

Reading and writing files
Practical Computing for Biologists

Chapter 10 (2nd half)

Peter Brooks
Jan 13 2012

Chapter 10 topics
– illustrated by transforming a text file into a Google Earth .kml file

Dive Date Lat Lon Depth Notes
Tiburon 596 19-Jul-03 36 36.12 N 122 22.48 W 1190 holotype
JSL II 1411 16-Sep-86 39 56.4 N 70 14.3 W 518 paratype
JSL II 930 18-Aug-84 40 05.03 N 69 03.01 W 686 Youngbluth (1989)
Ventana 1575 11-Mar-99 36 42.24 N 122 02.52 W 767
Ventana 1777 16-Jun-00 36 42.60 N 122 02.70 W 934
Ventana 2243 9-Sep-02 36 42.48 N 122 03.84 W 1001
Tiburon 515 24-Nov-02 36 42.00 N 122 01.98 W 1156
Tiburon 531 13-Mar-03 24 19.02 N 109 12.18 W 1144
Tiburon 547 31-Mar-03 24 14.04 N 109 40.02 W 1126
JSL II 3457 26-Sep-03 40 17.77 N 68 06.68 W 862 Francesc Pages (pers.comm)

Flat text file
rows and columns (fields)

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>

<Placemark>
 <name>Tiburon 596</name>
 <description>Tiburon 596 19-Jul-03 36 36.12 N 122 22.48 W 1190 holotype</description>
 <Point>
 <altitudeMode>absolute</altitudeMode>
 <coordinates>-122.374667, 36.602000, -1190</coordinates>
 </Point>
</Placemark>
<Placemark>
 <name>JSL II 1411</name>
 <description>JSL II 1411 16-Sep-86 39 56.4 N 70 14.3 W 518 paratype</description>
 <Point>
 <altitudeMode>absolute</altitudeMode>
 <coordinates>-70.238333, 39.940000, -518</coordinates>
 </Point>
</Placemark>
<Placemark>

(…)

</Placemark>

</Document>
</kml>

ML file
Markup Language

Each row parsed
between series of
hierarchical
« tags ».

XML
A lingua franca
usable by many
programs.
Goog Earth:
Keyhole ML - kml

Chapter 10 topics
– illustrated by transforming a text file into a Google Earth .kml file

● First part Ch 10 Jan. 6

file parsing strategies
open(FileName, 'r') and read lines with a for loop
.strip('\n') remove trailing characters
.split() parse line elements into lists [….] and access list elements
open(NewFile, 'w') and OutFile.write()

● Last part Ch 10 Jan. 13

Reg expr search using re.search()
.group() to access re.search() results
create custom functions with def my_function:
generate XML and KML files
multiple line strings bounded by triple quotes
If time: raw strings; re.sub for search and replace

Review previous

Open latlon_3.py

#!/usr/bin/env python
(...)

LineNumber = 0

Open the output file for writing -Do this *before* the loop, not inside it
OutFileName=InFileName + ".kml"

OutFile=open(OutFileName,'w') # You can append instead with 'a'

Loop through each line in the file
for Line in InFile:

Skip the header, line # 0
if LineNumber > 0:

Remove the line ending characters
 Line=Line.strip('\n')
 ElementList=Line.split('\t')

Use the % operator to generate a string
We can use this for output both to the screen and to a file
OutputString = "Depth: %s\tLat: %s\t Lon:%s" % \
 (ElementList[4], ElementList[2], ElementList[3])

Can still print to the screen then write to a file
print OutputString

Unlike print statements, .write needs a linefeed
OutFile.write(OutputString+"\n")

Index the counter used to keep track of line numbers
LineNumber = LineNumber + 1

After the loop is completed, close the files
InFile.close()
OutFile.close()

Files – 2 variables
1. file name - “string.txt”
InFileName =
'Marrus_claudanielis.txt'
2. file “handle” points to file
InFile = open(InFileName, 'r')
== == = = =
Counter variable, header
For loop to read each line
Strip line returns.
Split on \t – make list of fields.
Format output and assign
output to a variable.
== === =
Create a string for output file
name.
Define the output file handle
for writing.
Write output.

to screen
to file – add \n

Close all files.

Run program to see output.

1 2

Parsing with Regular Expressions in Python
Convert Lat/Long fr degrees-minutes to decimal degrees

● Ch 2 and 3: Regex in text editor

● Python: Regex commands are in module “re”
import re # import command – follows shebang early in code
In interactive mode, >>> dir(re) shows available re tools

● Result = re.search(regexPattern, targetString)

● Extract latitude elements from string using regex
See latlon_3.py output
“39 56.4 N” example of ElementList[2]
Regex: 1 or more digits, space, 1 or more digits or decimal pts,

space, a word character (i.e. a letter)
\d+ [\d\.]+ \w But want each as an independent element:

 (\d+) ([\d\.]+) (\w) => only elements in (…...) can be retrieved
Code lines for program:

patternLatLon = '(\d+) ([\d\.]+) (\w)' # the pattern itself is a quoted string
Result = re.search(patternLatLon, ElementList[2])

re.search output: an object containing the results of the
pattern search and methods to work with results

● Result = re.search(regexPattern, targetString)
The “Match.Object” Result has methods invoked by the dot operator.

● Result.group()
Result.group(0) is entire string
DegreeString = Result.group(1) # this is equivalent to \1 in Text wrangler
MinuteString = Result.group(2)
Compass = Result.group (3)

● These values will be used in a custom function that converts to
decimal degrees.

● Other useful methods are available for the search output:
MinPosition = Result.start(2) # the index of the start of match of 2nd group
DegMinEnds = Result.end(1,2) # one past the end of match of groups 1 and 2

● Any alternate method to get degrees, minutes and compass letter?
 (without using re)

Defining custom functions
● Need to convert both latitude and longitude to decimal degrees.

Easy to copy code for latitude, and modify to treat longitude.

● Function calls (subroutines) enhance readability, decrease chances
of coding errors, and facilitate debugging.

● DRY – Don't Repeat Yourself
Avoid code containing repetitive lines or blocks of lines.
 Do not copy / paste code to do something similar.
When corrections or modifications are needed, they are done only in one place.

● Built-in and custom functions are used in the same way.
Function float(X) operates on a value of a parameter; returns decimal value.
A custom function processes parameter(s) and returns result(s).
The function is placed before the main block of code and is called from the main
block or from within other functions.

● def decimalat(DegString):
This line gives the name of the function and parameters.
Indented lines following the colon contain the “definition” of the function.

● Functions typically end with a “return” of values, but not always.
Always leave the call of the function with a return statement.

Degree-minutes to Decimal Degrees Function
def decimalat(DegString): # The call can use other variable names.

This function requires that the re module is loaded
Take a string in the format "34 56.78 N" and return decimal deg.
SearchStr= '(\d+) ([\d\.]+) (\w)'
Result = re.search(SearchStr, DegString)

Get the captured character groups, as defined by the parenth.
in the regular expression, convert the numbers to floats, and
assign them to variables with meaningful names
Degrees = float(Result.group(1))
Minutes = float(Result.group(2))
Compass = Result.group(3).upper() # make sure it is capital too

Calculate the decimal degrees
DecimalDegree = Degrees + Minutes/60

If the compass direction indicates the coordinate is South or
West, make the sign of the coordinate negative.

if Compass == 'S' or Compass == 'W':
DecimalDegree = -DecimalDegree

return DecimalDegree # The output sent back to line of call.
End of the function definition

● Function takes
one parameter:
DegString

● Strings from
search groups
are converted
to decimal
numbers.

● Good habit: do
not assume all
records are
uniform; as
group(3) is a
string, can use
string methods
– upper().

Calling a function from the main block of code
1. Simple,

descriptive names.

2. New variable
names get the
value of the
function's “return”.
Names of sent
variables are
different from
function's
parameter name.

3. Use of backstroke
character to
continue long
lines. Gives good
readability.

4. WriteOutFile is a
boolean, set as
True or False
earlier in the code.

for Line in InFile:
if LineNumber > 0:

print line # uncomment for debugging
Line=Line.strip('\n')
ElementList = Line.split('\t')
Returns a list in this format:
['Tiburon 596', '19-Jul-03', …....]
print "ElementList:", ElementList # uncomment for debug

Dive = ElementList[0]
Date = ElementList[1]
Depth = ElementList[4]
Comment = ElementList[5]

LatDegrees = decimalat(ElementList[2])
LonDegrees = decimalat(ElementList[3])
Create string to 5 decimal places, padded to 10 total char.
(using line continuation character \)
OutString = "%s\t%4s\t%10.5f\t%10.5f\t%9s\t%s" % \

 (Dive,Depth,LatDegrees,LonDegrees,Date,Comment)
print OutString
if WriteOutFile:

OutFile.write(OutString + '\n') # remember the line feed!
LineNumber += 1 # this is outside the if, but inside the for loop

Close the files

1

2

3

4

from latlon_4.py

Converting flat text to XML format
● ML: Markup Language

Each data element annotated with opening and closing tags.
<element_name>Element Content</element name>
<sample>

<species>Marrus claudanielis</species>
<depth>-Si8</depth>
<location>-70.238, 39.940</location>

</sample>
Sets of tags are always nested.

● ML file headers and footers – also use opening and closing tags
(Use triple quotes for multiline strings or comments.)
HeadString=' ' '<?xml version=\"1.0\" encoding=\"UTF-8\"?> (no closing tag)
<kml xmlns=\"http://earth.google.com/kml/2.2\">
<Document>' ' '
Footer: </Document> </kml> # Note that tags are nested.

● Placemark string to build KML records.
See latlon_5.py for multiline example.
To preserve data not needed by program (Google Earth), include a Description
field that has the entire original data line.

http://earth.google.com/kml/2.2

 http://display-kml.appspot.com/

A .kml file can be visualized with Google Earth or Google Map

Raw strings
s=" c: \ \ "

Python will escape the backslash
resulting string s will contain only one backstroke
value is "c: \"

raw string – precede string with letter r
s=r" c: \ \ "

suppresses Python's character escaping,
value is "c : \ \ "

Use raw string even if uncertain it is necessary.
===== = = = = = = =
Substitutions – Search and Replace

re.sub()

>>> import re
>>> OrigString = "Haeckel, Ernst" # The string you wish to search
>>> SubFind = r"(\ w+) , (\ w+)" # The regular expression to search for
>>> Result = re. search (SubFind, OrigString) # Perform the search, store the results
>>> print Result.groups() # See what you found
('Haeckel', 'Ernst') # The two captured substrings
>>> SubReplace = r" \ 2 \ t \ 1" # Set up a string for replacement using raw string style
>>> NewString = re.sub(SubFind, SubReplace, OrigString) # Format for re.sub()
>>> print NewString # See the substitUted string
'Ernst tab Haeckel'

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12

