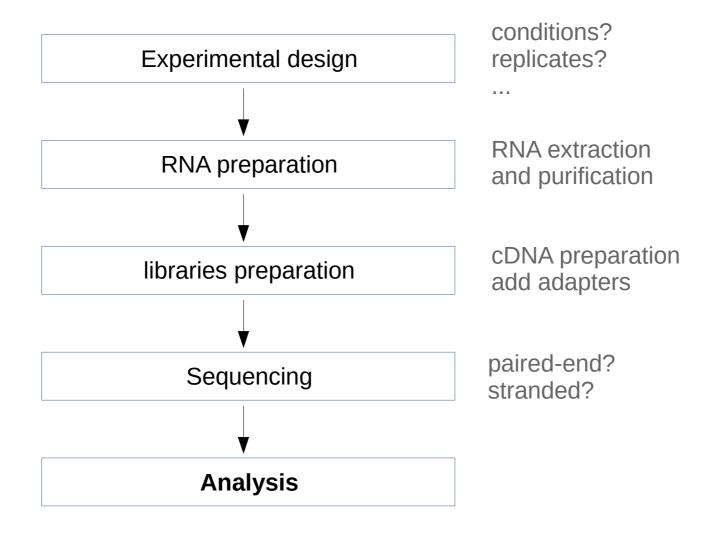
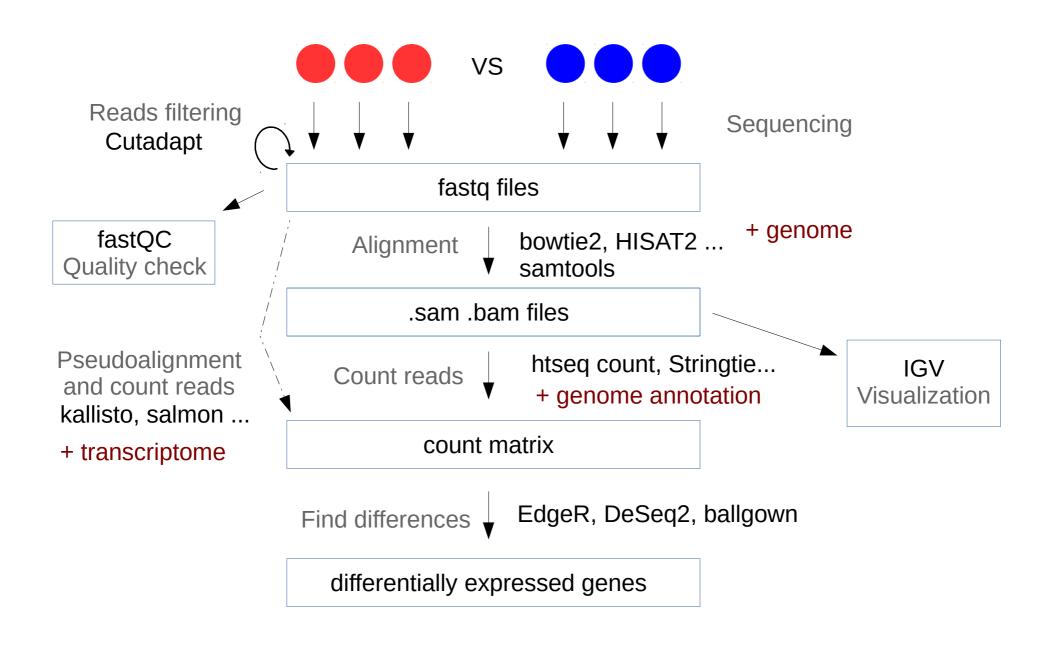
RNAseq analyses workflow to find differentially expressed genes

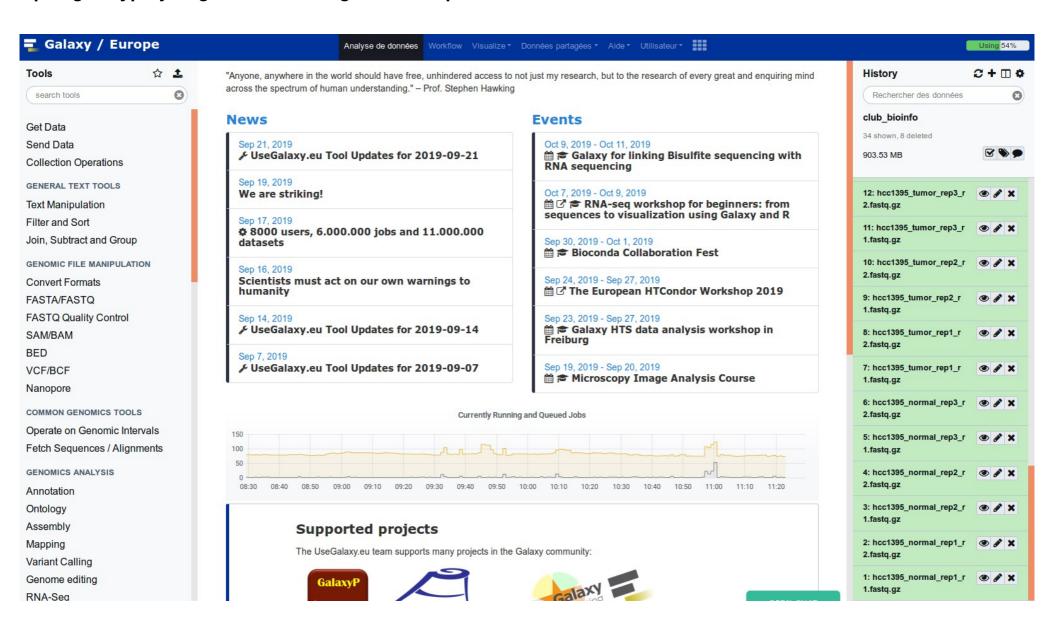

Club bioinfo 03/10/2019

Flora Borne


Aims of RNAseq

- Measure relative gene expression
- Discover and annotate complete transcripts
- Characterize alternative splicing and polyadenylation

RNAseq experiment


RNAseq Analysis pipeline with reference genome

Use Galaxy to perform RNAseq analysis

https://usegalaxy.eu/

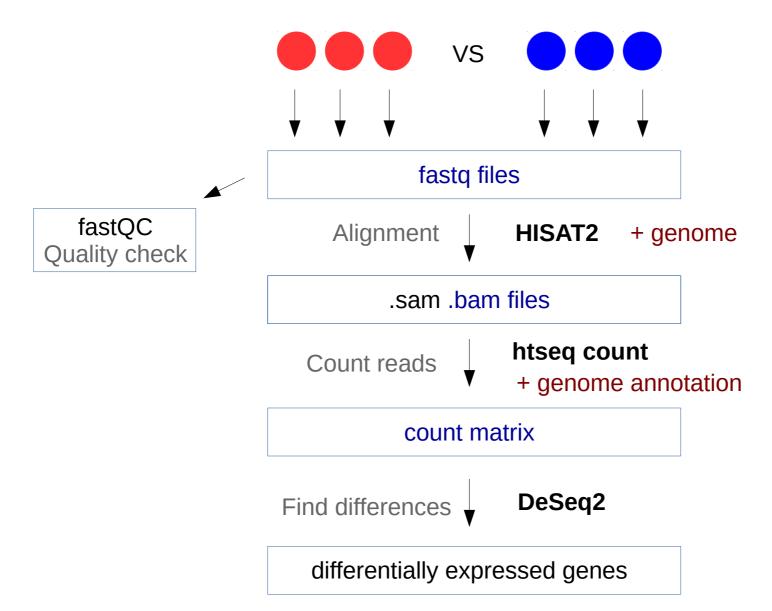
https://galaxyproject.github.io/trainingmaterial/topics/introduction/slides/introduction.html#1

Use Galaxy to perform RNAseq analysis

https://usegalaxy.eu/

- Create an account
- Import history: https://usegalaxy.eu:/u/fborne/h/clubbioinfo

Data source


https://github.com/griffithlab/rnaseq_tutorial/wiki

Malachi Griffith*, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough, Obi L. Griffith*. 2015. Informatics for RNA-seq: A web resource for analysis on the cloud. PLoS Comp Biol. 11(8):e1004393. *To whom correspondence should be addressed: E-mail: mgriffit[AT]genome.wustl.edu, ogriffit[AT]genome.wustl.edu

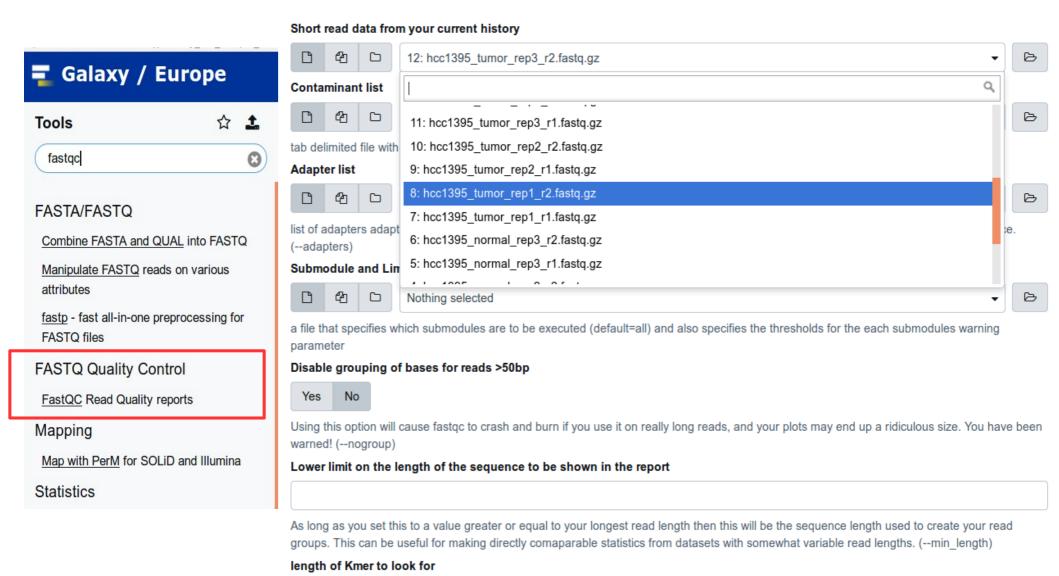
What you need

Files:

- 12 fastq files breast cancer cell line VS lymphoblastoid line (tumor vs normal)
- genome file chr22_with_ERCC92.fa
- annotation file chr22_with_ERCC92.gtf

fastq files

12: hcc1395_tumor_rep3_r 2.fastq.gz

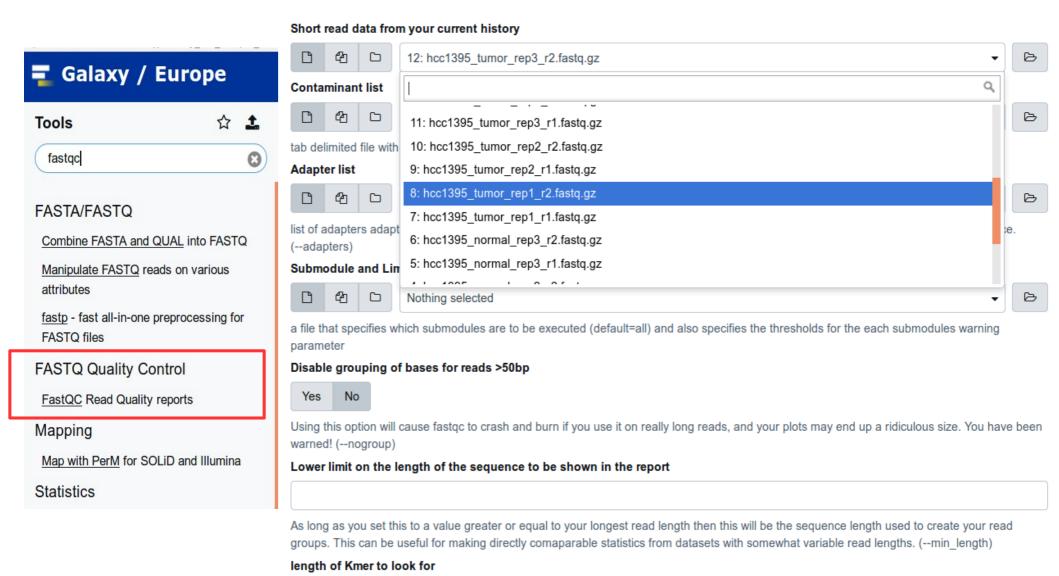

- 1 @K00193:38:H3MYFBBXX:5:1210:29481:18492/2
- 2 GAAGGAGGTGGTGGAGGCTGTGACCATTGTAGAGACACCACCCATGGTGGTTGTTGGGCATTGTGGGCTACGTGGAAACCCCTCGAGGCCTCC
- 3 +

- 2 0 followed by name of the reads and sequencing information
- 2 Sequence of the read
- 3 + followed by additional information
- 4 Quality score of each base

Check quality with FastQC

7

Execute



note: the Kmer test is disabled and needs to be enabled using a custom Submodule and limits file (--kmers)

Check quality with FastQC

7

Execute

note: the Kmer test is disabled and needs to be enabled using a custom Submodule and limits file (--kmers)

Check quality with FastQC

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Mon 23 Sep 2019

hcc1395_normal_rep3_r1_fastq_gz.gz

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

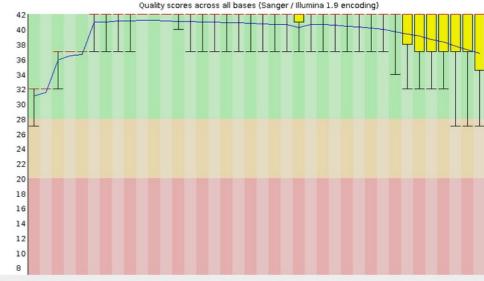
Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels


Overrepresented sequences

Adapter Content

Basic Statistics

Measure	Value		
Filename	hcc1395_normal_rep3_r1_fastq_gz.gz		
File type	Conventional base calls		
Encoding	Sanger / Illumina 1.9		
Total Sequences	331956		
Sequences flagged as poor quality	θ		
Sequence length	151		
%GC	54		

Per base sequence quality

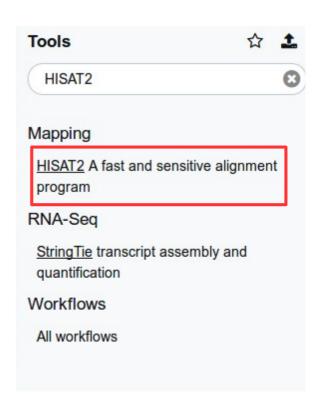
Produced by FastQC (version 0.11.8)

Quality and filtering reads

https://galaxyproject.github.io/training-material/topics/sequence-analysis/tutorials/quality-control/tutorial.html

Align reads using HISAT2

Use a genome from history chr22_with_ERCC92.fa


Paired-end

#1
hcc1395_tumor_rep1_r1.fastq.gz
#2
hcc1395_tumor_rep1_r2.fastq.gz

Summary Options: Print alignment summary to a file -> Yes

Execute

Rename BAM file: hcc1395_tumor_rep1.bam

Align reads using HISAT2

```
7, and data 13: Mapping s
390607 reads; of these:
  390607 (100.00%) were paired; of these:
                                                                ummary
    94674 (24.24%) aligned concordantly 0 times
    291672 (74.67%) aligned concordantly exactly 1 time
    4261 (1.09%) aligned concordantly >1 times
                                                               45: hcc1395 tumor rep1.b
                                                                am
    94674 pairs aligned concordantly 0 times; of these:
      28981 (30.61%) aligned discordantly 1 time
    65693 pairs aligned 0 times concordantly or discordantly; of these:
     131386 mates make up the pairs; of these:
        90511 (68.89%) aligned 0 times
       40194 (30.59%) aligned exactly 1 time
       681 (0 52%) aligned >1 times
88.41% overall alignment rate
```

46: HISAT2 on data 8, data

Count reads per transcript using htseq-count

BAM file

hcc1395_tumor_rep1.bam

GFF File

chr22_with_ERCC92.gtf

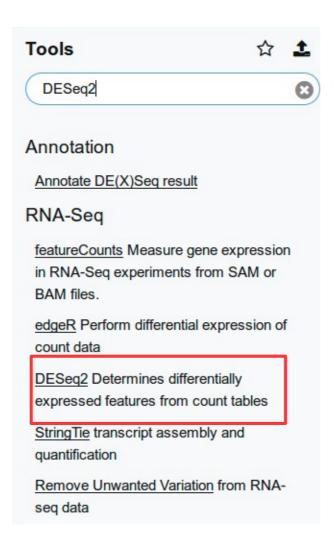

Stranded

No

ID Attribute

gene_id

Execute


Count reads per transcript using htseq-count

Geneid	hcc1395_normal_rep1.BAM
ENSG00000008735	8
ENSG00000015475	903
ENSG00000025708	217
ENSG00000025770	456
ENSG00000040608	0
ENSG00000054611	737
ENSG00000056487	2
ENSG00000063515	1
ENSG00000069998	478
ENSG00000070010	346
ENSG00000070371	23
ENSG00000070413	563
ENSG00000073146	1
ENSG00000073150	11
ENSG00000073169	181
ENSG00000075218	344

48: htseq-count on data 14 and data 45 (no feature)

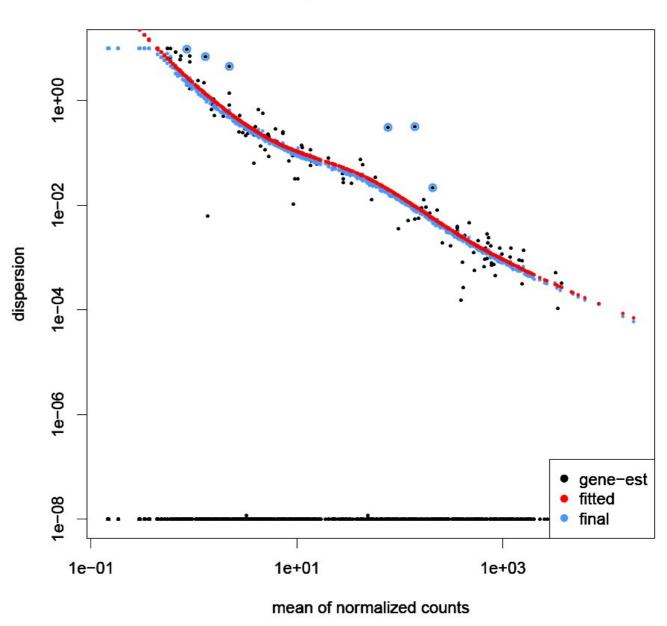
47: htseq-count on data 14 and data 45

https://www.bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf

66: htseq-count on data 14 and data 25 (no feature)

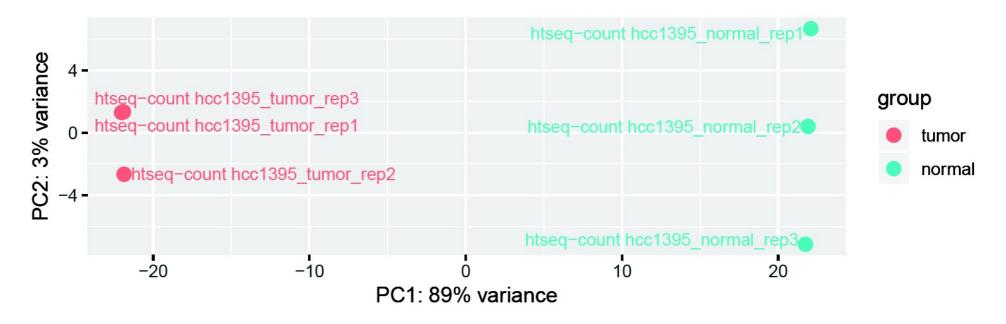
Select datasets per level Factor 1: Factor Specify a factor name, e.g. effects_drug_x or cancer_markers cancer markers Only letters, numbers and underscores will be retained in this field Factor level 1: Factor level Specify a factor level, typical values could be 'tumor', 'normal', 'treated' or 'control' normal Only letters, numbers and underscores will be retained in this field Counts file(s) or. mocy count nee rese_tumor_repr 66: htseq-count on data 14 and data 25 (no feature) D 65: htseq-count hcc1395 normal rep3 64: htseq-count on data 14 and data 24 (no feature) 63: htseq-count hcc1395_normal_rep2 62: htseq-count on data 14 and data 23 (no feature) 61: htseq-count hcc1395 normal rep1 14: chr22 with ERCC92.gtf 13: chr22 with ERCC92.fa (as tabular) 2: Factor level Specify a factor level, typical values could be 'tumor', 'normal', 'treated' or 'control' tumor Only letters, numbers and underscores will be retained in this field Counts file(s) 71: htseq-count hcc1395 tumor rep3 凸 70: htseq-count on data 14 and data 27 (no feature) 69: htseq-count hcc1395 tumor rep2 68: htseq-count on data 14 and data 26 (no feature) 67: htseq-count hcc1395 tumor rep1

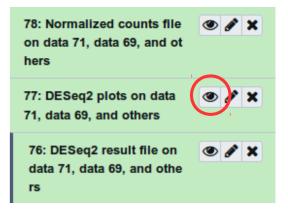
Normalize counts for (estimate size factor)
 sequencing depth


gene_ID	Sample1	Sample2	
geneA	4	8	
geneB	105	210	
geneC	86	172	
geneD	205	410	
total reads	400	800	

library composition

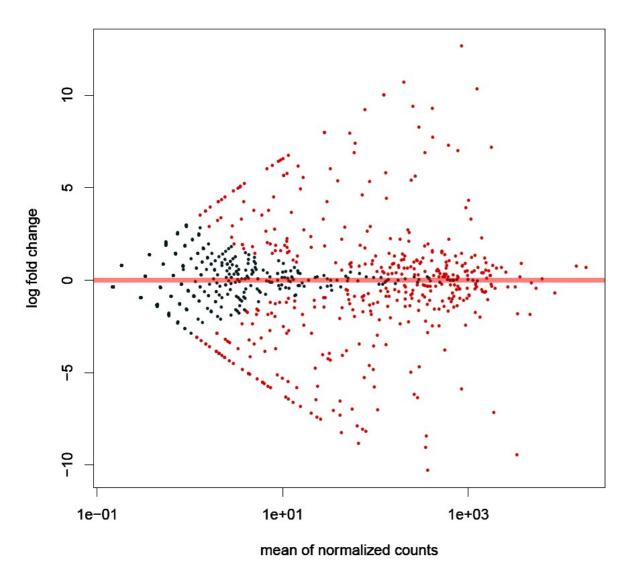
gene_ID	Sample1	Sample2	
geneA	4	16	
geneB	105	430	
geneC	86	354	
geneD	605	0	
total reads	800	800	


- Estimation of dispersion
- Modelize data with Negative Binomial
- Wald statistics


Dispersion estimates

DESeq2 outputs

Principal component analysis on normalized counts

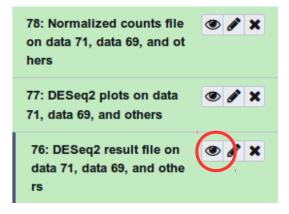


DESeq2 outputs

MA plot

log2(FC) = log2(normalize_counts_**normal** / normalized_count_**tumor**) log2(FC) > 0 up in normal

log2(FC) < 0 up in tumor



DeSeq2 results

GeneID	Base mean	log2(FC)	StdErr	Wald-Stats	P-value	P-adj
ENSG00000197077	937.901993644636	-2.44438059353607	0.0655414410230009	-37.2951914908042	1.96372011208447e-304	1.09061993917307e-302
ENSG00000075275	848.161750652143	-5.89569885802102	0.169886634723663	-34.7037238545042	6.92247183993835e-264	3.57001762031107e-262
ENSG00000100300	1198.55250247078	-1.76565410048056	0.0518114553249512	-34.0784502077142	1.53866250267468e-254	7.40609551287412e-253
ENSG00000188636	557.815500461693	-3.78754573802744	0.113281859682855	-33.4347065684751	4.29421055371442e-245	1.93776251236363e-243
ENSG00000100234	3347.85839882333	-9.47859077019498	0.285375773154556	-33.2144199397806	6.66631114948418e-242	2.83122155878093e-240
ENSG00000196576	3743.06082926327	0.901858372606505	0.0277692746930245	32.4768429343619	2.26421578617076e-231	9.08202109786272e-230
ENSG00000159958	773.929011173785	7.00771181876682	0.230693306161881	30.3767453653354	1.11439290389789e-202	4.234693034812e-201
ENSG00000015475	617.756889803811	2.19844025412487	0.0734411261343441	29.9347296241526	6.95402712373283e-197	2.51040379166755e-195
ENSG00000099942	1510.09524435064	1.18719387706417	0.042414911645966	27.9900117905134	2.14973489102509e-172	7.39099329200056e-171
ENSG00000183963	487.147874731395	-2.49804737628107	0.0915372939284234	-27.2899412804839	5.58374611659962e-164	1.83248395281133e-162
ENSG00000100297	1182.07267360245	1.33544089279531	0.0498733240997563	26.7766569985223	6.0439208026192e-158	1.89726557369177e-156
ENSG00000100403	1623.78421346576	-1.06373188750719	0.0409719753121278	-25.9624262536427	1.31637989029947e-148	3.96010950331757e-147
ENSG00000128268	611.114704217574	7.28180911721524	0.28421385920714	25.6208797752826	8.92968957521839e-145	2.57889434932307e-143

differentially expressed?

significant?

Documentation

Tutorial on galaxy

https://galaxyproject.github.io/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html

Tutorial about DESeq2

 $https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html\\$

https://hbctraining.github.io/DGE_workshop/lessons/05_DGE_DESeq2_analysis2.html

Thank you!