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I. Property (T): Kazhdan’s result.

Definition. For a topological group G, by Rep(G)
we will denote the class of continuous unitary
representations of GG in Hilbert spaces, and by
Repo(G) the class of continuous unitary repre-
sentations of G without nonzero invariant vec-
tors. Let ) be a subset of GG.

(a) Let V € Rep(G). A nonzero vector v € V
will be called (Q,e)-invariant if

lqv —v|| < eljv]| for any q € Q.

(b) Let V € Repg(G). The Kazhdan constant
k(G,Q,V) is the infimum of the set

{e > 0:V contains an (Q,¢e)-invariant vector.}

(c) The Kazhdan constant x(G,Q) of G with
respect to Q is the infimum of the set
{k(G,Q,V)} where V runs over Repg(G).
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Definition. A topological group G is said to
have property (T) if x(G,Q) > 0 for some
compact subset Q of GG.

The property (T') has the following two conse-
quences for a locally compact group G:

(a) G is compactly generated (if G is discrete
G is finitely generated);

(b) G/[G,G]is compact (if G is discrete G/[G, G]
is finite).



Theorem 1. (D. Kazhdan 67, ....) The fol-
lowing holds

1. if G is locally compact group and [ is a
lattice in G, then G has property (T) if and
only if I has property (T);

2. If G is a simple Lie group of rank > 2 over
a local field, then G has property (T).

Corollary 2. A lattice in a simple Lie group of

rank > 2 over a local field is finitely generated
and FAD.



How to prove that a given group has (7)7

Definition. Let G be a discrete group and B
a subset of G. The pair (G,B) has relative
property (T') if for any € > 0 there are a finite
subset S of G and pu > 0 such that if V is any
unitary representation of G and v € V is (S, u)-
invariant, then v is (B,e)-invariant.

G has property (T) <— (G,G) has relative
property (T)

if x(G,B) >0 and (G, B) has relative property
(T), then G has property (T)

Our strategy to prove the property (7)) for a
group G-

Present G as G = (H1,...,H) and prove that
x(G,UH;) > 0 and (G,UH;) has relative prop-
erty (T).



Codistance

VE is the subspace of K-invariant vectors
Let G = (Hq,...,Hy) .

X = UH; is a Kazhdan subset of & if and only
if for every V € Repg(G), any 0 #v € V cannot
be arbitrarily close to each of the subspaces
v

If Kk = 2 it is equivalent to asserting that the an-
gle between the subspaces V1 and VH2 must
be bounded away from O.



Definition. Let V be a Hilbert space, and let
{U;}7—, be subspaces of V.. The quantity

lutg + - - + unl|? }
Ui = Sup Ui € UZ
P{Ui}) {n(||u1||2 + o ualP?)

will be called the codistance between the sub-
spaces {U;}i_1.

Consider the Hilbert space V™. Then p({U;}) is
the cosine of the angle between the subspaces
Uy XxUs X ... x Up and diag(V) = {(v,v,...,v) :
ve Vi

1/n < p(Uy,...,Un) <1

Definition. Let {H;}_, be subgroups of G that
generate G. The codistance between {H;} in
GG, denoted p({H;}), is defined to be the supre-
mum of the set

{p(VHL  vHRY Ve Repo(G)Y.

x(G,UH;) > 0 if and only if p(Hy,...,Hp) <1
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Let ™ = (V(IN),&(IN)) be a finite conected graph
without loops.

ife=(xz,y) € £E(IN), then also e = (y,x) € E(IN).

If e=(xz,y), we let e~ = z be the initial vertex
of e and by et = y the terminal vertex of e.

Let V be a Hilbert space and Q9(I",V) be the
Hilbert space of functions f : V(I') — V with
the scalar product

(fra) = >, (f(w),9(y) (1)
yeV(I)

and let QI(I", V) be the Hilbert space of func-
tions f: (") — V with the scalar product

Gy == 3 (£e), 9(e)). (2)

2 ecE(N)
Define the linear operator

d: Q0% v) — QY v) by (df)(e) = f(eT)—f(e).
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Then the adjoint operator d* : QI(I,v) —
QO(r, V) is given by formula

1 _
@H) = >, N (f(e) — f(e)).
y=ct
The symmetric operator A = d*d : QO , V) —
QO(r, V) is called the Laplacian of I and is
given by the formula

(AN = >, (fy)—fle))= > df(e).
—-+ —+

y=¢€ y=—¢€

The smallest positive eigenvalue of A is com-
monly denoted by A{(A) and called the spec-

tral gap of the graph I (clealry, it is indepen-
dent of the choice of V).



Definition. Let G be a group and I a finite
graph without loops. A decomposition of G
over [ is a choice of a vertex subgroup Gy, C GG
for every v € YV(I') and an edge subgroup Ge C
G for every e € £(I") such that

(a) The vertex subgroups {G, : v € V(I")} gen-
erate G,

(b) Ge = Ggand Ge € G_+ NG_- for any e €
E(M).

We will say that the decomposition of G over I
is regular if for each v € V(") the vertex group
GGy is generated by edge subgroups {Ge : et =

v}
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Theorem 3. Let T be a connected k-regular

graph and let G be a group with a given regular
decomposition over I'. Let

= max Ge: e =0).
b veV () ,0( © )
Let A\ be the Laplacian of ', and assume that
A (A)
2k

ThenU,cyGu Is a Kazhdan subset of G, and
moreover

p <

2(A1(A) — 2pk)
M(A)(1-p)

k(G,UGy) > \/
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Groups over triangles (J. Dymara and T.
Januszkiewicz)

(X1,X2)
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Corollary 4. Let G be a group generated by
X1,X2,X3. Assume that p(X;, X;) < % for all
pairs i,5. Then k(G,X1UX>UX3) > 0. In par-
ticular, if X1, X2, X3 are finite, G has property

(T).

Proof. In this situation k = 2 and A\ (A) = 3.

AM(A) 3
Hence ~5~2 = 3. ]
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Let R = <T> (T:{tO: 17t17"' 7td})
ELn(R) = ({Id+rE;j:r € R,1<i# j<n})

if n >3, ELy(R) = ({Id+tE;; it € T,1 < i #
j <n}).

If R=7Z[z1,...,24], then SL,(R) = EL,(R).
Corollary b. Let F be a finite field of order
greater than 4 and n > 3. Let R be free asso-

ciative algebra on ty,...,t.. Then G = ELn(R)
has property (T).
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Proof. For simplicity let us assume that n = 3.
We put A ={ag+ a1t1 + -+ apty : as € F'}
and let

1 00 1 00
X1={| 01 a ac A}, Xo={[ 0 1 0
0 01 a 0 1
l a O
a € A}, X3 = 010 a€c A}
0O 01

Then X1, Xo, X3 generate G. Moreover p(X;, X;) =

VIF]+1 . v -
ENGE (This is because < X;, X; > is a finite

group isomorphic to

1 a b
{lo1 c|: aceAbeAa?}
O 01
and we can use the basic representation theory
of finite groups in order to calculate p(X;, X;).)

L]
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(D)

The critical case p = =5;

For each v € V(I') we fix a normal subgroup
CG, of G, (called the core subgroup of G).

Let V € Rep(G). Then we can write

QL(r,v) = Wi @ Wo @ W3, where

Wy ={f e QY V): f(e) e VOet}.

Wy ={f € QY V): f(e) € (VEH) LAy et
Wz ={feQUI,V): fle) e (V9et)1}.

Let p, : QI(I, V) — W, be the projections.
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Theorem 6. Let G be a group with a cho-
sen regular decomposition over a connected k-
regular graph I, and choose a normal subgroup
CGy of Gy for each v € V(I'). Suppose that

(i) For each vertex v of I',

(ii) For each v € V(I"') and any representation
V' of the vertex group G, without CG,-
invariant vectors,

A(A)

Ve et =) < :
p( et =v)<—

(iii) There are constants A, B such that for any
representation V of G and for any function
g € QO(r,V) one has

lp2(dg)|1? < Allp1(dg)]I? + Bllpa(dg)]>.

Then UG, is a Kazhdan subset of (G.
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Definition. Let E be real vector space. A fi-
nite non-empty subset ® of E is called a root
system in E if

(a) & spans FE;

(b) & does not contain O;

(c) @ is closed under inversion, thatis, ifa € ®©
then —a € d.

The dimension of E is called the rank of &.

$ is called irreducible if it cannot be repre-
sented as a disjoint union of two non-empty
subsets, whose R-spans have trivial intersec-
tion.
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Definition. A root system & in a space E will
be called classical if E can be given the struc-
ture of a Euclidean space such that

(a) For any «, 8 € ® we have 2((6%65)) e 7,

_ 2(a,p)
(b) If a, B € ®, then o — L5 € @

Remark: Every irreducible classical root sys-
tem is isomorphic to one of the following:

Ap, Bn(n > 2),Cn(n > 3),BCp(n > 1), Dp(n >

4), Eg, E7, Eg, F4,G>. The only non-reduced sys-
tems on this list are the ones of type B(C),.
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Definition. Let ® be a root system and G a
group. A d-grading of G is a collection of sub-
groups {Xa}aeep Of G, called root subgroups
such that

(i) {Xa}ace generate G.

(i) For any a, 8 € &, with a € R85, we have
[Xa, Xg] C(Xy |y =aa+bB € P, a,b>1)

If {Xa}lacae is a collection of subgroups satis-
fying (ii) but not necessarily (i), we will sim-
ply say that {Xa}aea is @ ®-grading (without
specifying the group).

We want to show that some group G having -
grading {Xa}aea has property (7). Our strat-
egy is the following

I) Prove that k(G,Uy,epXa) > 0.

II) Prove the relative property (T') for the pair
(G7 UaECDXOé)'
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Graph of groups corresponding to ®-gradings

Definition. Let ® be a root system in a space
E. Let § = 3(®) denote the set of all linear
functionals f : E — R such that f(a) # 0 for
all a € P.

For f € §, the set & = {a € ®|f(a) > 0} is
called the Borel set of f. The sets of this form
will be called Borel subsets of ®. We will say
that two elements f, f’ € § are equivalent and
write f ~ f/ hi be = be/.

Let G be a group and {Xa}aeep a grading of
G. For any subset A of ® denote by X4 the
group generated by {X,: a € A}.
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Let ' be the following graph:

V() =3/~, &(0) ={(f,9) 1 ®y#F —Pg}.

We obtain a decomposition of G over [ if we
put

Gf = Xq)f, Ge — XCDfﬂCDg (6 — (fag))

Proposition 7. Let N = |V(I")|. Then

a)  is (N — 2)-regular graph and A\ (A) =
N — 2.

b) For every f e V() p(Ge: et = f) <1/2.

Thus, the condition (i) of Theorem 6 holds.
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Weyl graph of groups for a groups graded by
a root system of type A-.

23



Construction of the core subgroups

Definition. Let & be a root system. Two
Borel sets & and ®4 will be called

e co-maximal if an inclusion ®;, O &N Py
implies that &,; = CDf or &, = Py;

e [ he boundary of a Borel set <Df IS the set
By =J(®y\ ),
g

where @4 and & are co-maximal.

e [ he core of a Borel set CDf is the set

Cr=Pr\ By

Put CG; = Xcy = (Xg: g€ Cyp). (The group
CGy is normal in Gy. )
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Definition. Let & be a root system in E. ® is
called regular if for each root a € ® there are
B,v € &\ Ra, such that

Ra + RS = RE + Ry

Definition. A grading {Xa},ce Will be called
strong if for any functional f € F(®) and any
root v € Cy we have

X7§<X5|Bed>f andBQIRw).

Theorem 8. Assume that ® is regular and the
grading {Xa}taeew Of G is strong. Then the
conditions (ii) and (iii) of Theorem 6 hold and
so k(G,UaXa) > 0.
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Corollary 9. Let n > 2 and Anp = {e; —¢ej 1 1 <
i %= j <n4+1} c R*L Let R be a finitely
generated ring with 1 and G = EL,41(R) the
elementary linear group. Put

Then k(G;UXe;—¢;) > 0.

Corollary 10. The group G = EL,41(R) has
property (T') for n > 2.

Proof. The relative property (T') for the pair
(G, UXeZ-—ej) was proved by M. Kassabov (2007).
[ ]

Theorem 11. Let R be a finitely generated
commutaive ring with 1 and & a classical root
system of rank > 2. Then St (R) has property

(T).
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Also we have proved analogous results for twisted
groups. Here, for example the root system
which appears in the case of St2F4(R).
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How to give a good estimation for the
Kazhdan constant?

For example, SLy,(Z) is a lattice in SL,(R),
whence SLy(Z) has property (T') if n > 3.

What is x(SLn(Z),S) for a natural generating
set S (for example when S = {Id + Ei; 0 1<

i # j <n})?
Kazhdan's proof is not effective

Burger, Shalom, Kassabov

1
K/Sn , — —
(SLa(Z), 5) o(wJ
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Definition. Let ¢ be a root system in a space
V = R®d. A reduction of ® is a surjective linear
map n: V — V/ where V' is another non-trivial
real vector space. The set &' = n(®) \ {0} is
called the reduced root system. We will also
say that n is a reduction of ® to ®’ and sym-
bolically write n: ® — @',

Lemma 12. Let & be a root system, n a re-
duction of ®, and ®' the reduced root system.
Let {Xa}aep be a ®-grading. For any o’ € &'
put

Y, = (Xa | n(a) = d).

Then {Y}ecq is a ®'-grading, which will be
called the induced grading.
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A reduction n : ® — &’ enables us to replace
a grading of a given group G by the *“large”
root system & by the induced grading by the
“small” root system &’/ which may be easier to
analyze.

Proposition 13. Let ® be a root system, n be
a 2-good reduction of ®, and ®' = n(®) \ {0}
the reduced root system. Let {Xa}ocp be a 2-
strong grading of a group G. Then the induced
grading {Y,}.ce’ IS @ strong grading of G.

Proposition 14. Every irreducible classical root
system of rank > 2 admits a 2-good reduction
to an irreducible classical root system of rank
2.
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Theorem 15. Let & be a reduced irreducible
classical root system of rank at least 2, R
a finitely generated commutative ring with 1
generated by T = {1 = tg,t1,...,ty} and X the
standard set of generators of Sty(R). Then
(St (R), ) >

(
0( 1 ) ® = An, Bn(n > 3), Dy,
O (%) b = E67 E77 E87 F4
<
(533) ® = B2,G2
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