985 Mb 76.2986 Mb 76.2987 Mb 76.2988 Mb

Figure 13.2: A small region on chromosome 10, each track are faceted by strand. Top track shows coverage
of short reads of around width 24, and bottom track shows the same data with extending width to 200.
Clearly two peaks are tend to merge to one single peak after resizing.

239

plotGrandLinear(gr.snp, aes(y = pvalue))

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al
ue

NULL

Figure 10.7: Default Manhattan plot by calling plotGrandLinear function

207

Getting help.

Getting help.

Getting help.

• In real life: Make friends with people. Talk to them.

Getting help.

• In real life: Make friends with people. Talk to them.

•Online:

Getting help.

• In real life: Make friends with people. Talk to them.

•Online:
• Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...)

Getting help.

• In real life: Make friends with people. Talk to them.

•Online:
• Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...)
• Programming: http://stackoverflow.com

http://stackoverflow.com/
http://stackoverflow.com/

Getting help.

• In real life: Make friends with people. Talk to them.

•Online:
• Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...)
• Programming: http://stackoverflow.com
• Bioinformatics: http://www.biostars.org

http://stackoverflow.com/
http://stackoverflow.com/
http://www.biostars.org/
http://www.biostars.org/

Getting help.

• In real life: Make friends with people. Talk to them.

•Online:
• Specific discussion mailing lists (e.g.: R, Stacks, bioruby, MAKER...)
• Programming: http://stackoverflow.com
• Bioinformatics: http://www.biostars.org
• Sequencing-related: http://seqanswers.com

http://stackoverflow.com/
http://stackoverflow.com/
http://www.biostars.org/
http://www.biostars.org/
http://seqanswers.com/
http://seqanswers.com/

•Once I wanted to set up a BLAST server.

•Once I wanted to set up a BLAST server.

Anurag Priyam, Mechanical
engineering student, Kharagpur

http://www.iitkgp.ac.in/
http://www.iitkgp.ac.in/

•Once I wanted to set up a BLAST server.

Anurag Priyam, Mechanical
engineering student, Kharagpur

Aim: An open source
idiot-proof web-interface

for custom BLAST

http://www.iitkgp.ac.in/
http://www.iitkgp.ac.in/

http://www.sequenceserver.com/
1. Installing

gem install sequenceserver

http://www.sequenceserver.com/
http://www.sequenceserver.com/

http://www.sequenceserver.com/
1. Installing

gem install sequenceserver

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+/bin/
database: /Users/me/blast_databases/

2. Configure.

http://www.sequenceserver.com/
http://www.sequenceserver.com/

http://www.sequenceserver.com/
1. Installing

gem install sequenceserver

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+/bin/
database: /Users/me/blast_databases/

2. Configure.

sequenceserver
Launched SequenceServer at: http://0.0.0.0:4567

3. Launch.

http://www.sequenceserver.com/
http://www.sequenceserver.com/
http://0.0.0.0:4567
http://0.0.0.0:4567

http://www.sequenceserver.com/

(requires a BLAST+ install)

Do you have BLAST-formatted databases? If not:
sequenceserver format-databases /path/to/fastas

1. Installing
gem install sequenceserver

.sequenceserver.conf
bin: ~/ncbi-blast-2.2.25+/bin/
database: /Users/me/blast_databases/

2. Configure.

sequenceserver
Launched SequenceServer at: http://0.0.0.0:4567

3. Launch.

http://www.sequenceserver.com/
http://www.sequenceserver.com/
http://0.0.0.0:4567
http://0.0.0.0:4567

 http://0.0.0.0:4567

http://0.0.0.0:4567
http://0.0.0.0:4567

Lets try something

• Code review

• Examine a style guide

• Set up SequenceServer BLAST server

• take notes in Markdown & convert them to pdf

• perform analysis in R/knitr report and make pretty output

•make graphs in ggplot

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.
9. Document the design and purpose of code rather than its mechanics.

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

ar
X

iv
:1

21
0.

05
30

v3
 [

cs
.M

S]
 2

9
N

ov
 2

01
2

Best Practices for Scientific Computing
Greg Wilson ∗, D.A. Aruliah †, C. Titus Brown ‡, Neil P. Chue Hong §, Matt Davis ¶, Richard T. Guy ‖,
Steven H.D. Haddock ∗∗, Katy Huff ††, Ian M. Mitchell ‡‡, Mark D. Plumbley §§, Ben Waugh ¶¶,
Ethan P. White ∗∗∗, Paul Wilson †††

∗Software Carpentry (gvwilson@software-carpentry.org),†University of Ontario Institute of Technology (Dhavide.Aruliah@uoit.ca),‡Michigan
State University (ctb@msu.edu),§Software Sustainability Institute (N.ChueHong@epcc.ed.ac.uk),¶Space Telescope Science Institute
(mrdavis@stsci.edu),‖University of Toronto (guy@cs.utoronto.ca),∗∗Monterey Bay Aquarium Research Institute
(steve@practicalcomputing.org),††University of Wisconsin (khuff@cae.wisc.edu),‡‡University of British Columbia (mitchell@cs.ubc.ca),§§Queen
Mary University of London (mark.plumbley@eecs.qmul.ac.uk),¶¶University College London (b.waugh@ucl.ac.uk),∗∗∗Utah State
University (ethan@weecology.org), and †††University of Wisconsin (wilsonp@engr.wisc.edu)

Scientists spend an increasing amount of time building and using
software. However, most scientists are never taught how to do this
efficiently. As a result, many are unaware of tools and practices that
would allow them to write more reliable and maintainable code with
less effort. We describe a set of best practices for scientific software
development that have solid foundations in research and experience,
and that improve scientists’ productivity and the reliability of their
software.

Software is as important to modern scientific research as
telescopes and test tubes. From groups that work exclusively
on computational problems, to traditional laboratory and field
scientists, more and more of the daily operation of science re-
volves around computers. This includes the development of
new algorithms, managing and analyzing the large amounts
of data that are generated in single research projects, and
combining disparate datasets to assess synthetic problems.

Scientists typically develop their own software for these
purposes because doing so requires substantial domain-specific
knowledge. As a result, recent studies have found that scien-
tists typically spend 30% or more of their time developing
software [19, 52]. However, 90% or more of them are primar-
ily self-taught [19, 52], and therefore lack exposure to basic
software development practices such as writing maintainable
code, using version control and issue trackers, code reviews,
unit testing, and task automation.

We believe that software is just another kind of experi-
mental apparatus [63] and should be built, checked, and used
as carefully as any physical apparatus. However, while most
scientists are careful to validate their laboratory and field
equipment, most do not know how reliable their software is
[21, 20]. This can lead to serious errors impacting the cen-
tral conclusions of published research [43]: recent high-profile
retractions, technical comments, and corrections because of
errors in computational methods include papers in Science
[6], PNAS [39], the Journal of Molecular Biology [5], Ecology
Letters [37, 8], the Journal of Mammalogy [33], and Hyper-
tension [26].

In addition, because software is often used for more than a
single project, and is often reused by other scientists, comput-
ing errors can have disproportional impacts on the scientific
process. This type of cascading impact caused several promi-
nent retractions when an error from another group’s code was
not discovered until after publication [43]. As with bench ex-
periments, not everything must be done to the most exacting
standards; however, scientists need to be aware of best prac-
tices both to improve their own approaches and for reviewing
computational work by others.

This paper describes a set of practices that are easy to
adopt and have proven effective in many research settings.
Our recommendations are based on several decades of collec-
tive experience both building scientific software and teach-
ing computing to scientists [1, 65], reports from many other
groups [22, 29, 30, 35, 41, 50, 51], guidelines for commercial

and open source software development [61, 14], and on empir-
ical studies of scientific computing [4, 31, 59, 57] and software
development in general (summarized in [48]). None of these
practices will guarantee efficient, error-free software develop-
ment, but used in concert they will reduce the number of
errors in scientific software, make it easier to reuse, and save
the authors of the software time and effort that can used for
focusing on the underlying scientific questions.

1. Write programs for people, not computers.
Scientists writing software need to write code that both exe-
cutes correctly and can be easily read and understood by other
programmers (especially the author’s future self). If software
cannot be easily read and understood it is much more difficult
to know that it is actually doing what it is intended to do. To
be productive, software developers must therefore take several
aspects of human cognition into account: in particular, that
human working memory is limited, human pattern matching
abilities are finely tuned, and human attention span is short
[2, 23, 38, 3, 55].

First, a program should not require its readers to hold more
than a handful of facts in memory at once (1.1). Human work-
ing memory can hold only a handful of items at a time, where
each item is either a single fact or a “chunk” aggregating sev-
eral facts [2, 23], so programs should limit the total number of
items to be remembered to accomplish a task. The primary
way to accomplish this is to break programs up into easily
understood functions, each of which conducts a single, easily
understood, task. This serves to make each piece of the pro-
gram easier to understand in the same way that breaking up a
scientific paper using sections and paragraphs makes it easier
to read. For example, a function to calculate the area of a
rectangle can be written to take four separate coordinates:
def rect_area(x1, y1, x2, y2):

...calculation...

or to take two points:
def rect_area(point1, point2):

...calculation...

The latter function is significantly easier for people to read
and remember, while the former is likely to lead to errors, not

Reserved for Publication Footnotes

1–7

1. Write programs for people, not computers.
2. Automate repetitive tasks.
3. Use the computer to record history.
4. Make incremental changes.
5. Use version control.
6. Don’t repeat yourself (or others).
7. Plan for mistakes.
8. Optimize software only after it works correctly.
9. Document the design and purpose of code rather than its mechanics.
10. Conduct code reviews.

