Groups with rank in [1, 2]

Sylvain Barré

Laboratoire de Mathématiques et Applications des Mathématiques Université de Bretagne Sud (Vannes) sylvain.barre@univ-ubs.fr

june 2010

The rank between 1 and 2

2 Some examples of ranks and groups

- Various ranks
- Some examples of groups
- An exercise : compute the rank...
- Is it possible the complete as a building?
- 3 How many flats are there?
 - No flats
 - Isolated flats
 - mesoscopic rank
 - Are there some **Z**² in the group?
- Property T or Haagerup property?
 - Missing chamber buildings and property T
 - The Haagerup property and isolated flats.

This is a joint work with Mikaël Pichot (Tokyo). Let L be a locally finite metric graph, denote by S the set of singular vertices of L (where we call *singular* a vertex of valency at least 3) and let

$$\Phi_L = \{ \alpha : [0, \pi] \hookrightarrow L, \ \alpha(0) \in S \}$$

be the set of paths of length π in L starting from a singular vertex, where two paths are considered distinct if they have distinct images in L.

We sometimes (improperly) refer to Φ_L as the *root system* of *L*, and to its elements as *roots*.

For a vertex $v \in S$ denote by q_v its *order* in L, that is, $q_v = \operatorname{val}_L(v) - 1$ where val_L is the valency. For $\alpha \in \Phi_L$ we write $q_\alpha = q_{\alpha(0)}$.

Definition

We call *rank* of an element $\alpha \in \Phi_L$ the number

$$\operatorname{rk}(\alpha) = 1 + \frac{N(\alpha)}{q_{\alpha}}$$

where $N(\alpha)$ is the number of path of length π in L distinct from α whose extremity coincide with that of α . Formally :

$$N(\alpha) = |\{\beta \in \Phi_L \mid \alpha \neq \beta, \alpha(0) = \beta(0), \alpha(\pi) = \beta(\pi)\}|.$$

Definition

Let X be as above and assume that $S(X, \Gamma)$ (set of orbits of singular verticies) is finite but non empty. We define the *local rank* of (X, Γ) to be the average

$$\operatorname{rk}(X,\Gamma) = \frac{1}{|S(X,\Gamma)|} \sum_{x \in S(X,\Gamma)} \operatorname{rk}(L_x).$$

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building?

Proposition

Let G be a spherical A_2 building of order q with one missing chamber. Then

$$\operatorname{rk}(G) = 2 - \frac{2}{(q+1)(q^2+q+1)-3}$$

for $q \geq 3$, while

$$\operatorname{rk}(G) = 2 - \frac{1}{8} = 1.875$$

if q = 2.

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building?

It is also instructive to examine the rank of this six spherical buildings :

Proposition

The rank of spherical A_2 buildings of order 2 with three chambers missing is given in the following table :

	G_1	G ₂	G ₃	G ₄	G_5	G_6	
$\operatorname{rk}(G_i) =$	$\frac{18}{11}$	$\frac{13}{8}$	<u>105</u> 64	$\frac{49}{31}$	$\frac{3}{2}$	$\frac{3}{2}$	
$\mathrm{rk}(G_i) \approx$	1.636	1.625	1.640	1.58	1.5	1.5	

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building?

This can be proved by a direct (but tedious) computation. In fact we have the following classification of roots :

${\sf Roots} \setminus {\sf Buildings}$	G1	G ₂	G ₃	G4	G_5	G_6
rank 1	6	8	6	8	0	6
rank 3/2	36	32	34	36	60	48
rank 2	24	24	24	18	0	6
Aut	6	2	2	2	12	6

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building?

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building ?

Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a building ?

The rank between 1 and 2 Some examples of ranks and groups How many flats are there? Property T or Haagerup property? Various ranks Some examples of groups An exercise : compute the rank... Is it possible the complete as a b

Take the Fano graph without two edges (you have 2 possibilities for that) and compute the rank of graphs obtained.

Is it possible the complete as a building?

The extension invariant of the complex (X, Γ) described below is given by

Consider the complex \bar{V} defined by :

No flats Isolated flats mesoscopic rank Are there some Z² in the group?

This complex is hyperbolic : (building with one missing chamber)

No flats Isolated flats mesoscopic rank Are there some Z² in the group?

Theorem

There exist two Euclidean buildings (X_0, Γ_0) and (X_1, Γ_1) of dimension 2 such that :

- both (X_0, Γ_0) and (X_1, Γ_1) have exactly one chamber missing;
- both complexes X_i are hyperbolic, Γ_i acts freely on X_i transitively on vertices;
- all links in X₀ and X₁ are isomorphic to a same graph G₆, which is a spherical building with 3 chambers missing;
- there is a unique extension $(X_i, \Gamma_i) \rightsquigarrow (X'_i, \Gamma'_i)$ of (X_i, Γ_i) into a Euclidean building of type \tilde{A}_2 , where the building X'_i is with a free action of a countable group Γ'_i which is transitive on vertices;
- the buildings X'_0 and X'_1 are not isometric.

No flats Isolated flats mesoscopic rank Are there some Z² in the group?

In this case, we always have some Z^2 in such a group.

No flats Isolated flats mesoscopic rank Are there some ${\rm Z}^2$ in the group ?

If flats are not isolated, then there are some banchings... If a complex is not a building, but has a double system of bifurcation then it is mesoscopic. For example, B_4/Z is a mesoscopic group.

No flats Isolated flats $\begin{array}{l} \mbox{mesoscopic rank} \\ \mbox{Are there some Z^2 in the group ?} \end{array}$

No flats Isolated flats mesoscopic rank Are there some Z² in the group?

We can not answer in general, but we can give a positive answer for a class of random groups in a lattice model of triangle buildings : model of few chambers missing. [We use Cartwright-Steger lattices] All examples with flats that we have computed, contain Z^2 ...

Missing chamber buildings and property T The Haagerup property and isolated flats.

Proposition

Let G be a spherical building of type A_2 and order q with a single chamber missing. Then

$$\lambda_1(G) = 1 - rac{\sqrt{q+1/4} + 1/2}{q+1}.$$

In particular, $\lambda_1(G) > 1/2$ whenever $q \ge 5$.

Use the local criterion of Zuk for concluding.

Missing chamber buildings and property T The Haagerup property and isolated flats.

Missing chamber buildings and property T The Haagerup property and isolated flats.

Missing chamber buildings and property T The Haagerup property and isolated flats.

$\mathsf{Exercise}$: Calculate the rank of this group. Property T, Haagerup ? Mesoscopic rank ?