

Components of programming

What is a program?

A computer program is a sequence of instructions written to
perform a specified task with a computer (Wikipedia)

Compiled versus interpreted programs
Programs usually written in a human writable/readible code → source code

... translated into computer-understandible instructions → ''to be compiled''
- specific to different operating systems : not portable

Some programs are not compiled, but processed by an interpreter (compiled program)

Interpreted/scripting languages: Python, R, MATLAB, Perl, ...
- portable on different OS

In the following we will write programs for the Python interpreter

 Commonly used terms

Arguments Values that are sent to a program at the time it is run

Code Noun : A program / line of a program, sometimes called source code
Verb : the act of writing a program

Execute To begin/carry out an operation of a program, synonymous with ''run''
Function Sub-program, can be called repeatedly to perform tasks within a program

Parameters Values sent to a function when it is called

Parse Extract particular data elements from a larger block of information

Return In a Function : sending back a value ; value → variable for function → ...

Run Execute sequence of commands, or processing a file by a program

Statement A line of a program or script, which can do value assignments,
 comparisons, or other operations

Variables

The anatomy of a variable

variable : a name that holds a value

Name - Type - Value

Name : Python - no punctuation, PERL - Name begins with $, no digit in the first character)

Type : Integer, Floating point, string, …

Value : Piece of information, quantitative or qualitative, depending on the type

Scope : Specifies where in a program a variable can be accessed

Variables
Basic variable types

Integer Whole numbers, no fractional component – limit depending on
 comp. language

Specialized integer types for large numbers:
- long,
- unsigned (twice as a normal integer but not negative)

Floating point Rational number, decimal point can float to any position,
precision limit, special case : double precision (2x memory)

Boolean two values : True or false

Strings sequence of text characters : letters, digits, punctuation, …
''Within quotation marks'' in most languages

SequenceName = "Bolinopsis infundibulum"
Primer1 = 'ATGTCTCATTCAAAGCAGG'
DateString = "18-Dec-1965/t13:05"
Location = "Pt. Panic, Oahu, Hawai'i"

Often, no extended character sets allowed

Variables as containers for other variables

Arrays and lists

One dimensional arrays : lists, vectors,

Arrays can be composed of different types of values:
Morphology = [1, 0, -2, 5.27, 'blue', [4, 2, 4]]

Multidimensional arrays : lists of lists, i.e. 2 dimensionsional Matrices

 2 7 6
A = 9 5 1
 4 3 8

MyArray [2] = 5
Brackets refer to a specific position within the list

Variables as containers for other variables

Dictionary
associative array, hash, map : Container of multiple variables

list ↔ dictionary
sequence of ordered values ↔ collection of names/keys point to an associated value

Keys - Numbers, strings, other types of variables
- must be unique: one key points to one value, multiple keys can have the same

 value

TreeDiam={} ← create an empty dictionary with {}
TreeDiam['Kodiak'] = [68]
TreeDiam['Juneau'] = [85]

Values are searched by their keys and not by their position

Variables as containers for other variables

Converting between types
- In some languages, variable types must be specified
- Python assigns (once automatically) the type by the value encountered

- Other languages try to interprete the variable types specifically by background
 processes.

Different interpretations of values based on their types

add 5 to 123

String : '123' → 1235
Integer : 123 → 128

Variables in action

Operators and functions are used in programs to modify or calculate values

Mathematical operators

Addition +, substraction -, multiplication *, division /, power **, equal =, ...

Values of different types can be compatible, but must not
Float + integer but string with integer

Sometimes problems:

dividing 2 integers → new integer assigned → 5 / 2 = 2

Variables in action

Comparative and logical operators

Comparison of variables, functons that return a boolean value: True / False

→ Example, to test if one variable is greater than another, decision maker …

→ Are two entities the same or not, equality operator often written as ==, not =

→ In operator : x in A, returns true if value for x is contained in list A,
if A is a list of list, x must be a list, too

→ Other operator, and, or, not, …

order of operators:

→ Follow normal algebraic rules

→ Within those, they are ordered left to right

→ Specified by parenthesis

Variables in action

Functions

- Like little stand alone programs,

- Can be stored in external files, or defined locally in a program

- Functions accept variables, referred to as parameters

y = round(2.718) → y = 3

Flow control: Decisions with the 'if' statement

Conditional decision making

if
True

if
True

else

False False

Main program
statements

'if' statement 'if-else' statement

Conditional of
block commands

Continue main
program

A=5
if A<0 :

print 'Negative No'
else :

print 'Zero or positive No'

Flow control: Looping with 'for' and 'while'

Next item

while
True

False

Main program
statements

'for' loop 'while' loop

looping block

Continue main
program

for

No more
items?

for Num in range (10):
print Num * 10

Input and output
User interaction

Arguments = program options, specified in the shell

ls -a, ls *.txt

- Arguments are user input for programs that :
 gather all information → process it autonomously

- Some programs respond to user input while running (for example 'nano')

- Output sent to the screen is usually called 'print'

Input and output
Files

Two levels of operations to access data in a file
- gain access to content
- establish relationships between data in files and variables in the program

Parsing (when reading) ↔ packaging of data (when writing a file)

Files can also be used for controlling program behaviour

- store raw input and marching orders
- logbook, logfiles

Libraries and modules
Built-in tools, building blocks : basic functions, simple operators, bundled in modules

Comment statements
Comments are marked with certain characters, depending on the language
#, //, %

Objects
- Sort of ''super variable'' that contain several other variables within it
- Can contain also functions → then called methods

Dot notation:

MyBike.color ← Color of your bike
MyBike.tires ← properties of your tires

Objects

MyBike.color ← Color of your bike
MyBike.tires ← properties of your tires

MyBike.tires.pressure ← A nested property of your tires

Assignments of Methods (functions):

MyBike.steer(-4) ← Steer 4 degree to the left
MyBike.color('red') ← You can often set and read with the same notation
MyBike.pedals.pedal(100) ← with the pedals, pedal at a speed of 100

Sometimes more convenient to use objects instead of a separate function,

Example :

MyString='abc'
Print uppercase(MyString) or : print MyString.upper()

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

