Property (T) for groups graded by root systems.

Based on

1. M. Ershov, A. Jaikin-Zapirain, Property (T) for noncommutative universal lattices, Inventiones Mathematicae 179 (2010), 303–347.

2. M. Ershov, A. Jaikin-Zapirain, M. Kassabov, Property (T) for groups graded by root systems, in preparation.

I. Property (T): Kazhdan's result.

Definition. For a topological group G, by $\mathfrak{Rep}(G)$ we will denote the class of continuous unitary representations of G in Hilbert spaces, and by $\mathfrak{Rep}_0(G)$ the class of continuous unitary representations of G without nonzero invariant vectors. Let Q be a subset of G.

(a) Let $V \in \mathfrak{Rep}(G)$. A nonzero vector $v \in V$ will be called (Q, ε) -invariant if

 $||qv - v|| \le \varepsilon ||v||$ for any $q \in Q$.

- (b) Let $V \in \mathfrak{Rep}_0(G)$. The Kazhdan constant $\kappa(G, Q, V)$ is the infimum of the set $\{\varepsilon > 0 : V \text{ contains an } (Q, \varepsilon) \text{-invariant vector.} \}$
- (c) The Kazhdan constant $\kappa(G,Q)$ of G with respect to Q is the infimum of the set $\{\kappa(G,Q,V)\}$ where V runs over $\mathfrak{Rep}_0(G)$.

Definition. A topological group G is said to have property (T) if $\kappa(G,Q) > 0$ for some compact subset Q of G.

The property (T) has the following two consequences for a locally compact group G:

- (a) G is compactly generated (if G is discrete G is finitely generated);
- (b) $G/\overline{[G,G]}$ is compact (if G is discrete G/[G,G] is finite).

Theorem 1. (*D. Kazhdan 67,*) The following holds

- 1. if G is locally compact group and Γ is a lattice in G, then G has property (T) if and only if Γ has property (T);
- 2. if G is a simple Lie group of rank \geq 2 over a local field, then G has property (T).

Corollary 2. A lattice in a simple Lie group of rank ≥ 2 over a local field is finitely generated and FAb.

How to prove that a given group has (T)?

Definition. Let G be a discrete group and B a subset of G. The pair (G, B) has relative property (T) if for any $\varepsilon > 0$ there are a finite subset S of G and $\mu > 0$ such that if V is any unitary representation of G and $v \in V$ is (S, μ) invariant, then v is (B, ε) -invariant.

G has property $(T) \iff (G,G)$ has relative property (T)

if $\kappa(G, B) > 0$ and (G, B) has relative property (T), then G has property (T)

Our strategy to prove the property (T) for a group G:

Present G as $G = \langle H_1, \ldots, H_k \rangle$ and prove that $\kappa(G, \cup H_i) > 0$ and $(G, \cup H_i)$ has relative property (T).

Codistance

 ${\cal V}^K$ is the subspace of K-invariant vectors

Let $G = \langle H_1, \ldots, H_k \rangle$.

 $X = \bigcup H_i$ is a Kazhdan subset of G if and only if for every $V \in \mathfrak{Rep}_0(G)$, any $0 \neq v \in V$ cannot be arbitrarily close to each of the subspaces V^{H_i}

If k = 2 it is equivalent to asserting that the angle between the subspaces V^{H_1} and V^{H_2} must be bounded away from 0.

Definition. Let V be a Hilbert space, and let $\{U_i\}_{i=1}^n$ be subspaces of V. The quantity

$$\rho(\{U_i\}) = \sup\left\{\frac{\|u_1 + \dots + u_n\|^2}{n(\|u_1\|^2 + \dots + \|u_n\|^2)} : u_i \in U_i\right\}$$

will be called the codistance between the subspaces $\{U_i\}_{i=1}^n$.

Consider the Hilbert space V^n . Then $\rho(\{U_i\})$ is the cosine of the angle between the subspaces $U_1 \times U_2 \times \ldots \times U_n$ and $diag(V) = \{(v, v, \ldots, v) : v \in V\}$.

 $1/n \leq \rho(U_1,\ldots,U_n) \leq 1$

Definition. Let $\{H_i\}_{i=1}^n$ be subgroups of G that generate G. The codistance between $\{H_i\}$ in G, denoted $\rho(\{H_i\})$, is defined to be the supremum of the set

 $\{\rho(V^{H_1},\ldots,V^{H_n}): V \in \mathfrak{Rep}_0(G)\}.$

 $\kappa(G, \cup H_i) > 0$ if and only if $\rho(H_1, \dots, H_n) < 1$

Let $\Gamma = (\mathcal{V}(\Gamma), \mathcal{E}(\Gamma))$ be a finite conected graph without loops.

if
$$e = (x, y) \in \mathcal{E}(\Gamma)$$
, then also $\overline{e} = (y, x) \in \mathcal{E}(\Gamma)$.

If e = (x, y), we let $e^- = x$ be the initial vertex of e and by $e^+ = y$ the terminal vertex of e.

Let V be a Hilbert space and $\Omega^0(\Gamma, V)$ be the Hilbert space of functions $f : \mathcal{V}(\Gamma) \to V$ with the scalar product

$$\langle f,g\rangle = \sum_{y\in\mathcal{V}(\Gamma)} \langle f(y),g(y)\rangle$$
 (1)

and let $\Omega^1(\Gamma, V)$ be the Hilbert space of functions $f : \mathcal{E}(\Gamma) \to V$ with the scalar product

$$\langle f,g\rangle = \frac{1}{2} \sum_{e \in \mathcal{E}(\Gamma)} \langle f(e),g(e)\rangle.$$
 (2)

Define the linear operator

$$d: \Omega^0(\Gamma, V) \to \Omega^1(\Gamma, V)$$
 by $(df)(e) = f(e^+) - f(e^-).$

Then the adjoint operator d^* : $\Omega^1(\Gamma, V) \rightarrow \Omega^0(\Gamma, V)$ is given by formula

$$(d^*f)(y) = \sum_{y=e^+} \frac{1}{2} (f(e) - f(\bar{e})).$$

The symmetric operator $\Delta = d^*d : \Omega^0(\Gamma, V) \rightarrow \Omega^0(\Gamma, V)$ is called the *Laplacian of* Γ and is given by the formula

$$(\Delta f)(y) = \sum_{y=e^+} (f(y) - f(e^-)) = \sum_{y=e^+} df(e).$$

The smallest positive eigenvalue of Δ is commonly denoted by $\lambda_1(\Delta)$ and called the *spec*tral gap of the graph Γ (clealry, it is independent of the choice of V). **Definition.** Let G be a group and Γ a finite graph without loops. A *decomposition of* G*over* Γ is a choice of a vertex subgroup $G_{\nu} \subseteq G$ for every $\nu \in \mathcal{V}(\Gamma)$ and an edge subgroup $G_e \subseteq$ G for every $e \in \mathcal{E}(\Gamma)$ such that

- (a) The vertex subgroups $\{G_{\nu} : \nu \in \mathcal{V}(\Gamma)\}$ generate G;
- (b) $G_e = G_{\overline{e}}$ and $G_e \subseteq G_{e^+} \cap G_{e^-}$ for any $e \in \mathcal{E}(\Gamma)$.

We will say that the decomposition of G over Γ is *regular* if for each $\nu \in \mathcal{V}(\Gamma)$ the vertex group G_{ν} is generated by edge subgroups $\{G_e : e^+ = \nu\}$ **Theorem 3.** Let Γ be a connected k-regular graph and let G be a group with a given regular decomposition over Γ . Let

$$p = \max_{\nu \in \mathcal{V}(\Gamma)} \rho(G_e : e^+ = \nu).$$

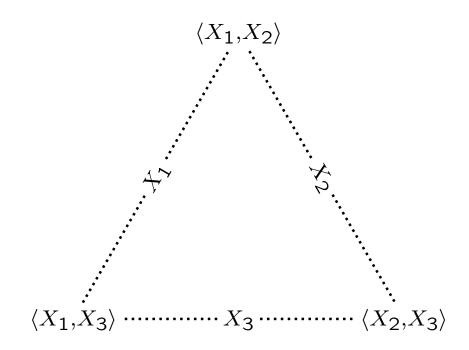
Let Δ be the Laplacian of Γ , and assume that

$$p < \frac{\lambda_1(\Delta)}{2k}$$

Then $\cup_{\nu \in \mathcal{V}(\Gamma)} G_{\nu}$ is a Kazhdan subset of G, and moreover

$$\kappa(G, \cup G_{\nu}) \ge \sqrt{\frac{2(\lambda_1(\Delta) - 2pk)}{\lambda_1(\Delta)(1-p)}}$$

Groups over triangles (J. Dymara and T. Januszkiewicz)



Corollary 4. Let G be a group generated by X_1, X_2, X_3 . Assume that $\rho(X_i, X_j) < \frac{3}{4}$ for all pairs i, j. Then $\kappa(G, X_1 \cup X_2 \cup X_3) > 0$. In particular, if X_1, X_2, X_3 are finite, G has property (T).

Proof. In this situation k = 2 and $\lambda_1(\Delta) = 3$. Hence $\frac{\lambda_1(\Delta)}{2k} = \frac{3}{4}$.

12

Let $R = \langle T \rangle$ $(T = \{t_0 = 1, t_1, \cdots, t_d\})$ $EL_n(R) = \langle \{Id + rE_{ij} : r \in R, 1 \le i \ne j \le n\} \rangle$ if $n \ge 3$, $EL_n(R) = \langle \{Id \pm tE_{ij} : t \in T, 1 \le i \ne j \le n\} \rangle$.

If $R = \mathbb{Z}[x_1, \ldots, x_d]$, then $SL_n(R) = EL_n(R)$.

Corollary 5. Let F be a finite field of order greater than 4 and $n \ge 3$. Let R be free associative algebra on t_1, \ldots, t_k . Then $G = EL_n(R)$ has property (T). *Proof.* For simplicity let us assume that n = 3. We put $A = \{\alpha_0 + \alpha_1 t_1 + \dots + \alpha_k t_k : \alpha_s \in F\}$ and let

$$X_{1} = \{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} : a \in A \}, X_{2} = \{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & 0 & 1 \end{pmatrix} : a \in A \}, X_{3} = \{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a \in A \}.$$

Then X_1, X_2, X_3 generate G. Moreover $\rho(X_i, X_j) = \frac{\sqrt{|F|}+1}{2\sqrt{|F|}}$. (This is because $\langle X_i, X_j \rangle$ is a finite group isomorphic to

$$\left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) : a, c \in A, b \in A^2 \right\}$$

and we can use the basic representation theory of finite groups in order to calculate $\rho(X_i, X_j)$.

The critical case $p = \frac{\lambda_1(\Delta)}{2k}$.

For each $\nu \in \mathcal{V}(\Gamma)$ we fix a normal subgroup CG_{ν} of G_{ν} (called the *core subgroup* of G_{ν}).

Let $V \in \mathfrak{Rep}(G)$. Then we can write

 $\Omega^1(\Gamma, V) = W_1 \oplus W_2 \oplus W_3$, where

 $W_1 = \{ f \in \Omega^1(\Gamma, V) : f(e) \in V^{G_{e^+}} \}.$

 $W_2 = \{ f \in \Omega^1(\Gamma, V) : f(e) \in (V^{G_e^+})^{\perp} \cap V^{CG_e^+} \}.$

 $W_3 = \{ f \in \Omega^1(\Gamma, V) : f(e) \in (V^{CG_e^+})^{\perp} \}.$

Let $\rho_i : \Omega^1(\Gamma, V) \to W_i$ be the projections.

Theorem 6. Let G be a group with a chosen regular decomposition over a connected kregular graph Γ , and choose a normal subgroup CG_{ν} of G_{ν} for each $\nu \in \mathcal{V}(\Gamma)$. Suppose that

(i) For each vertex ν of Γ ,

$$\rho(G_e: e^+ = \nu) \leq \frac{\lambda_1(\Delta)}{2k}.$$

(ii) For each $\nu \in \mathcal{V}(\Gamma)$ and any representation V of the vertex group G_{ν} without CG_{ν} -invariant vectors,

$$\rho(V^{G_e}: e^+ = \nu) < \frac{\lambda_1(\Delta)}{2k}.$$

(iii) There are constants A, B such that for any representation V of G and for any function $g \in \Omega^0(\Gamma, V)$ one has

$$\|\rho_2(dg)\|^2 \le A \|\rho_1(dg)\|^2 + B \|\rho_3(dg)\|^2.$$

Then $\cup G_{\nu}$ is a Kazhdan subset of G.

Definition. Let *E* be real vector space. A finite non-empty subset Φ of *E* is called a *root* system in *E* if

- (a) Φ spans E;
- (b) Φ does not contain 0;
- (c) Φ is closed under inversion, that is, if $\alpha \in \Phi$ then $-\alpha \in \Phi$.

The dimension of E is called the rank of Φ .

 Φ is called *irreducible* if it cannot be represented as a disjoint union of two non-empty subsets, whose \mathbb{R} -spans have trivial intersection.

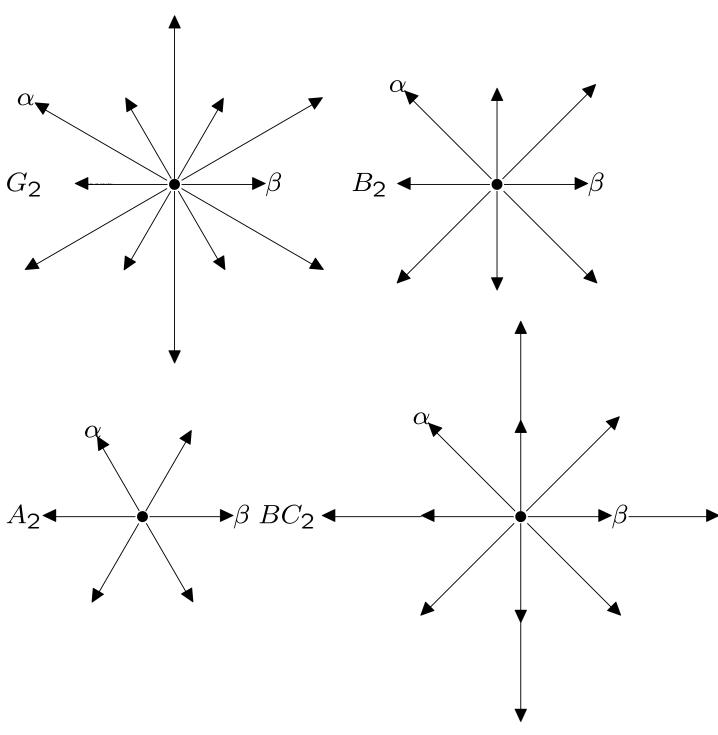
Definition. A root system Φ in a space E will be called *classical* if E can be given the structure of a Euclidean space such that

(a) For any $\alpha, \beta \in \Phi$ we have $\frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z}$;

(b) If $\alpha, \beta \in \Phi$, then $\alpha - \frac{2(\alpha, \beta)}{(\beta, \beta)}\beta \in \Phi$

Remark: Every irreducible classical root system is isomorphic to one of the following:

 $A_n, B_n (n \ge 2), C_n (n \ge 3), BC_n (n \ge 1), D_n (n \ge 4), E_6, E_7, E_8, F_4, G_2$. The only non-reduced systems on this list are the ones of type BC_n .



Classical irreducible root systems of rank 2.

Definition. Let Φ be a root system and G a group. A Φ -grading of G is a collection of subgroups $\{X_{\alpha}\}_{\alpha\in\Phi}$ of G, called root subgroups such that

(i) $\{X_{\alpha}\}_{\alpha \in \Phi}$ generate G.

(ii) For any $\alpha, \beta \in \Phi$, with $\alpha \notin \mathbb{R}_{<0}\beta$, we have

 $[X_{\alpha}, X_{\beta}] \subseteq \langle X_{\gamma} \mid \gamma = a\alpha + b\beta \in \Phi, \ a, b \ge 1 \rangle$

If $\{X_{\alpha}\}_{\alpha\in\Phi}$ is a collection of subgroups satisfying (ii) but not necessarily (i), we will simply say that $\{X_{\alpha}\}_{\alpha\in\Phi}$ is a Φ -grading (without specifying the group).

We want to show that some group G having Φ grading $\{X_{\alpha}\}_{\alpha\in\Phi}$ has property (T). Our strategy is the following

I) Prove that $\kappa(G, \bigcup_{\alpha \in \Phi} X_{\alpha}) > 0$.

II) Prove the relative property (T) for the pair $(G, \cup_{\alpha \in \Phi} X_{\alpha})$.

Graph of groups corresponding to Φ -gradings

Definition. Let Φ be a root system in a space *E*. Let $\mathfrak{F} = \mathfrak{F}(\Phi)$ denote the set of all linear functionals $f : E \to \mathbb{R}$ such that $f(\alpha) \neq 0$ for all $\alpha \in \Phi$.

For $f \in \mathfrak{F}$, the set $\Phi_f = \{\alpha \in \Phi \mid f(\alpha) > 0\}$ is called the *Borel set of* f. The sets of this form will be called *Borel subsets of* Φ . We will say that two elements $f, f' \in \mathfrak{F}$ are equivalent and write $f \sim f'$ if $\Phi_f = \Phi_{f'}$.

Let G be a group and $\{X_{\alpha}\}_{\alpha\in\Phi}$ a grading of G. For any subset A of Φ denote by X_A the group generated by $\{X_a : a \in A\}$.

Let Γ be the following graph:

$$\mathcal{V}(\Gamma) = \mathfrak{F}/\sim, \ \mathcal{E}(\Gamma) = \{(f,g) : \ \Phi_f \neq -\Phi_g\}.$$

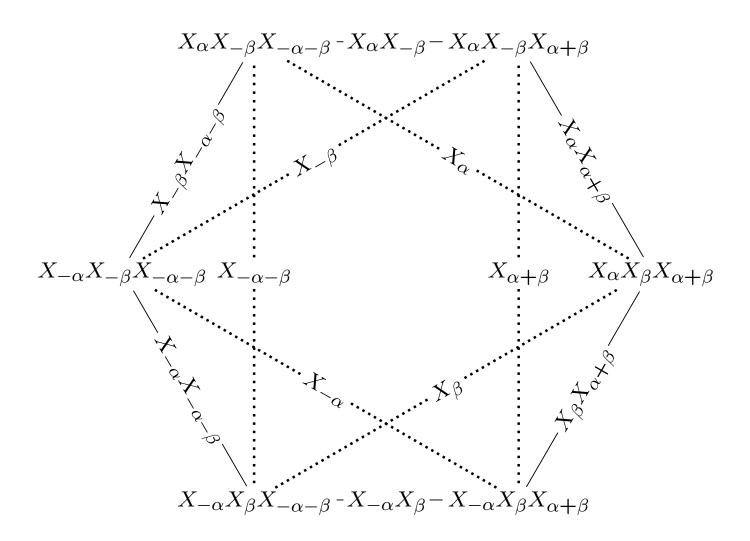
We obtain a decomposition of G over Γ if we put

$$G_f = X_{\Phi_f}, \ G_e = X_{\Phi_f \cap \Phi_g} \ (e = (f,g)).$$

Proposition 7. Let $N = |V(\Gamma)|$. Then

a) Γ is (N - 2)-regular graph and $\lambda_1(\Delta) = N - 2$.

b) For every $f \in \mathcal{V}(\Gamma) \ \rho(G_e : e^+ = f) \le 1/2$. Thus, the condition (i) of Theorem 6 holds.



Weyl graph of groups for a groups graded by a root system of type A_2 .

Construction of the core subgroups

Definition. Let Φ be a root system. Two Borel sets Φ_f and Φ_g will be called

- co-maximal if an inclusion $\Phi_h \supset \Phi_f \cap \Phi_g$ implies that $\Phi_h = \Phi_f$ or $\Phi_h = \Phi_g$;
- The boundary of a Borel set Φ_f is the set

$$B_f = \bigcup_g (\Phi_f \setminus \Phi_g),$$

where Φ_g and Φ_f are co-maximal.

• The core of a Borel set Φ_f is the set

$$C_f = \Phi_f \setminus B_f$$

Put $CG_f=X_{C_f}=\langle X_g:\ g\in C_f\rangle.$ (The group CG_f is normal in $G_f.$)

24

Definition. Let Φ be a root system in *E*. Φ is called *regular* if for each root $\alpha \in \Phi$ there are $\beta, \gamma \in \Phi \setminus \mathbb{R}\alpha$, such that

$$\mathbb{R}\alpha + \mathbb{R}\beta = \mathbb{R}\beta + \mathbb{R}\gamma$$

Definition. A grading $\{X_{\alpha}\}_{\alpha \in \Phi}$ will be called *strong* if for any functional $f \in \mathfrak{F}(\Phi)$ and any root $\gamma \in C_f$ we have

$$X_{\gamma} \subseteq \langle X_{\beta} \mid \beta \in \Phi_f \text{ and } \beta \notin \mathbb{R}\gamma \rangle.$$

Theorem 8. Assume that Φ is regular and the grading $\{X_{\alpha}\}_{\alpha\in\Phi}$ of G is strong. Then the conditions (ii) and (iii) of Theorem 6 hold and so $\kappa(G, \bigcup_{\alpha} X_{\alpha}) > 0$.

Corollary 9. Let $n \ge 2$ and $A_n = \{e_i - e_j : 1 \le i \ne j \le n + 1\} \subset \mathbb{R}^{n+1}$. Let R be a finitely generated ring with 1 and $G = EL_{n+1}(R)$ the elementary linear group. Put

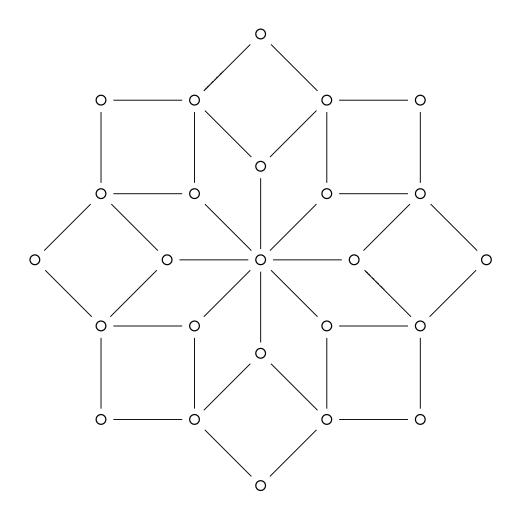
 $X_{e_i - e_j} = \{ Id + rE_{ij} : r \in R \}.$

Then $\kappa(G; \cup X_{e_i-e_j}) > 0.$

Corollary 10. The group $G = EL_{n+1}(R)$ has property (*T*) for $n \ge 2$.

Proof. The relative property (T) for the pair $(G; \cup X_{e_i-e_j})$ was proved by M. Kassabov (2007).

Theorem 11. Let R be a finitely generated commutaive ring with 1 and Φ a classical root system of rank ≥ 2 . Then $St_{\Phi}(R)$ has property (T).



Also we have proved analogous results for twisted groups. Here, for example the root system which appears in the case of $St_{2}F_{4}(R)$.

How to give a good estimation for the Kazhdan constant?

For example, $SL_n(\mathbb{Z})$ is a lattice in $SL_n(\mathbb{R})$, whence $SL_n(\mathbb{Z})$ has property (T) if $n \geq 3$.

What is $\kappa(SL_n(\mathbb{Z}), S)$ for a natural generating set S (for example when $S = \{Id \pm E_{ij} : 1 \leq i \neq j \leq n\}$)?

Kazhdan's proof is not effective

Burger, Shalom, Kassabov

$$\kappa(SL_n(\mathbb{Z}), S) = O\left(\frac{1}{\sqrt{n}}\right)$$

Definition. Let Φ be a root system in a space $V = \mathbb{R}\Phi$. A reduction of Φ is a surjective linear map $\eta : V \to V'$ where V' is another non-trivial real vector space. The set $\Phi' = \eta(\Phi) \setminus \{0\}$ is called the *reduced root system*. We will also say that η is a *reduction of* Φ *to* Φ' and symbolically write $\eta : \Phi \to \Phi'$.

Lemma 12. Let Φ be a root system, η a reduction of Φ , and Φ' the reduced root system. Let $\{X_{\alpha}\}_{\alpha\in\Phi}$ be a Φ -grading. For any $\alpha'\in\Phi'$ put

$$Y_{\alpha'} = \langle X_{\alpha} \mid \eta(\alpha) = \alpha' \rangle.$$

Then $\{Y_{\alpha'}\}_{\alpha'\in\Phi'}$ is a Φ' -grading, which will be called the induced grading.

A reduction $\eta : \Phi \to \Phi'$ enables us to replace a grading of a given group G by the "large" root system Φ by the induced grading by the "small" root system Φ' which may be easier to analyze.

Proposition 13. Let Φ be a root system, η be a 2-good reduction of Φ , and $\Phi' = \eta(\Phi) \setminus \{0\}$ the reduced root system. Let $\{X_{\alpha}\}_{\alpha \in \Phi}$ be a 2strong grading of a group G. Then the induced grading $\{Y_{\alpha'}\}_{\alpha' \in \Phi'}$ is a strong grading of G.

Proposition 14. Every irreducible classical root system of rank > 2 admits a 2-good reduction to an irreducible classical root system of rank 2. **Theorem 15.** Let Φ be a reduced irreducible classical root system of rank at least 2, Ra finitely generated commutative ring with 1 generated by $T = \{1 = t_0, t_1, \dots, t_d\}$ and Σ the standard set of generators of $St_{\Phi}(R)$. Then $\kappa(St_{\Phi}(R), \Sigma) \geq$

$$\begin{cases} O\left(\frac{1}{\sqrt{n+d}}\right) & \Phi = A_n, B_n (n \ge 3), D_n \\ O\left(\frac{1}{\sqrt{d}}\right) & \Phi = E_6, E_7, E_8, F_4 \\ O\left(\frac{1}{2^{d/2}}\right) & \Phi = B_2, G_2 \\ O\left(\frac{1}{\sqrt{n+2^d}}\right) & \Phi = C_n \end{cases}$$