Reading and writing files

V. Orgogozo
Jan 6 2012

Our goal today : transform a text file into a Google Earth .kml file

Marrus_claudanielis.txt
Marrus_claudanielis.kml

A .kml file can be visualized with Google Earth or Google Map

Type your KML in here

<?xm] version="1.0" encoding="UTF-8"?> |.
<kml xmlns="http://earth.google.com &
Jeml /2.2 y
<Document>
=
<name>Tiburon 596</name=> _ !
<description>Tiburon 596 e A I, o
19-Jul-83 36 36.12 N 122 =1 United States '_-llljr_:m'.J .T ~Ji
EEPZE : 1186 hglotype</description= . A R :.1,,._.{.5,:';:-:-‘“'
int> (! T o AR T e
<altitudeMpdesabsolute</altitudsMode> o o e AR it AT e
<coordinates=>-122. 374667, 36.602000, =| = Nl
-1196</coordinates> r
</Point>
</Plagenark>
<Placemark>
<name=]5l. II 14l1l</name>
edescription=]Sl. II 1411
16-5Sep-86 39 56.4 N 70 14.3
W 518 paratype</description> |¥

http://display-kml.appspot.com/

Always think first about the strategy

to save time and anticipate complex steps
Certain issues might have a big effect on the way the program should be written

(1) check the input file and the output file .
Marrus claudanielis.txt

arrus_claudanielis.kml

(2) which method should we use to transform the input file into the output file?

(a) each line can be processed in the order it occurs

input output

B .. > 0 |
e .. - O | .
B .. » [|
e .. - [| N
N .. » [| e

(b) several lines must be combined into an output line

input (ex : fasta file) output

| "
_? & | e

] I I —

S=? o I /

(c) all the lines must be processed before the output file is created

Output (sorted fields, lines

input Intermediate normalized by the average,
T e list etc.)

B . - 1080 | .
B . 200 | .
T e SEL | .
T e - A0 |

Open latlon_1.py

#!/usr/bin/env python

Set the input file name

(The program must be run from within the directory
that contains this data file)

InFileName = 'Marrus_claudanielis.txt'

Open the input file for reading
InFile = open(InFileName, 'r')

Initialize the counter used to keep track of line numbers
LineNumber =0

Loop through each line in the file
for Line in InFile:
Remove the line-ending characters
Line=Line.strip(\n’)
Print the line
print LineNumber,":", Line

Index the counter used to keep track of line numbers
LineNumber = LineNumber + 1

After the loop is completed, close the file
InFile.close()

Function open
(file name, file mode)
' = read mode

The InFileName and the
InFile variables are different

To create a list variable
containing all the lines of the
file:

FileList = inFile.readlines()

Method .strip()
removes line endings (space,
tab, end of line)

Open latlon_1.py

#!/usr/bin/env python

Set the input file name

(The program must be run from within the directory Function open

that contains this data file) (file name, file mode)
InFileName = 'Marrus_claudanielis. txt' ' = read mode
Open the input file for reading Better to start -
InFile = open(InFileName, 'r’) numbering with 0 The_ InFIIe_Name and _the
InFile variables are different
Initialize the counter to keep track of line numbers
LineNumber =0
Loop through each line in the file To Cre_a?e a list var_iable
for Line in InFile: containing all the lines of the
Remove the line-ending characters file:
Line=Line.strip(\n’) Tl b — A -
£ Print the line FileList = inFile.readlines()

print LineNumber,":", Line

Index the counter used to keep track of line numbers Method strip()

LineNumber = LineNumber + 1 . i
removes line endings (space,

After the loop is completed, close the file tab, end of line)

InFile.close() - Always close the
file when done

make the file executable, execute it in the examples folder

virginie@ Darwin:~/Documents/Biolnfo-cours/pcfb/examples$./latlon_1.py
:Dive Date Lat Lon Depth Notes
: Tiburon 596 19-Jul-03 36 36.12 N 122 22.48 W 1190 holotype
:JSL 111411 16-Sep-86 3956.4 N 70 14.3 W 518 paratype
:JSL 11930 18-Aug-84 40 05.03 N69 03.01 W 686 Youngbluth (1989)
: Ventana 1575 11-Mar-99 36 42.24 N 122 02.52 W 1767
- Ventana 1777 16-Jun-00 36 42.60 N 122 02.70 W 934
: Ventana 2243 9-Sep-02 36 42.48 N122 03.84 W 1001
: Tiburon 515 24-Nov-02 36 42.00 N 122 01.98 W 1156
: Tiburon 531 13-Mar-03 24 19.02 N109 12.18 W 1144
Tiburon 547 31-Mar-03 24 14.04 N 109 40.02 W 1126
10 : JSL 1l 3457 26-Sep-03 40 17.77 N68 06.68 W 862 Francesc Pages
(pers.comm)
virginie@ Darwin:~/Documents/Biolnfo-cours/pcfb/examples$

0:
1
2
3
4
5
§)
;
8
9:

#!/usr/bin/env python
Modify the script so ()

that the header line is # Initialize the counter used to keep track of line numbers
not printed LineNumber = 0

Loop through each line in the file
for Line in InFile:
Remove the line-ending characters
HINT : Line=Line.strip('\n")
Uselif...: # Print the line

within the |00p print LineNumber,":", Line

Index the counter used to keep track of line numbers
LineNumber = LineNumber + 1

After the loop is completed, close the file
InFile.close()

(3) split the line into data fileds

Method .split()

Produces a list of strings = the values occurring between the delimiters, the delimiters are
thrown away

.split() considers space and tab as delimiters

split('\t') considers only tab as delimiters

#!/usr/bin/env python
(...)

Initialize the counter used to keep track of line numbers
LineNumber =0

Open latlon_2.py

Loop through each line in the file
for Line in InFile:
if LineNumber > 0O:
Remove the line ending characters
Line=Line.strip(\n")
What happens if you use o _ _ o
Line.split(\t') instead of # Separate the line into a list of its tab-delimited components

Line.split(t) ? LineList=Line.split('\t")

Print the line

print LineNumber,":", LineList
print LineList[4], LineList[2], LineList[3]

print "Depth: %s\tLat: %s\t Lon:%s" % (LineList[4], LineList[2],
LineList[3])

Index the counter used to keep track of line numbers
LineNumber = LineNumber + 1

(.)

(4) write the new output file *(#!/;JSF/bin/enV python

Open latlon_3.py LineNumber = 0

Open the output file for writing -Do this *before* the loop, not inside it
Function open 1 OutFileName=InFileName + ".kmlI"

(file name, file mode) o outFile=open(OutFileName,'w") # You can append instead with '’
'w' = write mode
'a' = append mode # Loc_)p through gach line in the file
for Line in InFile:
Skip the header, line # 0
Be careful of not if LineNumber > 0:
deleting existing files #_Rem(_)ve th(_a line ending characters
Line=Line.strip(\n")
ElementList=Line.split("\t"
>> \Versus >
Use the % operator to generate a string
We can use this for output both to the screen and to a file
OutputString = "Depth: %s\tLat: %s\t Lon:%s" % \
(ElementList[4], ElementList[2], ElementList[3])

Can still print to the screen then write to a file
print OutputString

Unlike print statements, .write needs a linefeed
3 OutFile.write(OutputString+"\n")

Index the counter used to keep track of line numbers
LineNumber = LineNumber + 1

After the loop is completed, close the files
InFile.close()
4 OutFile.close()

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10

