
PhD thesis

submitted by

Michaël Ulrich,

born on the 19th january 1988,

in fulfillment of the requirements
for the degrees of

Docteur de Mathématiques de l’Université de
Franche-Comté – Besançon

and
doctor rerum naturalium (Dr. rer. nat.)

an der Mathematisch-Naturwissenschaftlichen Fakultät
der

Ernst-Moritz-Arndt Universität Greifswald

Investigating noncommutative
structures: quantum groups and

dual groups in the context of
quantum probability



2

Defended on the .

Dean (Ernst-Moritz-Arndt Universität): Prof. Dr. Klaus Fesser

First adviser: Prof. Dr. Uwe Franz

Second adviser: Prof. Dr. Michael Schürmann

First referee:

Second referee:

This PhD thesis has been submitted on the



I dedicate this work to my fiancée

Ornella Bicchierri



Contents

Introduction i

0.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

0.2 Zussamenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

0.3 Résumé des résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

0.4 Convention, notations and sources . . . . . . . . . . . . . . . . . . . . . . . . . . vi

I Entering the noncommutative world 1

1 Noncommutative Mathematics 2

1.1 Philosophy of noncommutative Mathematics . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tools that are necessary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Operations between algebras . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Bialgebras and Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Quantum groups and Dual groups 7

2.1 From Classical Groups to quantum groups . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Compact quantum group: definition . . . . . . . . . . . . . . . . . . . . . 7

2.2 Dual Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Quantum Probability 12

3.1 From Classical Probability to Quantum Probability . . . . . . . . . . . . . . . . . 12

3.2 Different notions of independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Free cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Lévy processes on Lie groups in classical Probability . . . . . . . . . . . . 17

3.4.2 Noncommutative Lévy processes . . . . . . . . . . . . . . . . . . . . . . . 19

4



CONTENTS 5

II Hypercontractivity 23

4 Hypercontractivity on the Orthogonal and Permutation quantum groups 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Compact quantum groups and heat semigroups . . . . . . . . . . . . . . . . . . . 25

4.2.1 Markov semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Heat semigroup on the free orthogonal quantum group . . . . . . . . . . . 25

4.2.3 Heat semigroups on the Free Permutation quantum group . . . . . . . . . 27

4.3 Ultracontractivity and hypercontractivity . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Ultracontractivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Special cases O+
2 and S+

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.3 Hypercontractivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Further properties of the semigroups . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Spectral gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 Logarithmic Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . 33

III Investigating Dual Groups 37

5 Convergence of the (classical) Brownian motion on U(nd) 38

5.1 Biane’s result about the Brownian motion on the Unitary group . . . . . . . . . 38

5.2 The main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Convergence of the marginals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 A system of differential equations for the Brownian motion on U(nd) . . . 44

5.3.3 A system of differential equations for the free stochastic process . . . . . . 46

5.4 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.2 A system of differential equations for the Brownian motion on U(nd) . . . 48

5.4.3 A system of differential equations for the free stochastic process . . . . . . 50

5.4.4 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Some examples of calculations and gaussianity . . . . . . . . . . . . . . . . . . . 52

5.5.1 The first moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.2 The second moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.3 Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



6 CONTENTS

6 Free Lévy processes on the unitary dual group 56

6.1 Free Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Free Lévy processes as limit of random matrices . . . . . . . . . . . . . . . . . . . 57

6.3 Generator and Schürmann triple . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Proof of Theorem 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 An example: the free unitary Brownian motion . . . . . . . . . . . . . . . . . . . 67

7 Haar states and Haar traces on dual groups 69

7.1 How to build states on U〈n〉? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Free cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Haar state on the unitary dual group . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.1 The Haar state in the one-dimensional case . . . . . . . . . . . . . . . . . 72

7.3.2 The non existence of Haar state in the free and tensor cases . . . . . . . . 73

7.3.3 The boolean case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.4 The monotone and the antimonotone case . . . . . . . . . . . . . . . . . . 74

7.3.5 The free Haar trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.6 The tensor Haar trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 Random matrix and Haar traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4.1 Matrix models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4.2 Back to the Brownian motion on U〈n〉 . . . . . . . . . . . . . . . . . . . . 86

Erklärung 87

Résumé 88

Acknowledgements 90



Introduction

Point de recherche qui ne soit recherche de soi-même et, à quelque degré, introspection1.

– Alain Besançon, Histoire et expérience du moi, quoted in [18]

0.1 Abstract

The history of Mathematics has been lead in part by the desire for generalization: once an object
was given and had been understood, there was the desire to find a more general version of it,
to fit it into a broader framework. Noncommutative Mathematics fits into this description, as
its interests are objects analoguous to vector spaces, or probability spaces, etc., but without the
commonsense interpretation that those latter objects possess. Indeed, a space can be described
by its points, but also and equivalently, by the set of functions on this space. This set is actually
a commutative algebra, sometimes equipped with some more structure: ∗-algebra, C∗-algebra,
von Neumann algebras, Hopf algebras, etc. The idea that lies at the basis of noncommutative
Mathematics is to replace such algebras by algebras that are not necessarily commutative any
more and to interpret them as "algebras of functions on noncommutative spaces". Of course,
these spaces do not exist independently from their defining algebras, but facts show that a lot
of the results holding in (classical) probability or (classical) group theory can be extended to
their noncommutative counterparts, or find therein powerful analogues.
The extensions of group theory into the realm of noncommutative Mathematics has long been
studied and has yielded the various quantum groups. The easiest version of them, the compact
quantum groups, consist of C∗-algebras equipped with a ∗-homomorphism ∆ with values in
the tensor product of the algebra with itself and verifying some coassociativity condition. It is
also required that the compact quantum group verifies what is known as quantum cancellation
property. It can be shown that (classical) compact groups are indeed a particular case of compact
quantum groups. The area of compact quantum groups, and of quantum groups at large, is a
fruitful area of research.
Nevertheless, another generalization of group theory could be envisiond, namely by taking a
comultiplication ∆ taking values not in the tensor product but rather in the free product (in the
category of unital ∗-algebras). This leads to the theory of dual groups in the sense of Voiculescu
[47], also called H-algebras by [52]. These objects have not been so thoroughly studied as
their quantum counterparts. It is true that they are not so flexible and that we therefore do
not know many examples of them, see e.g. the remark following Example 2.2.2 and showing
that some relations cannot exist in the dual groupcase because they do not pass the coproduct.
Nevertheless, I have been interested during a great part of my PhD work by these objects and

1There is no research that is not a research of oneself and, to some extent, introspection.
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ii INTRODUCTION

I have made some progress towards their understanding. For instance, Chapter 7 shows in the
particular case of the dual groups the existence of traces that are absorbing in the set of traces.
Dual groups constitute also objects on which quantum Lévy processes, the noncommutative
analogue to the well-known Lévy processes, can be defined. Such processes with values on the
dual group are studied in Chapter 6, whereas a particular version of them is already introduced
in Chapter 5. More generally, the last part of this work, Part III, is devoted to my results on
dual groups.
This work begins naturally with some well-known tools and results that are necessary for the
understanding of my research work. Part I is devoted to this, with Chapter 1 devoted specifically
to introducing the basic algebraic notions, such as ∗-algebras, C∗-algebras, etc., Chapter 2 to
introducing dual groupsand Chapter 3 to introducing the theory of quantum probability.
The remaining Part of the present work, Part II, is devoted to the study of compact quantum
groups and specifically of the hypercontractivity properties held by these objects. Though the
study of compact quantum groups has taken less time in my research work, it is nonetheless an
important part and I believe that it will be worth in the future to investigate more fully the
various hypercontractivity properties of such objects in order to further their understanding.
This PhD work having been done in "cotutelle" between the Université de Franche-Comté and
the Ernst-Moritz-Arndt Universität Greifswald, the Introduction of this dissertation will also
contain an abstract in German ("Zussamenfassung") followed by a detailed presentation of the
results in French. After this, the main core of the work follows.

0.2 Zussamenfassung

Die Geschichte der Mathematik ist teilweise vom Streben nach Verallgemeinerung geprägt wor-
den. Sobald ein Objekt gründlich verstanden wurde, gab es immer den Wunsch eine verall-
gemeinerte Version besagten Objektes zu finden, oder es in einen weiteren Zusammenhang
zu stellen. Die nichtkommutative Mathematik entspringt einem solchen Wunsche, denn sie
interessiert sich für Räume, die (klassischen) Vektorräumen oder Wahrscheinlichkeitsräumen
entsprechen, aber denen es an der "alltäglichen" Interpretation fehlt, die die klassischen Räume
haben. Ein Raum kann nämlich immer nicht nur durch seine Punkte beschrieben werden,
sondern auch durch die Menge aller Funktionen, die auf besagtem Raum definiert sind. Beide
Standpunkte sind äquivalent. Die Menge dieser Funktionen hat die Struktur einer kommutativen
Algebra; oft gibt es sogar noch mehr Struktur, wie z.B. ∗-Algebra, C∗-Algebra, von Neumann
Algebra, Hopf-algebra usw. Die Idee, die der nichtkommutativen Mathematik zugrunde liegt, ist
daher solche Algebren durch Algebren zu ersetzen, die nicht mehr unbedingt kommutativ sind.
Diese Algebren werden dann als "Algebren von Funktionen auf nichtkommutativen Räumen"
interpretiert. Natürlich haben solche nichtkommutativen Räumen unabhängig von der Algebra,
die sie definiert, keinen Bestand. Es stellt sich aber heraus, dass viele Resultate aus der (klas-
sischen) Wahrscheinlichkeits- oder Gruppentheorie eine nichtkommutative Version haben.
Die Verallgemeinerung der Gruppentheorie für eine nichtkommutative Mathematik ist schon
lange bekannt und hat die verschiedenen Definitionen von Quantengruppen hervorgebracht.
Die einfachste Version davon, die kompakten Quantengruppen, bestehen aus einer C∗-Algebra,
die mit einem ∗-Homomorphismus ∆ versehen ist, der seine Werte im Tensorprodukt der Al-
gebra mit sich selbst annimmt. Außerdem muss die Algebra auch eine Eigenschaft erfüllen,
die als "Quantum Cancellation Property" bezeichnet wird. Es kann bewiesen werden, dass die
(klassischen) kompakten Gruppen tatsächlich ein Sonderfall der kompakten Quantengruppen
darstellen. Das Gebiet der kompakten Quantengruppen, und der Quantengruppen generell, ist
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ein fruchtbarer Bereich der mathematischen Forschung.
Allerdings könnte eine andere Verallgemeinerung der Gruppentheorie in Betracht gezogen wer-
den. Die dualen Gruppen, die von D. Voiculescu erstmals definiert wurden [47], und die
H-Algebren von J. J. Zhang genannt wurden [52], entsprechen kompakten Quantengruppen,
aber die Komultiplikation ∆ nimmt Werte im freien Produkt (in der Kategorie der unitalen
∗-Algebren) anstelle des Tensorprodukts. Diese Objekte wurden nicht so gründlich studiert wie
die Quantengruppen. Sie sind zwar nicht so flexibel — siehe z.B. die Anmerkung, die dem
Beispiel 2.2.2 folgt und die darauf hinweist, dass einige Relationen im Falle von dualen Grup-
pen nicht möglich sind, da der Koprodukt nicht respektiert wird — und man kennt daher nur
wenige Beispiele davon. Aber es gelang mir trotzdem einige neue Resultate zu finden und somit
neue Schritte zum Verstehen dieses Konzeptes zu machen. Zum Beispiel, wird in Kapitel 7 die
Existenz von Spuren auf der Unitären Dualen Gruppe bewiesen, die absorbierend in der Menge
der Spuren sind. Quanten-Lévy-prozesse können auch in natürlicher Weise auf dualen Gruppen
definiert werden. Sie werden im Spezialfall der Unitären Dualen Gruppe im Kapitel 6 studiert.
Ein Sonderfall von Lévy-prozessen wird schon im Kapitel 5 eingeführt und studiert, und es wird
darauf hingewiesen, dass dieses Prozess ein guter Kandidat wäre, um als Brownsche Bewegung
auf der Unitären Dualen Gruppe zu gelten. Der gesamte letzte Teil dieser Arbeit, Teil III ist
den dualen Gruppen gewidmet.
Diese Dissertation beginnt natürlicherweise mit der Einführung einiger bekannter Resultate,
die für das Verstehen meiner Forschungsarbeit erforderlich sind. Teil I führt diese Konzepte
ein, Kapitel 1 ist den algebraischen Grundbegriffen gewidmet, wie ∗-Algebra, C∗-Algebra, usw.,
Kapitel 2 ist der Einführung dualer Gruppen gewidmet, und Kapitel 3 ist der Einführung in die
Quantenwahrscheinlichkeitstheorie gewidmet.
Teil II befasst sich mit den Hyperkontraktivitätseigenschaften kompakter Quantengruppen. Ob-
schon das Studieren von Quantengruppen und ihrer Eigenschaften weniger Zeit während meiner
Doktorarbeit in Anspruch genommen hat, glaube ich dennoch, dass es in der Zukunft sin-
nvoll sein wird, die verschiedenen Hyperkontraktivitätseigenschaften von Quantengruppen zu
erforschen, um diese Objekte besser zu verstehen.

0.3 Résumé des résultats

Les Mathématiques non-commutatives sont un domaine de recherche très actif, qui a déjà donné
lieu à de nombreux résultats et il est à prévoir qu’elles donneront encore dans le futur de nom-
breux résultats intéressants, permettant une meilleure compréhension des objets mathématiques,
mais certainement aussi une meilleure compréhension du monde de la physique. La géometrie
non-commutative, par exemple, semble avoir des liens forts avec la mécanique quantique. On
pourra consulter [16] pour plus de détails à ce sujet.
L’idée de base des Mathématiques non-commutative est de prendre une théorie classique qui
s’intéresse à des espaces d’une nature ou une autre, telle que la théorie des probabilités avec
ses espaces de probabilités, la théorie des groupes avec ses groupes, la géométrie différentielles
avec ses variétés différentielles, etc. Ces espaces peuvent être décrit soit en les voyant comme
espaces en tant que tel, comme ensemble de points, soit en considérant l’ensemble des fonctions
définies sur ces espaces et à valeurs, par exemple, dans le corps des complexes. Cet ensemble
de fonction possède naturellement une structure d’algèbre, et même d’∗-algèbre, commutative.
Parfois, ils possèdent une structure encore plus riche, telle que C∗-algèbre, algèbre de von Neu-
mann, etc. L’idée est de remplacer l’étude de ces algèbres commutatives par des algèbres ayant
des propriétés similaires mais auxquelles on n’impose plus forcément d’être commutatives. On
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les interpréte alors comme des "algèbres de fonctions sur des espaces non-commutatifs". Bien
sûr, ces espaces non-commutatif n’ont pas d’existence indépendamment de leur algèbre de fonc-
tions. Cependant, les faits démontrent que beaucoup de résultats classiques se généralisent au
cas non-commutatif, ou y trouve des parallèles riches et intéressants.
A titre d’exemple, la théorie classique des Probabilités s’intéresse à des espaces de probabilité
(Ω,F ,P). La théorie des Probabilités non-commutatives consistes à remplacer l’algèbre commu-
tative unifère des variables aléatoires complexes définies sur Ω et munie de l’espérance par une
algèbre unifère non nécessairement commutative et munie d’une forme linéaire envoyant l’unité
de l’algèbre sur 1. Il se trouve que cette théorie permet de généraliser bon nombre de résultats
classiques. On peut en particulier montrer qu’il y a cinq notions différentes d’indépendance au
lieu de la seule notion d’indépendance utilisée dans le cas classique: l’indépendance tensorielle,
qui est juste une transposition pure et simple de la définition classique, la liberté, l’indépendance
booléenne, l’indépendance monotone et l’indépendance antimonotone. On peut montrer par ex-
emple un théorème central limite dans le cas des indépendances tensorielle et libre.
La Théorie des groupes se généralise habituellement dans le cas non-commutatif par les dif-
férentes notions de groupes quantiques. La notion la plus simple est celle de groupe quantique
compact, qui consiste en C∗-algèbres unifères munies d’un ∗-homomorphisme ∆ que l’on ap-
pelle le coproduit, défini sur l’algèbre et qui prend ses valeurs dans le produit tensoriel de
l’algèbre avec elle-même. On demande que ce coproduit vérifie une proprieté de coassociativité
(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆ et que l’algèbre vérifie une proprieté de densité appellée "règle
de simplification quantique" ou "Quantum Cancellation Property". On peut montrer que les
groupes compacts classiques sont en particulier des groupes quantiques compacts.
Le domaine des groupes quantiques a été étudié en profondeur et est encore un sujet de recherche
très actif. La partie II de ce travail est consacré à l’étude des groupes quantiques compacts or-
thogonal et de permutation, qui généralisent le groupe orthogonal et le groupe symétrique dans
le cas classique. Plus précisément, on s’intéresse à des semigroupeses de Markov définis sur
ces deux groupes quantiques. Dans le cas du groupe quantique orthogonal, on s’intéresse au
semigroupe dont le générateur est:

A(u(s)
ij ) =

1
Us (N)

[

−bU ′
s (N) +

∫ N

−N

Us (x)− Us (N)
N − x ν (dx)

]

u
(s)
ij

Et dans le cas du groupe quantique de permutation, le générateur du semigroupee étudié est:

A(u(s)
ij ) = −

u
(s)
ij U

′
2s(
√
N)

2
√
NU2s(

√
N)

ces semigroupes sont particulièrement intéressants car ils vérifient une propriété connue sous le
nom d’ad-invariance. Il est donc naturel de les considérer dans une première approche de l’étude
des semigroupes sur ces groupes quantiques.
On s’intéresse particulièrement aux propriétés d’hypercontractivité. Il est bien connu qu’un
opérateur T est contractant s’il existe k < 1 tel que ‖Tx‖ ≤ k‖x‖ pour tout x dans le domaine
de définition de l’opérateur. L’hypercontractivité quant à elle est un résultat plus fort. Dans les
espaces dans lesquels on peut définir des p-normes à l’image des espaces Lp classiques — et l’on
donnera un sens précis à cette phrase dans la partie II grâce aux algèbres de von Neumann —,
un semigroupee (Tt)t est dit hypercontractant si pour p < q il existe τpq tel que ‖Ttx‖q ≤ ‖x‖p
pour tout t ≥ τpq. C’est un résultat plus fort que la simple contractivité, car la q-norme est en
général beaucoup plus grande que la p-norme. On montre dans le chapitre 4 que les deux semi-
groupes précédents sont hypercontractants. Il n’a cependant pas été possible pour le moment
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de trouver un temps optimal, c’est-à-dire un τpq qui soit minimal. La fin du chapitre donne
d’autres résultats qui sont liés à l’hypercontractivité, tels que l’existence d’un trou spectral et
des inégalités logarithme-Sobolev. Des recherches ultérieures devront certainement tenter de
clarifier le temps optimal, ainsi que d’étendre ces résultats à d’autres semigroupes et à d’autress
groupes quantiques compacts.
Si les groupes quantiques sont la généralisation la plus courante de la notion de groupe dans
le domaine des Mathématiques non-commutatives, une autre généralisation est possible, celle
de groupe duaux, introduits par Voiculescu [47], également appelés H-algèbres par Zhang [52].
L’idée est similaire à celle de groupes quantiques, cependant le coproduit ∆ prend à présent
ses valeurs dans le produit de l’algèbre avec elle-même et non plus dans le produit tensoriel,
le produit libre étant entendu comme étant défini dans la catégorie des ∗-algèbres unifères.
Par ailleurs, on n’impose plus la "règle de simplification quantique", mais on requiert l’existence
d’une coünité, à savoir d’un ∗-homomorphisme ǫ : A→ C qui joue le rôle de l’élément neutre des
groupes classiques, et d’un coïnverse, ou antipode, à savoir d’un ∗-homomorphisme Σ : A → A
qui joue le rôle de l’opération "inverse" dans les groupes classiques. Il convient de noter que con-
trairement à l’antipode S des algèbres de Hopf qui est un antihomomorphisme (c’est-à-dire que
S(ab) = S(b)S(a)), le coïnverse d’un groupe dual est un homomorphisme. Les groupes duaux,
quoiqu’introduits déjà dans les années 80, n’ont pas fait l’objets de recherches aussi intensives
que leurs analogues quantiques. Un de mes objectifs primaire durant ma thèse a été de mieux
comrpendre ces objets.
Les processus de Lévy (classiques) sont une classe de processus stochastiques très importants en
Probabilités. Ils se définissent de manière la plus générale possible sur des semigroupeses en tant
que processus càdlàg (continus à droite, avec limites à gauche) à accroissements stationnaires
et indépendants. Le mouvement Brownien dans R

d par exemple est un processus de Lévy. On
peut en définir des analogues non-commutatifs, appelés processus de Lévy quantiques, sur des
groupes duaux. En toute généralité, on pourrait les définir sur des semigroupes duaux, sans
beaucoup plus de difficultés, mais l’intérêt premier du travail de thèse s’étant focalisé sur les
groupes duaux, c’est dans ce cadre là qu’ils seront définis dans la section 3.4. Ils sont définis
comme des processus stochastiques quantiques faiblement continues à accroissement stationnaire
et indépendant, mais il faut prendre garde ici que l’indépendance peut être prise dans un des
cinq sens mentionnés ci-dessus. Le but est d’étudier les processus de Lévy sur des groupes duaux
afin de mieux comprendre ces derniers.
La partie III s’intéresse aux groupes duaux. En particulier, le chapitre 5 s’intéresse à un pro-
cessus de Lévy particulier sur le groupe dual unitaire, celui obtenu à la limite lorsqu’on regarde
le mouvement Brownien à valeurs dans le groupe unitaire (classique) U(nd) bloc n× n par bloc
n×n et que l’on fait tendre n vers l’infini. On le décrit en particulier par une équation différen-
tielle stochastique quantique et l’on montre qu’il vérifie une propriété de gaussianité telle que
définie par Schürmann [39]. On prétend par conséquent qu’il serait un bon candidat au titre
de mouvement Brownien sur le groupe dual unitaire. Puis, le chapitre 6 s’intéresse de manière
générale à tous les processus de Lévy sur le groupe dual unitaire qui peuvent s’obtenir comme
limite de processus de Lévy sur le groupe unitaire lorsqu’on les regarde par blocs et que l’on fait
tendre la dimension vers l’infini. On décrit en particulier tous ces processus de Lévy.
Enfin, le chapitre 7 s’intéresse à la question de savoir si l’on peut définir un état de Haar sur
les groupes duaux. Les mesures de Haar sont très importantes dans le cas classiques et sont à
la base de l’Analyse harmonique. Elles se définissent sur des groupes topologiques comme des
mesures invariantes par translation à gauche. La mesure de Lebesgue en est l’exemple typique
sur R

d. Les groupes quantiques compacts possèdent toujours un état de Haar. Il s’agit d’une
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forme linéaire h : A→ C qui vérifie:

h(1) = 1, h(x∗x) ≥ 0 pour tout x ∈ A (1)

(h⊗ id) ◦∆(x) = h(x)1A = (id⊗ h) ◦∆ pour tout x ∈ A (2)

Les états de Haar permettent de construire une théorie de l’Analyse Harmonique sur les groupes
quantiques duaux. Il est donc naturel et potentiellement intéressant de se demander s’il on peut
définir des états de Haar sur des groupes duaux. On pourrait imaginer de transposer simplement
la définition, en remplaçant le produit tensoriel de l’équation 2 par un des produits unversels
provenant des cinq notions d’indépendance possible. Le chapitre 7 montre que cela ne convient
pas car on peut montrer que sauf pour n = 1, il n’existe pas d’état de Haar sur le groupe dual
unitaire U〈n〉. Cependant, dans le cas de U〈n〉, on peut montrer que l’on peut définir ce que
l’on convient d’appeler des traces de Haar, à savoir des états traciaux qui sont absorbant dans
l’ensemble des autres états traciaux. La recherche dans ce domaine n’est certainement qu’à son
début, et la suite sera certainement de s’intéresser à d’autres groupes duaux possibles.
Bien sûr, comme dans tout travail de thèse, il est important d’introduire les outils de base et les
résultats classiques nécessaires à la compréhension du travail de recherche lui-même. C’est l’objet
de la partie I. Plus précisément, le chapitre 1 introduit les notions algébriques fondamentales,
telles que celles de ∗-algèbre, C∗-algèbres, produit libre d’algèbres etc., puis le chapitre 2 présente
les groupes quantiques compacts et les groupes duaux, et enfin le chapitre 3 présente les bases
de la théorie des probabilités quantiques et en particulier les processus de Lévy. A chaque
fois, les notions de base nécessaires à la compréhension des résultats obtenus durant la thèse
sont présentées; cependant, il n’est bien sûr pas possible de réintroduire toutes les notions
mathématiques. Il convient donc de souligner que l’on supposera que le lecteur est familier des
notions les plus fondamentales, en particulier de la théorie des Probabilités et de l’Algèbre.

0.4 Convention, notations and sources

Before entering into the subject itself, we shall give a few remarks about the conventions and
notations used and the sources of this paper. As this Doctoral thesis is written in English, the
rules of style of the English language are of course used. We shall nevertheless stick to the
"French" convention regarding the notation for the set of integer numbers, ie N represents the
set of all integer numbers, including zero. If we want to exclude zero, we denote it by N

∗. We
make this deliberate choice as we believe that it yields notations that are easier. All the rest is
written according to English conventions.
We also want to stress, as was mentionned in the French summary in Section 0.3 that, though
we introduce in Part I the basic tools that will be needed in the sequel of the work, we assume
that the reader is familiar with the most basic notions and concepts of Algebra and (classical)
Probability Theory, as it would not be possible to reintroduce every mathematical concept.
Finally, as every work of research, mathematical research depends heavily on collaboration.
Thus, many of the results presented here were obtained in collaboration between me and other
researchers. In particular, chapters 6 and 7 were obtained by Cébron and me in [11], and chapter
4 was obtained by Franz, Hong, Lemeux and me in [19]. Chapter 5 is a result that I obtained
at the beginning of my PhD studies and that was published in [44]. These chapters are mainly
copies of these articles, without the introductions – because this thesis contains a separate part
devoted to introducing all the necessary concepts – and with some corrections to make them
even clearer.
For the introduction of the basic notions in Part I, I relied on standard works that already
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did a very good job. In chapter 1, we have sometimes — but not always — followed the PhD
thesis of Voss [49] who presented the matters with great clarity. In chapter 2, we have written
a presentation of compact quantum groups inspired from [14] and from the presentation of
compact quantum groups that was already in [19], whereas the presentation of dual groups is
the one contained in my article with Cebron [11]. In Chapter 3, we relied heavily on [35].
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Curiouser and curiouser.

Lewis Carroll, Alice in
Wonderland

Part I

Entering the noncommutative world

1
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Noncommutative Mathematics

1.1 Philosophy of noncommutative Mathematics

1.2 Tools that are necessary

In the course of this work, we will enter, not Alice’s Wonderland, but the world of noncommuta-
tive Mathematics. To do this, this section shall introduce a certain number of concepts that will
be necessary in order to talk about the objects we will be interested in. Among those notions
are ∗-algebras, C∗-algebras, von Neumann algebras and free products in these categories. We
assume, though, that the basic ideas of linear algebra and of Hilbert space theory are known to
the reader. We follow sometimes closely [49], to whom we are thankful for his clear presentation.

1.2.1 Algebras

The basic objects that we will consider are algebras. These can show up in various forms.

Definition 1.2.1. An algebra A on the field K is a vector space on K endowed with a multi-
plication

. : A×A → A
(x, y) 7→ xy

such that for any x, y, z ∈ A and any λ, µ ∈ K, we have:

(x+ y)z = xz + yz

x(y + z) = xy + xz

(λx)(µy) = (λµ)xy

(xy)z = x(yz)

If there exists a unit for the multiplication, the algebra is said to be unital and the unit is denoted
1A, or simply 1 when there is no confusion possible. If the multiplication is commutative, the
algebra is said to be commutative.

We define a subalgebra of A as being a subspace that is stable for the multiplication. A
unital subalgebra of the unital algebra A is defined likewise as being a subalgebra which contains

2



1.2. TOOLS THAT ARE NECESSARY 3

the unit of A.
The algebras can have some richer structures.

Definition 1.2.2. • An antilinear map f on a vector space V is a map f : V → V such
that for any x, y ∈ V and any λ ∈ K the relation f(λx+ y) = λf(x) + f(y) stands, where

stands for complex conjugation.

• An involution ∗ on a vector space V is a antilinear map ∗ : V → V such that ∗ ◦ ∗ = id.
We sometimes call x∗ the adjoint of x.

• A ∗-vector space V is a vector space endowed with an involution

• A ∗-vector space homomorphism f : V → V is a linear map such that for any v ∈ V we
have f(v∗) = f(v)∗.

• A ∗-algebra A is an algebra over a ∗-vector space such that the multiplication is a ∗-vector
space homomorphism.

• A ∗-algebra homomorphism f is an algebra homomorphism that is also a ∗-vector space
homomorphism. In the sequel, whenever we speak of a ∗-homomorphism, we will refer to
a ∗-algebra homomorphism.

• A sub-∗-algebra of the ∗-algebra A is a subalgebra of A that is stable for the involution.

We can also put some topology on an algebra. We give these definitions for completeness’
sake and also because we will need them when we will study hypercontractivity in chapter 4 but
this is the only place of the present work where these definitions will be needed. Indeed, most of
our work rests on algebraic and combinatoric arguments, without use of analytical arguments.

Definition 1.2.3. A C∗-algebra A is a ∗-algebra equipped with a Banach norm (ie a complete
norm) ‖.‖ such that for any x ∈ A:

‖xx∗‖ = ‖x‖2

The morphisms in this category are the ∗-homomorphisms.

Let us now introduce von Neumann algebras.

Definition 1.2.4. Let A ⊂ B(H) a ∗-algebra of bounded operators on some Hilbert space H.
The algebra A is called a von Neumann algebra if it contains the identity operator and is equipped
with the coarsest topology such that the maps

φx : A → C

M 7→M(x)

are continuous for any x ∈ H.

We have some important properties of von Neumann algebras:

Proposition 1.2.5. A von Neumann algebra A is a C∗-algebra

Let X be a subset of the algebra B(H) of bounded operators on H. The commutant of X
is denoted X ′ and is the set containing all y such that xy = yx for any x ∈ X.

Theorem 1.2.6 (Von Neumann’s bicommutant Theorem). Let A be a ∗-algebra of bounded
linear operators on some Hilbert space H. let us assume that A containes the identity operator.
Then the smallest von Neumann algebra containing A, called the von Neumann algebra generated
by A, is equal to (A′)′ = A′′ (bicommutant of A).
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1.2.2 Operations between algebras

We will need for our study the concepts of tensor products and free products.

Definition 1.2.7. Let V and W be two vector spaces. The tensor product V ⊗W of V and W
is a vector space associated to a map Φ : V ×W → V ⊗W satisfying an universal property,
namely: for any vector space X and any bilinear map B : V ×W → Z, there exists a unique
linear map g̃ : V ⊗W → Z such that g = g̃ ◦ Φ.

V ×W
g

��

Φ

%%▲
▲▲

▲▲
▲▲

▲▲
▲

Z V ⊗W
g̃

oo

The tensor product of V and W can be seen as being the vector space V ×W quotiented by
the vector space spanned by the following relations, for any x, y ∈ V , a, b ∈W and λ ∈ K:

(x+ y, a)− (x, a)− (y, a)

(x, a+ b)− (x, a)− (x, b)

(λx, a)− λ(x, a)

(x, λa)− λ(x, a)

In this quotient vector space we denote by x⊗ a the image of (x, a) by the quotient map. The
set of all x⊗ a generates V ⊗W , and, more precisely, if (xi)i is a basis of V and (yj)j is a basis
of W , then (xi ⊗ yj)i,j is a basis of V ⊗W .

Proposition 1.2.8. Let f : V → X and g : W → Y be two linear maps. Then, one can define
a linear map

f ⊗ g : V ⊗W → X ⊗ Y
v ⊗ w 7→ f(v)⊗ g(w)

If A1 and A2 are two algebras, we can equipp A1 ⊗A2 with an algebra structure.

Proposition 1.2.9. The vector space A1 ⊗ A2 is endowed with an algebra structure when one
takes the following multiplication:

(x⊗ y, a⊗ b) 7→ (xa)⊗ (yb)

Let us remark that in the tensor product A ⊗ B, we often talk of A as the left leg of the
tensor product, whereas B is the right leg.

Definition 1.2.10. Let A and B be unital ∗-algebras. The free product of A and B is the
unique unital ∗-algebra A ⊔ B with ∗-homomorphisms i1 : A → A ⊔ B and i2 : B → A ⊔ B such
that, for all ∗-homomorphisms f : A → C and g : B → C, there exists a unique ∗-homomorphism
f ⊔ g : A ⊔ B → C such that f = (f ⊔ g) ◦ i1 and g = (f ⊔ g) ◦ i2.

A ⊔B

i1
{{①①
①①
①①
①①
①

f⊔g
��

i2

##●
●●

●●
●●

●●

A
f

// C B
g

oo
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Informally, A⊔B corresponds to the "smallest" ∗-algebra containing A and B and such that
there is no relation between A and B except the fact that the unit elements are identified. We
usually say that A is the left leg of A ⊔ B, whereas B is its right leg, and, for all A ∈ A and
B ∈ B, we denote i1(A) by A(1) and i2(B) by B(2). This terminology is particularly useful when
we consider the free product A⊔A of A with itself, because, in this case, there exist two different
ways of thinking about A as a subset of A⊔A. Of course, if A and B are clearly distinguished,
we can avoid this subscript and identify A with i1(A) and B with i2(B).For ∗-homomorphisms
f : A → C, g : B → D, we denote by f

∐
g the ∗-homomorphism (iC ◦f)⊔(iD◦g) : A⊔B → C⊔D.

Let A1 and A2 be two unital ∗-algebras. For n ∈ N, we set

An = {(ǫ1, . . . , ǫn)|ǫi ∈ {1, 2} , ǫi+1 6= ǫi∀1≤i≤n}

the set of alternating multi-index in 1 and 2. Then, the free product of A1 and A2 can be build
as:

A1 ⊔A2 = C⊕
⊕

n∈N∗

⊕

ǫ∈An

Aǫ1 ⊗ . . .⊗Aǫn

Remark 1.2.11. We may also consider sometimes nonunital ∗-algebras. In this case we can
consider the nonunital free product of A and B (the free product in the category of nonunital
∗-algebras), denoted A⊔̃B, and constructed as being:

A⊔̃B =
⊕

n∈N∗

⊕

ǫ∈An

Aǫ1 ⊗ . . .⊗Aǫn

It verifies the same universal property, with the difference that C is now a nonunital ∗-algebra
and the homomorphisms do not preserve the unit (which, anyways, does not exist...)
This notion will be useful only in Section 3.2 for defining boolean, monotone and antimonotone
independence in Quantum Probability.

Let us remark that in the free product A⊔B, similar to what happened in the tensor product
case, we often talk of A as the left leg of the free product, whereas B is the right leg.

1.2.3 Bialgebras and Hopf algebras

To finish this section, let us introduce two objects that will be useful at some point later in this
work, bialgebras and Hopf algebras.

Definition 1.2.12. A bialgebra B is an unital algebra equipped with two unital homomorphisms
∆ : B → B ⊗B and ǫ : B → C such that:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆

(id⊗ ǫ) ◦∆ = id = (ǫ⊗ id) ◦∆

The map ∆ is called coproduct, whereas ǫ is called counit.
If B has an involution ∗ and the maps ∆ and ǫ are ∗-homomorphisms, we say that B is an
involutive bialgebra.

Definition 1.2.13. A bialgebra B is called a Hopf algebra is there exists a linear map S : B →
B, called the antipode, and such that:

µ ◦ (S ⊗ id) ◦∆ = 1 ◦ ǫ = µ ◦ (id⊗ S) ◦∆

where µ : B ⊗B → B is the multiplication map and 1 : C→ B the linear map sending the unit
of C to the unit of B.
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We define in the same way a Hopf-∗-algebra when the bialgebra has an involution ∗ and all
the maps behave well with regard to this involution.



2

Quantum groups and Dual groups

2.1 From Classical Groups to quantum groups

2.1.1 Compact quantum group: definition

Compact quantum groups are a generalization of compact groups in the context of non-commutative
mathematics. For this presentation, we rely on [14]. They are defined in the following way:

Definition 2.1.1. A compact quantum group is a pair G = (A,∆) such that A is a unital
C∗-algebra and ∆ : A → A⊗ A is a comultiplication, ie it is a unital ∗-algebra homomorphism
and it verifies:

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and, moreover, the quantum cancellation properties are verified, ie:

Lin[(1⊗A)∆(A)] = Lin[(A⊗ 1)∆(A)] = A⊗A

where Lin is the norm-closure of the linear span.
The C∗-algebra A is also noted C(G).

It is indeed a generalization, because for any compact group G, A = C(G) is a C∗-algebra.
We then equipp it with the comultiplication arising from the group multiplication:

∆G :
C(G)→ C(G×G) ≃ C(G)⊗ C(G)

f 7→ ((x, y) 7→ f(x.y))

Then (A,∆G) is a compact quantum group. The relevant examples for this article were defined
by Wang, see [17, 50, 51]:

Example 2.1.2 (Free Orthogonal Quantum Group, see [50]). Let N ≥ 2 and Cu(O+
N ) be the

universal unital C∗-algebra generated by the N2 self-adjoint elements uij , 1 ≤ i, j ≤ N verifying
the relations:

∑

k

ukiukj = δij =
∑

k

uikujk

We define a comultiplication ∆ by setting ∆(vij) =
∑

k vik⊗vkj. Then (C(O+
N ),∆) is a compact

quantum group called the Free Orthogonal Quantum Group. If we impose in addition commuta-
tivity, we recover the classical orthogonal group.

7
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Example 2.1.3 (Free Permutation Quantum Group, see [51]). Let N ≥ 2 and C(S+
N ) be the

universal unital C∗-algebra generated by N2 elements uij , 1 ≤ i, j ≤ N such that for all 1 ≤
i, j ≤ N :

u2
ij = uij = u∗

ij
∑

k

uik = 1 =
∑

k

ukj

We define a comultiplication ∆ by setting ∆(uij) =
∑

k uik ⊗ ukj. Then, (C(S+
N ),∆) is a

compact quantum group called the Free Permutation Quantum Group. If we impose in addition
commutativity, we find the classical permutation group.

For G = O+
N , S

+
N , we denote by Pol(G) the ∗-algebra generated by the generators uij , 1 ≤

i, j ≤ N and contained in C(G). It has a bialgebra structure by setting:

ǫ(uij) = δij

It is called the algebra of polynomials of G.
Moreover, every compact quantum group is endowed with a Haar state, ie a function h : C(G)→
C such that (h⊗ id)∆(a) = h(a)1 = (id⊗ h)∆(a) for each a ∈ A.
Now, the Haar state will allow us to define the reduced C∗-algebra of a compact quantum group.
If G is a compact quantum group, then we may construct the GNS representation of its Haar
state h, ie there exist a ∗-homomorphism π : Pol(G) → B(H) with H a Hilbert space, such
that h(x) =< Ω, π(x)Ω > for all x ∈ H and a specific Ω ∈ H. Then, the reduced C∗-algebra
Cr(G) will be the norm completion of π(Pol(G)) in B(H). In all the sequel of the article, we
will always consider the reduced C∗-algebra instead of the universal one. The reason for this is
that the Haar state is always faithful on the reduced C∗-algebra, but not on the universal one.
The faithfulness of h is important to define the Lp spaces, which is done as follows. The space
L∞(G) = Cr(G)′′ is the von Neumann algebra generated by Cr(G). We then define for any
1 ≤ p <∞, the Lp(G) space as the completion of L∞(G) for the norm ‖x‖p = [h((x∗x)p/2)]1/p.
We also recall that the Haar state is a trace (ie h(ab) = h(ba)) whenever the compact quantum
group is of Kac type, which is the case with O+

N and S+
N .

Let us now say a few words about corepresentations, for more details and notations we refer to
[14, 23]. For any compact quantum group, there is a notion of corepresentations, ie of matrices
v ∈ Mk ⊗ C(G) such that (id ⊗ ∆)(v) = v12v23 where the indices explain on which leg of
Mk ⊗ C(G) ⊗ C(G) v acts. Thus, v12 is v ∈ Mk ⊗ C(G) seen as having its C(G) elements
coming from the middle leg of Mk ⊗ C(G)⊗ C(G) v. We may as well reformulate it this way:

Proposition-Definition 2.1.4 (Corepresentations). A matrix v ∈Mk⊗C(G) is a k-dimensional
corepresentation of the compact quantum group G if for any 1 ≤ i, j ≤ k the matricial element
vij verifies:

∆(vij) =
k∑

p=1

vip ⊗ vpj

This definition is equivalent to saying that (id⊗∆)(v) = v12v23.
The matricial elements vij, for 1 ≤ i, j ≤ k, are called the coefficients of the corepresentation v.

There is as well a notion of irreducible corepresentations:

Definition 2.1.5. A corepresentation v of the compact quantum group G is said to be irreducible
if the only matrices T ∈Mk such that Tv = vT holds are multiple of the identity.
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The set of all irreducible corepresentations is denoted Irr(G). In the case of O+
N and S+

N ,

the irreducible corepresentations can be indexed by N and we denote by (u(s)
ij )1≤i,j≤dimVs the

coefficients of the sth irreducible corepresentation, Vs being the linear span of them.

2.2 Dual Groups

The notion of dual groups was introduced by Voiculescu [47] in the 80’s. We consider here the
purely algebraic version. Like Hopf algebras, the idea is to generalize the notion of groups to
a noncommutative setting by replacing the product by a coproduct, but we now use the free
product instead of the tensor product.

Definition 2.2.1. A dual group G = (A,∆, δ,Σ) (in the sense of Voiculescu) is a unital ∗-
algebra A, and three unital ∗-homomorphisms ∆ : A → A⊔A, δ : A → C and Σ : A → A, such
that

• The map ∆ is a coassociative coproduct: (Id
⊔

∆) ◦∆ = (∆
⊔

Id) ◦∆

• The map δ is a counit: (δ
⊔

Id) ◦∆ = Id = (Id
⊔
δ) ◦∆

• The map Σ is a coinverse: (Σ ⊔ Id) ◦∆ = 1A ◦ δ = (Id ⊔ Σ) ◦∆.

Let us give a couple of examples of such structures. We first introduce the unitary dual
groupU〈n〉, first considered by Brown in [9], and which possesses naturally a structure of dual
group. It has to be considered as the noncommutative analog of the classical unitary group.

Example 2.2.2. Let n ≥ 1. The unitary dual group is the dual group U〈n〉 = (Unc
n ,∆, δ,Σ)

where:

• The universal unital ∗-algebra Unc
n is generated by n2 elements (uij)1≤i,j≤n with the rela-

tions
n∑

k=1

u∗
kiukj = δij =

n∑

k=1

uiku
∗
jk.

• The coproduct is given on the generators by ∆(uij) =
∑

k u
(1)
ik u

(2)
kj .

• The counit is given by δ(uij) = δij.

• The antipode is given by Σ(uij) = u∗
ji.

Let us remark that the relations defining Unc
n can be summed up by saying that u =

(uij)1≤i,j≤n is a unitary matrix in Mn(Unc
n ). We do not suppose that ū = (u∗

ij)1≤i,j≤n is uni-
tary. Indeed, unlike the relations

∑n
k=1 u

∗
kiukj = δij =

∑n
k=1 uiku

∗
jk, the relations

∑n
k=1 u

∗
ikujk =

δij =
∑n
k=1 ukiu

∗
kj do not pass the coproduct ∆, since we cannot simplify expressions like

∆(
∑

k u
∗
ikujk) =

∑

k,p,q u
(2)∗
pk u

(1)∗
ip u

(1)
jq u

(2)
qk to δij .

We will give another example which has no counterpart in the world of compact quantum groups,
namely the tensor algebra:
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Example 2.2.3. Let V be a ∗-vector space. We define the tensor algebra T (V ) by:

T (V ) = C⊕
⊕

k≥1

V ⊗k

It has the structure of an unital ∗-algebra when we equipp it with the multiplication and the
involution:

m : T (V )× T (V )→ T (V )

(v1 ⊗ . . .⊗ vk, w1 ⊗ . . .⊗ wl) 7→ v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ wl
∗ : T (V )→ T (V )

v1 ⊗ . . .⊗ vk 7→ v∗
k ⊗ . . .⊗ v∗

1

The tensor algebra is characterized by an universal property, namely for any algebra A and any
linear map f : V → A, there exists a unique ∗-homomorphism T (f) such that the following
diagramm commutes:

V
i //

f
��

T (V )

T (f)
||③③
③③
③③
③③

A

where i : V → T (V ) is the canonical inclusion identifying V with V ⊗1 in T (V ).
We define the following ∗-homomorphisms by their values on generators:

∆ : T (V )→ T (V ) ⊔ T (V )

v ∈ V 7→ v(1) + v(2)

δ = T (0)

Σ : T (V )→ T (V )

v ∈ V 7→ −v

where v(1), resp. v(2), designates the element v taken from the left, resp. right, leg of T (V ) ⊔
T (V ), and where δ is obtained from the zero linear map through the univeral property of the
tensor algebra.

Following the point of view of the theory of quantum groups, we consider the ∗-algebra A as
a set of "functions on the dual group G", and not as the dual group. This terminology of dual
group can be ambiguous and one could prefer the term H-algebras used by Zhang in [52], or the
term co-group used by Bergman and Hausknecht in [4]. However, in the following remark, we
will see that the duality can be seen as the existence of some particular functor.

Remark 2.2.4. 1. Let Alg be the category of unital ∗-algebras. The dual category Algop

is the category Alg with all arrows reversed. The definition of a dual group has the
immediate consequence that an element A in the category Alg which defines a dual group
G = (A,∆, δ,Σ) has a group structure in the dual category Algop, in the following sense
of [10, Chapter 4]: we have the commutativity of all the diagrams obtained from the
diagrams defining a classical group by replacing the product by ∆op, the unit map by δop

and the inverse map by Σop. Remark that Algop is not a concrete category: the morphism
∆op in Algop can not be seen as an actual function from A ⊔ A to A. Nevertheless, as
shown in [10, Chapter 4], this group structure is sufficient to endow naturally the set
HomAlgop(B,A) of morphisms of Algop from any unital ∗-algebra B to A with a classical
structure of group.
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2. As a consequence, for any unital ∗-algebra B, the set HomAlg(A,B) of the unital ∗-
homomorphisms from A to B is a group. Moreover, one can verify that HomAlg(A, ·) : B 7→
HomAlg(A,B) is a functor from Alg to the category of groups Gr. Conversely, if a unital
∗-algebra A is such that HomAlg(A, ·) is a functor from Alg to Gr, then G = (A,∆, δ,Σ)
is a dual group for some particular ∆, δ and Σ (see [52] for a direct proof, or [10, Chapter
4] for a proof of the dual statement about Algop). We can summarize those considerations
saying that dual groups are in one-to-one correspondence with the representing objects
of the functors from Alg to Gr. As a comparison, commutative Hopf algebras are the
representing objects of the functors from the category of unital commutative algebras to
Gr.

3. Now, starting from a groupG, one can ask the following question: is there a unital ∗-algebra
A such that HomAlg(A, ·) is a functor and HomAlg(A,C) ≃ G? If yes, there exist ∆, δ and
Σ such that (A,∆, δ,Σ) is a dual group which can be called a dual groupof G (not unique).
One of Voiculescu’s motivation of [47] was to show that a dual action of a dual group ofG on
some operator algebra gives rise to an action of G on that operator algebra. For example,
the unitary dual groupU〈n〉, the principal object of our study defined subsequently, is a
dual group of the classical unitary group U(n) = {M ∈ Mn(C) : U∗U = In} in the sense
that HomAlg(Unc

n ,C) ≃ U(n).

Let us emphasize, in the following remark, the major differences between dual groups and
compact quantum groups.

Remark 2.2.5. 1. Firstly, as for Hopf algebras, the definition is purely algebraic: we use only
the idea of ∗-algebras and we do not need to consider some C∗-algebra. One possible
direction of research is to consider a more analytic structure on dual groups which could
lead to more powerful results.

2. The second difference is that the tensor product has here been replaced by the free product.
The latter is in some way "more noncommutative" because in the case of the tensor product,
the two legs of the product are still commuting. If we have gained in noncommutativity,
we have lost in interpretation: while a classical (compact) group could always be seen as
a (compact) quantum group via the isomorphism C(G × G) ≃ C(G) ⊗ C(G), we do not
have such an isomorphism any more and hence classical groups cannot be seen as special
cases of dual groups.

3. Finally, let us also remark that we here impose to have ∗-homomorphisms which correspond
to the idea of a neutral element and inverses, whereas in the quantum case we only imposed
the quantum cancellation property. We know that this cancellation property, which in the
classical case yields automatically groups, is in the quantum case somewhat weaker.



3

Quantum Probability

3.1 From Classical Probability to Quantum Probability

We refer to [35] for a comprehensive introduction to noncommutative probability. We follow it
for the basic definitions.
In the axiomatization of Probability known since the time of Kolmogorov1 all we need is to have
a triple (Ω,F ,P) consisting of a set Ω, a σ-algebra F on the set Ω and a probability measure
P. With these objects, one can build the whole of the theory, including its most interesting and
deepest objects, as for instance the Brownian motion. But instead of taking this triple (Ω,F ,P),
one can build the whole theory by starting with a couple (A,E) consisting of the (commutative)
algebra A of all complex-valued random variables defined on Ω and an expectation E which
replaces the probability measure.
If we investigate the properties of such a couple we see immediately that A is a commutative
unital ∗-algebra, the involution being given by complex conjugation, and E : A → C is an
unital linear functional that is hermitian (ie, E(X) = E(X)) and positive (ie, E(X∗X) ≥ 0).
Quantum Probability answers the question of what remains if one releases the condition that A
be commutative.

Definition 3.1.1 (∗-probability spaces). An (unital) ∗-noncommutative probability space (A, φ)
consists of an unital ∗-algebra over C and an unital, hermitian and positive linear functional
φ : A → C. Therefore we have the properties:

1. φ(1) = 1

2. φ(x∗) = φ(x)

3. φ(x∗x) ≥ 0

for any x ∈ A.
The elements of A are called (noncommutative) random variables.
If we also have φ(xy) = φ(yx) for any x, y ∈ A, we say that the noncommutative probability
space is tracial.
If for any x ∈ A, we have the implication: φ(x∗x) = 0⇒ x = 0, we say that the noncommutative
probability space is faithful.

1Andreï Nikolaïevitch Kolmogorov, 25th April 1903, Tambov, Russia - 20th October 1987, Moscow, Soviet
Union.

12
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We have so far applied the philosophy of noncommutative mathematics explained in Section
1.1. We want to stress again the fact that there is in general no more interpretation of such
noncommutative spaces in "everyday life": though a (classical)probability space may serve as a
model for the evolution of temperature, of the stock market, or a stack or tails game, the world
of noncommutative probability space remains in the realm of abstract mathematics!

Remark 3.1.2. We could also define a (nonunital) ∗-probability space by lifting the condition that
A needs to unital and lifting condition 1 on φ. We will come back to this in Section 3.2, when
we will talk about independence. For brevity’s sake, if we talk only about a noncommutative
probability space, without further information, we will refer to an unital ∗-noncommutative
probability space.

Example 3.1.3. Let (Ω,F ,P) be a classical probability space. Then, (L∞−(Ω),E) is a tracial
and faithful ∗-noncommutative probability space. Here, L∞−(Ω) denotes the set of all random
variables on Ω with values in C and with finite moments of every order.

Example 3.1.4. Let us take A =Mn(C) and φ = trn = 1
n tr the reduced trace. Then, (A, φ) is

a faithful and tracial ∗-probability space.

Example 3.1.5. We can build a more interesting example by merging the two preceding exam-
ples. The couple

(Mn(C)⊗ L∞−(Ω), trn ⊗ E)

is a ∗-probability space. In particular, it shows that the theory of noncommutative probability
spaces seems to be adapted to the study of random matrices.

Of course, we may want to give more structure to our probability space, for instance some
topology:

Definition 3.1.6. • A C∗-probability space is a ∗-probability space (A, φ) where A is an
unital C∗-algebra

• A W ∗-probability space is a ∗-probability space (A, φ) where A is a von Neumann algebra.

In Classical Probability, the idea of distribution plays an important role. Knowing the
ditribution of a random variable consists in knowing entirely its probability law. To know the
distribution of a (classical) random variable X, it suffices to know the value of all E(f(X)) for
any f : C → C continuous bounded, for instance. In the noncommutative case, in the most
general version of a ∗-algebra, without any topology, we do not have any notion of continuous
bounded functions. We therefore have use of (noncommutative) polynomials.
For any set I, we denote by K〈(Xi)i∈I〉 the algebra of polynomials in the (noncommutative)
indeterminates (Xi)i∈I . The fact that the indeterminates do not commute means that XiXj 6=
XjXi for i 6= j.

Definition 3.1.7. Let x ∈ A be an element from a ∗-probability space. The ∗-distribution of x
is a map:

φx : K〈X,Y 〉 → C

P 7→ φ(P (x, x∗))

Let (xi)i∈I a set of elements from A. The joint ∗-distribution of the (xi)i∈I is a map:

φ(xi)i∈I
: K〈(Xi, X

∗
i )i∈I〉 → C

P 7→ φ[P ((xi)i ∪ (x∗
i )i)]
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We want to stress the fact that the polynomial must have twice as many variable than the
number of elements we are considering, because we have to take into account both the element
and its adjoint.
Now, in some cases, we can describe the distribution of a (noncommutative) random variable
with probability laws, as in the classical case. Let a ∈ A be a normal element, ie such that
aa∗ = a∗a, then the distribution of a is entirely known if we know the value of the φ(ap(a∗)k)
for any p, k ∈ N. Let now µ be some compactly supported probability measure on C. We say
that a has the law µ if we have the relation, for any p, k ∈ N:

φ(ap(a∗)k) =

∫

zpzkdµ(z)

Remark 3.1.8. If a has a law, then this law is unique. Indeed, by the Stone-Weierstraß theorem,
know

∫
zpzkdµ(z) means that you know all the

∫
fdµ for any f continuous and supported on K

the compact support of µ. Therefore, this determines entirely µ.

Let us also remark that, so far, nothing assures us that any normal element will have a law.
Nevertheless, this will be the case in a good number of cases, in the case of C∗-algebras, see [35,
Proposition 3.13].

Theorem 3.1.9. Let (A, φ) be a C∗-probability space, and let a be a normal element in A.
Then, there exists a compactly supported probability measure µ on C such that µ is the law of a.

3.2 Different notions of independence

In classical probability, a very important idea is the concept of independence. When two random
variables are independant, knowing the law of each is enough to know the joint distribution. We
would like to have something similar in the noncommutative world, namely a way to know the
joint distribution of two "independant" variables whenever we know the distribution of each one.
In the noncommutative world, though, there are up to five different notions of "independence".
We will introduce them below. We refer the reader to [1, 33] for a more comprehensive study of
the question.
Let (A1, φ1) and (A2, φ2) be two (unital) ∗-noncommutative probability spaces. The free product
A1 ⊔ A2 can be equipped with two different product states, called respectively free and tensor
independent (or just tensor) product of states. We define those two constructions.

Definition 3.2.1. Let (A1, φ1) and (A2, φ2) be two unital ∗-noncommutative spaces. There exist
two different states φ1∗φ2, φ1⊗φ2, called respectively free and tensor independent (or just tensor)
product, and defined, for all A1, . . . , An ∈ A1 ⊔ A2 such that Ai ∈ Aǫi and ǫ1 6= ǫ2 · · · 6= ǫn, by
respectively the following relations

• φ1 ∗ φ2(A1 · · ·An) = 0 whenever φ1(A1) = · · · = φn(An) = 0;

• φ1 ⊗ φ2(A1 · · ·An) = φ1(
∏

i:ǫi=1Ai)φ2(
∏

i:ǫi=2Ai).

If we do not impose unitality on our ∗-probability space, we can get up to three more
products.

Definition 3.2.2. Let (A1, φ1) and (A2, φ2) be two (nonunital) ∗-noncommutative spaces. There
exist five different states φ1∗φ2, φ1⊗φ2, φ1⋄φ2, φ1⊲φ2 and φ1⊳φ2 on A1⊔A2, called respectively
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free, tensor independent (or just tensor), boolean, monotone and anti-monotone product, and
defined, for all A1, . . . , An ∈ A1⊔̃A2 such that Ai ∈ Aǫi and ǫ1 6= ǫ2 · · · 6= ǫn, by respectively the
following relations

• φ1 ∗ φ2(A1 · · ·An) = 0 whenever φ1(A1) = · · · = φn(An) = 0;

• φ1 ⊗ φ2(A1 · · ·An) = φ1(
∏

i:ǫi=1Ai)φ2(
∏

i:ǫi=2Ai);

• φ1 ⋄ φ2(A1 · · ·An) =
∏n
i=1 φǫi(Ai);

• φ1 ⊲ φ2(A1 · · ·An) = φ1(
∏

i:ǫi=1Ai)
∏

i:ǫi=2 φ2(Ai);

• φ1 ⊳ φ2(A1 · · ·An) =
∏

i:ǫi=1 φ1(Ai)φ2(
∏

i:ǫi=2Ai).

Now, let (A, φ) be a unital (resp. nonunital) noncommutative probability space and let B
and C two unital (resp. nonunital) sub-∗-algebras of A. We denote by φB, resp. φC , resp.
φB⊔C (resp. φB⊔̃C) the restriction of φ to B, resp. C, resp. B ⊔ C (resp. B⊔̃C). We say that B
and C are free, resp. tensor independant (resp. boolean independant, resp. monotone
independant, resp. antimonotone independant) if φB⊔C (resp. φB⊔̃C) is equal to φB ∗ φC ,
resp. φB ⊗ φC (resp. φB ⋄ φC , resp. φB ⊲ φC , resp. φB ⊳ φC).
Likewise, we say that two random variables are free, tensor, boolean, monotone or antimonotone
independant, if the ∗-algebras they generate are free, tensor, boolean, monotone or antimonotone
independant.
Let us make some observations about these definitions. First, they do exactly what we expect
them to do, namely if two variables are independant in one sense or the other and if we know
the distribution of each variable, then we know their joint distribution. Second, we have here
various possible definitions, and we can show that they are the only ones for a suitable notion
of what an independence should satisfy, see e.g. [1, Theorem 1, Theorem 3]:

Theorem 3.2.3. The tensor independence is the only possible notion in the category of com-
mutative unital algebras. In the category of unital algebras, the only possible independences are
the free and the tensor ones.

Let us finish this section by enlarging the scope of the boolean, monotone and antimonotone
products. When we will study Haar states on dual groups, we will need to be able to compute
such products on unital ∗-algebras. In order to do that, we will assume for our unital ∗-algebras
the decomposition of vector spaces A = C1A ⊕ A0, where A0 is a ∗-subalgebra of A. Remark
that this decomposition is not necessarily unique, and sometimes does not exist. We then set:

Definition 3.2.4. Let (A1, φ1) and (A2, φ2) be two noncommutative spaces with A1 = C1A1⊕A0
1

and A2 = C1A1⊕A0
2. There exist five different states φ1∗φ2, φ1⊗φ2, φ1⋄φ2, φ1⊲φ2 and φ1⊳φ2

on A1⊔A2, called respectively free, tensor independent (or just tensor), boolean, monotone and
anti-monotone product, and defined, for all A1, . . . , An ∈ A1 ⊔ A2 such that Ai ∈ A0

ǫi and
ǫ1 6= ǫ2 · · · 6= ǫn, by respectively the following relations

• φ1 ∗ φ2(A1 · · ·An) = 0 whenever φ1(A1) = · · · = φn(An) = 0;

• φ1 ⊗ φ2(A1 · · ·An) = φ1(
∏

i:ǫi=1Ai)φ2(
∏

i:ǫi=2Ai);

• φ1 ⋄ φ2(A1 · · ·An) =
∏n
i=1 φǫi(Ai);

• φ1 ⊲ φ2(A1 · · ·An) = φ1(
∏

i:ǫi=1Ai)
∏

i:ǫi=2 φ2(Ai);
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• φ1 ⊳ φ2(A1 · · ·An) =
∏

i:ǫi=1 φ1(Ai)φ2(
∏

i:ǫi=2Ai).

The tensor product and the free product do not depend on the choice of the decomposition A1 =
C1A1 ⊕A0

1 and A2 = C1A1 ⊕A0
2, but the other three products do.

3.3 Free cumulants

When we consider noncommutative probability in the setting of freeness, cumulants are a tool
that simplify computations and are often very useful. We shall introduce them here. Again, we
refer to [35] for more details, and especially to Lecture 9.

Let S be a totally ordered set. A partition of the set S is a class (S1, . . . , Sk) of non-empty
subsets of S such that the subsets are mutually disjoint and their union is the whole of S. Such
a partition is said to have a crossing if there exist i, j, k, l ∈ S, with i < j < k < l, such that i
and k belong to some block of the partition and j and l belong to another block. If a partition
has no crossings, it is called non-crossing. The set of all non-crossing partitions of S is denoted
by NC(S). When S = {1, . . . , n}, with its natural order, we will use the notation NC(n). We
can endow NC(S) with an order defined as follows: for all π1 and π2 ∈ NC(S), π1 � π2 if every
block of π1 is contained in a block of π2. With this order, for any two elements ρ and σ the set
{τ ∈ NC(S)|ρ � τ and σ � τ} is non-empty and has a minimum, called the join and denoted
ρ ∨ σ, and the set {τ ∈ NC(S)|τ � σ and τ � ρ} has a maximum, called the meet and denoted
ρ ∧ σ. Whenever a partially ordered satisfies these two properties (existence of a join and of a
meet for any two elements), it is called a lattice, which is the case for NC(S).

b b b b b b b b b b

Figure 3.1: Non-crossing partition on the left, crossing on the right

Definition 3.3.1. The collection of free cumulants (κq : Aq → C)q≥1 on some probability space
(A, φ) are defined via the following relations: for all A1, . . . , An ∈ A,

φ(A1 . . . Aq) =
∑

σ∈NC(q)

∏

{i1≤...≤ik}∈σ
κk(Ai1 , . . . , Aik)

where NC(q) is the set of non-crossing partitions of {1, . . . , q}.

The importance of the free cumulants is in large part due to the following characterization
of freeness.

Proposition 3.3.2. Let (Ai)i∈I be random variables of (A, φ). They are ∗-free if and only if
their mixed ∗-cumulants vanish. That is to say: for all n ≥ 0, ǫ1, . . . , ǫn be either ∅ or ∗, and
all Ai(1), . . . , Ai(n) ∈ A such that i(1), . . . i(n) ∈ I, whenever there exists some j and j′ with
i(j) 6= i(j′), we have κ(Aǫ1i(1), . . . , A

ǫn
i(n)) = 0.
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3.4 Lévy processes

In this section we will introduce the noncommutative counterpart to Lévy processes. To do that,
we will need to recall the basic definitions in the classical case.

3.4.1 Lévy processes on Lie groups in classical Probability

Lévy2 processes are a class of stochastic processes which generalizes nicely the idea of a Brownian
motion. The natural setting in which they can be defined is the one of topological groups. We
refer the reader to [30] for a comprehensive presentation on this subject in the case of Lie groups.
We first recall the basic notions about topological groups.

Definition 3.4.1. A topological group G is a group endowed with a topology τ such that the
multiplication and the inverse maps are continuous.
A Lie group G is a group endowed with a C∞-manifold structure, such that the multiplication
and the inverse maps are smooth. It is in particular a topological group.

This allows us to define Lévy processes.

Definition 3.4.2. Let G be a topological group and (gt)t≥0 a stochastic process with values in
G. The process (gt)t is a (left) Lévy process if it verifies:

1. It is càdlàg (from the French "continu à droite, limite à gauche"), ie almost all its paths
t 7→ gt are right continuous on [0,∞) and have left limits on (0,∞).

2. It has independant right increments, ie for any 0 < t1 < t2 < . . . < tn, the right increments
g0, g

−1
0 gt1 , g

−1
t1 gt2 , . . . , g

−1
tn−1

gtn are independant.

3. It has stationary right increments, ie for 0 ≤ s < t, the right increment g−1
s gt has the

same distribution as g−1
0 gt−s.

The definition of a left Lévy process has been given with reference to right increments. If we
considered instead left increments (ie quantities like gtg−1

s for 0 ≤ s < t), we would have defined a
right Lévy process. Nevertheless, right and left Lévy processes are in one-to-one correspondence
because if (gt)t is a left Lévy process, then (g−1

t )t is a right Lévy process, and vice-versa. In the
sequel of this work we will always consider left Lévy processes, that begin at the unit element
of the group (g0 = e), except otherwise explicitly stated.
Let us also remark that topological groups are a nice setting to define these objects. Indeed,
we needed some topology in order to be able to define what càdlàg is and also in order to be
able to use the Borel σ-algebra, but we needed also a multiplication and an inverse in order to
define the increments. Nevertheless, to have an inverse is not really necessary and it is possible
to define Lévy processes in the case of topological semigroups, see e.g. [24, Definition 1.20].
Topological semigroups are sets endowed with a multiplication and an unit but not necessarily
with an inverse map, and such that the multiplication is continuous under the topology. To
give such a definition, in this most general sense, we need to take a process with two indices
(gst)0≤s≤t where gst plays the role of the increment.

2Paul Lévy, 15th September 1886, Paris (France) - 15th december 1971, Paris (France). Former student of the
École Polytechnique he is one the founders of modern Probability Theory.
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Definition 3.4.3. A stochastic process (gst)0≤s≤t with values in the topological semigroup G is
called a left Lévy process, if

1. It verifies the increment property, namely that gtt = e and gstgtu = gsu almost surely for
any 0 ≤ s ≤ t ≤ u.

2. It has independant increments, ie for any s1 < t1 < s2 < . . . < sn < tn, the right
increments gs1t1 , gs2t2 , . . . , gsntn are independant.

3. It has stationary right increments, ie for 0 ≤ s < t and for h > 0, the right increment
gs+h,t+h has the same distribution as gst.

4. It is weakly continuous, ie gst converges in probability to gss when t goes to s, for any
s ≥ 0.

Lévy processes are a large class of processes. They contain the Brownian motion Bt, which is
defined in the case of the euclidean space R

d as a process beginning at origin, with independent
and stationary increments, such that Bt has the distribution of a centered gaussian law with
variance t. Brownian motion can be defined in the most general setting on Riemannian mani-
folds, see [30, Section 2.3], which are manifolds where one can measure distances. The definition,
using an operator called the Laplace-Beltrami operator, gives a meaning to the intuitive notion
of a process that "diffuses equally in every direction". Whe shall not say more on this matter,
as it would go beyond the scope of this work to introduce the theory of Riemannian manifolds,
but let us mention that in the case of Lie groups, who can be seen as Riemannian manifolds,
Brownian motions are Lévy processes. In the euclidean space case, there are two other natural
example: (deterministic) linear maps and Poisson processes, which is a process with values in
N, are Lévy processes.
When studying Lévy processes, it is important to know that they admitt several characteriza-
tions. If (gt)t is a Lévy process, let us denote by µt the law of gt. Because the increments are
stationary and independant, it is clear that knowing all the (µt)t is equivalent to knowing the
law of the process (gt)t. The family (µt)t forms a continuous convolution of semigroups:

Definition 3.4.4. A family (µt)t≥0 of probability measures on a topological group G is called a
continuous convolution semigroup if:

• For all f continuous bounded on G,
∫
fdµt converges to f(e) when t goes to zero.

• For any s, t ≥ 0, the relation µs ⋆µt = µs+t is verified, where ⋆ is the convolution operator,
such that if X, resp. Y , is a random variable with distribution µ, resp. ν, and X is
independant from Y , then µ ⋆ ν is the law of XY .

There is a one-to-one correspondence between left Lévy processes and continuous convolution
semigroups on the topological group G, see [24, Proposition 1.21], because the family of marginal
distributions of a Lévy process is a continuous convolution semigroup, and, conversely, given a
continuous convolution semigroup, one can build a corresponding Lévy process.
Now, a Lévy process (gt)t being given, we may define its transition semigroup:

Pu : B(G)→ C

f 7→ (g ∈ G 7→
∫

f(ggt)dµu)
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where B(G) is the set of nonnegative Borel functions on G, and for u ≥ 0. Informally, the
quantity Puf(g) is the expectation of the process (gt)t after time u and by assuming that it
began at point g. This semigroup of operator determines completely the law of the marginals,
and therefore the distribution of the Lévy process (granted that g0 = e, or more generally, that
the distribution of g0 is known). We may also define the generator of the Lévy process as being
a couple (D,L) where L is defined as the following limit, when it exists:

Lf = lim
t→0

Ptf − f
t

with f ∈ D ⊂ C0(G) and D the subset of C0(G) of continuous functions vanishing at infinity,
such that this limit exists. It is a well-known result of Probability theory that (D,L) deter-
mines entirely the semigroup of operators (Pt)t, see [30, Appendix B.1]. We can actually even
characterize entirely the generators of a Lévy process on a Lie group through Hunt’s formula,
see [24, Theorem 1.28], and in the same way we can characterize all those semigroups (Pt)t that
correspond to transition semigroups for Lévy processes (namely left-invariant Feller transition
semigroups, but it would be beyond the scope of this work to go into more details here, since
we do not need it to understant their quantum counterparts), see [30, Proposition 1.2].
To sum it up in the Lie group case, we have a one-to-one correspondence between these four
objects, knowing one of them amounting to know all the others:

Lévy process (gt)t≥0 ←→ Continuous Convolution semigroup(µt)t≥0

l l
Transition semigroup(Pt)t≥0 ←→ Generator (D,L)

3.4.2 Noncommutative Lévy processes

Noncommutative counterparts of Lévy processes can be defined. As classical Lévy processes are
defined on groups (or semigroups), their noncommutative variants must be defined on noncom-
mutative versions of groups (or semigroups). We will define them on involutive bialgebras and
on dual groups. We refer to [24, 20] for more details on this matter.

Quantum random variables

Up to this point, we have defined noncommutative random variables as being elements of a ∗-
algebra. This definition gives a convenient analogue to the notion of complex-valued (classical)
random variables. Nevertheless, if we want to define Lévy processes, we need the concept of
noncommutative random variables with values in some abstract space, not necessarily C any
more.

Definition 3.4.5. Let (A, φ) be a ∗-probability space and B be some ∗-algebra. A quantum ran-
dom variable over the quantum probability space (A, φ) on the ∗-algebra B is a ∗-homomorphism
j : B → A.

Remark 3.4.6. Let us remark that the definition "goes in the other direction" than the classical
one. A classical random variable over the probability space (Ω,F ,P) on the group G is a
measurable map X : Ω → G, whereas in the quantum case the map goes from B, the space
wherein the variable takes values, to A the spaces whereon the variable is defined. This is due
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to duality. Indeed, any (classical) random variable X : Ω→ G yields a ∗-homomorphism ιX :

ιX : C(G)→ L∞−(Ω)

f 7→ f ◦X

Therefore, X can be seen as a quantum random variable over L∞−(Ω) on C(G).

The distribution of a quantum random variable j is the map φ ◦ j : B → C. In a natural
way, a quantum stochastic process is a family (jt)t∈I of quantum random variables. The maps
φt := φ ◦ jt are called the marginal distribution of the quantum stochastic process, whereas its
joint distribution is the map φ ◦⊔t∈I jt.

Lévy processes on bialgebras

We can define Lévy processes on involutive bialgebras. In this way, we can in particular consider
Lévy processes on the algebra of polynomials of a compact quantum group. We follow [24] closely
for the definition.
Let in the sequel B be an involutive bialgebra. If j1, j2 : B → A are two linear maps with values
in some algebra A, we need to be able to define the convolution of these maps:

j1 ⋆ j2 = µA ◦ (j1 ⊗ j2) ◦∆

where µA : A⊗A→ A is the multiplication map.

Definition 3.4.7 (See [24], especially Definition 1.32). A quantum stochastic process (jst)0≤s≤t
on the involutive bialgebra B over the quantum probability space (A, φ) is called a Lévy process
if it satisfies following properties:

1. (Increment property) We have:

jrs ⋆ jst = jrt for all 0 ≤ r ≤ s ≤ t
jtt = ǫ.1 for all 0 ≤ t

2. (Indepedence of increments) For any n ∈ N and all 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ tn, the
quantum random variables js1t1 , . . . , jsntn are tensor independent.

3. (Stationarity of increments) The distribution φst = φ ◦ jst depends only on the difference
t− s, for any 0 ≤ s ≤ t.

4. (Weak continuity) For any b ∈ B and any 0 ≤ s, we have limtցs jst(b) = jss(b) = ǫ(b)1.

If two Lévy processes have the same joint distribution, we shall say that they are equivalent.
As in the classical case, there are different characterization of Lévy processes. They will be given
here without further justification, as they are well-known in the world of quantum probability.
For more informations, one can go to [24, 20, 49, 32].

Proposition-Definition 3.4.8 (Lemma 1.34 of [24]). Let (jst)0≤s≤t be a quantum Lévy process
on a involutive bialgebra B. Then, its marginal distributions φs := φ◦ja,a+s for any 0 ≤ a (which
is well-defined by the property of stationarity of the increments) form a continuous convolution
semigroup of states on B, namely:
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1. We have φ0 = ǫ.

2. For all 0 ≤ s, t, we have: φs ⋆ φt = φs+t.

3. We have the limit limtց0 φt(b) = ǫ(b)

4. For any 0 ≤ t, φt(1) = 1 and for any b ∈ B, φt(b
∗b) ≥ 0.

Linear functionals on a ∗-algebra which verify the last item are called state on the ∗-algebra.

Proposition-Definition 3.4.9 (Schoenberg correspondence). Let (φt)0≤t be a continuous con-
volution semigroup fo states on an involutive bialgebra B. Then, the following limit exists for
any b ∈ B and the functional L is called the generator if the semigroup:

L(b) = lim
tց0

φt(b)− ǫ(b)
t

Moreover, L verifies the following properties:

• It is conditionnaly positive: L(b∗b) ≥ 0 for any b ∈ Kerǫ.

• It cancells on the unit: L(1) = 0.

• It is hermitian: L(b∗) = L(b) for any b ∈ B.

Moreover, for any linear functional L that verifies the upper three conditions, there exists a
continuous convolution semigroup of states (φt)t of which L is the generator.

Once a generator L is given, one can apply a variant of the GNS construction in order to
get an unital ∗-representation ρ : B → L(D) on some pre-Hilbert space D and a linear map
η : B → B such that the following two formulae hold for any a, b ∈ B:

η(ab) = ρ(a)η(b) + η(a)ǫ(b)

−〈η(a∗), η(b)〉 = ǫ(a)L(b)− L(ab) + L(a)ǫ(b)

This formulae can be summed up saying that η is a ρ-η-1-cocycle and L has (a, b) 7→ −〈η(a∗), η(b)〉
as a ǫ-ǫ-2-coboundary in the language of cohomology.
When such a triple (ρ, η, L) is given, we call it a Schürmann triple. if η is surjective, we say that
the Schürmann triple is surjective.
Given such a Schürmann triple, it is clear that we do not change the description of the gen-
erator if we take an pre-Hilbert space isomorphic in some sense to the first one. Formally, if
U : D1 → D2 is an isometry, and we have the relations ρ2(b)U = Uρ1(b) and η2(b) = Uη1(b) for
any b ∈ B, we say that the Schürmann triples (ρ1, η1, L) and (ρ2, η2, L) are unitarily equivalent.
We have the correspondence between all these objects, as the following result, coming from [24,
Theorem 1.39] explains:

Theorem 3.4.10. Let B be an involutive bialgebra. We have a one-to-one correspondence
between Lévy processes on B (up to equivalence), continuous convolution semigroups of states
on B, generators on B, surjective Schürmann triples on B (up to unitary equivalence).
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Lévy processes on dual groups

The main object of study during my PhD work has been dual groups. Lévy processes are nice
objects because through their study we may understand better the objects on which they take
values. We shall therefore now introduce quantum Lévy processes on dual groups. To do this,
we shall again follow closely [24]. Let us here remark that Lévy processes can be defined on dual
semigroups in the most general sense, exactly as they were defined on semigroup in the most
general (classical) sense or on bialgebra in the previous section. We shall nevertheless restrain
ourselves to the dual groupcase, in order to avoid to be to cumbersome.
We must also make here an important remark, namely that Lévy processes on dual groups can
be defined in five different ways, corresponding to the five different notions of independence.

Definition 3.4.11. Let (B,∆,Σ, δ) be a dual group. A quantum stochastic process (jt)0 ≤ t
on B over a quantum probability space (A, φ) is called a tensor (resp. free, resp. boolean,
resp. monotone, resp. antimonotone) quantum Lévy process on B if it satisfies the following
conditions:

1. For any 0 ≤ t: j0 = ǫ.1

2. For any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the quantum random variables jt1 , [S ◦ jt1 ] ⋆ jt2 , . . . , [S ◦
jtn−1 ] ⋆ jtn are tensore (resp. freely, resp. boolean, resp. monotone, resp. antimonotone)
independent.

3. The distribution φt−s := φ ◦ jt−s depends only on the difference t− s.

4. For any b ∈ B and any 0 ≤ s, we have limtց0 jt(b) = j0(b) = ǫ(b)1

As before, we say that two Lévy processes are equivalent if they have the same joint distri-
bution.
The marginal distributions form again a continuous convolution semigroup of states but it is
important here to pay attention to the fact that the convolution is done with respect to no-
tion of independence used. For instance, if we study a free quantum Lévy process, than the
marginals verify (φs ∗ φt) ◦∆ = φs+t, or if on the contrary we study a monotone quantum Lévy
process, then the marginals form a convolution semigroup with respect to following convolution:
(φs ⊲ φt) ◦∆ = φs+t. We actually begin to see why the setting of dual groups is very powerful
here: the fact that the coproduct takes values in the free product instead of the tensor product
means that we have tools that are adapted to the various notions of independence, not only to
the tensor independence.
We may also define a generator of the process in the same way, and it is well-defined for any
b ∈ B:

L(b) = lim
tց0

φt(b)− ǫ(b)
t

Again, we have a Schoenberg correspondence, namely that there is a one-to-one correspondence
between continuous convolution semigroups of states and linear functionals that are condition-
naly positive, hermitian and vanishing on the unit. Once a continuous convolution semigroup
of states is given, it is also possible to get back to a quantum Lévy process, one can refer e.g.
to the construction given in Section 2.2 of [49].
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4

Hypercontractivity on the
Orthogonal and Permutation
quantum groups

In this section we study hypercontractivity properties of the free orthogonal quantum group and
of the free permutation quantum group.

This chapter is taken from the article [19], which I co-authored with U. Franz, G. Hong and
F. Lemeux.

4.1 Introduction

Since the 70s, when the word "hypercontractivity" was coined (see [41]), it has yielded a fruitful
area of Mathematics. Stronger than the well-known and classical notion of contractivity, it has
been shown that hypercontractivity is strongly linked to a class of inequalities called logarithmic
Sobolev inequalities, which in turn have many applications such as in statistical mechanics (see
for instance [25] for the investigation of the Ising model based on log-Sobolev inequalities).
With the rise of noncommutative mathematics, the framework of hypercontractivity has also
been studied in the context of noncommutative Lp spaces, for instance in [36].
The hypercontractivity for semigroups on some cocommutative compact quantum groups such
as von Neumann algebras of discrete groups, e.g. free products of Z2 etc., has been recently
studied by Junge et al., see [26] and the references therein.
The goal of this chapter is to investigate hypercontractivity for semigroups on the free orthogonal
quantum group and the free permutation quantum group. Different definitions for a Brownian
motion (and hence for a heat semigroup) could be considered on these quantum groups; we will
be interested in the ad-invariant generating functionals in order to select semigroups that could
pretend to the role of heat semigroups.
It is only a short introduction to this topic and it is to be hoped that much more work will be
done in this direction.

24
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4.2 Compact quantum groups and heat semigroups

4.2.1 Markov semigroups

In order to investigate hypercontractivity on heat semigroups, one must be able to define heat
semigroups on the quantum groups at hand. We recall here for clarity’s sake a certain number
of important results, without proofs. More on this topic might be found in [14].
We can define Lévy processes on quantum groups (Definition 2.4 in [14]). If (jt)t≥0 is such a
process, then we can associate to it a Markov semigroup Tt by putting Tt = (id⊗ φt) ◦∆ where
φt = h ◦ jt. The Lévy process (jt)t is also associated to a generator L = dφt

dt

∣
∣
∣
t=0

(actually, there
is a one-to one correspondence between generators and Lévy processes, called the Schoenberg
correspondence).
It is important to mention the domain of the Markov semigroup. The operator Tt can either
be seen as Tt : Cu(G) → Cu(G) or as Tt : Cr(G) → Cr(G). We will in the sequel take the
second definition, due to our use of the reduced C∗-algebra. The semigroup is associated to a
Markovian generator TL : Pol(G)→ Pol(G) which is defined by TL = (id⊗ L) ◦∆ = dTt

dt

∣
∣
∣
t=0

.

The two semigroups treated in this paper are KMS-symmetric (even GNS-symmetric, which
means that TL and Tt are self-adjoint on L2(G, h)), therefore they extend to σ-weakly continuous
semigroups on the von Neumann algebra L∞(G) = Cr(G)′′, see, e.g., [13, Theorem 2.39].
Now, in the classical case, a heat semigroup is the Markov semigroup associated to a Brownian
motion, which is a particular kind of Lévy process. So if we had a definition of such a Brownian
motion on O+

N or S+
N , we could define a heat semigroup and this semigroup should be naturally

privileged in our study. Unfortunately, to define such an object is not an easy matter. In the
classical case, Brownian motions are defined on Lie groups via the Laplace-Beltrami operator.
On quantum groups, we do not have a differential structure which would allow us to define
a quantum analogue to the Laplace-Beltrami operator. Alternative approaches must thus be
found.
One way to do so is to use the notion of gaussianity first introduced by Schürmann (as has
been done in Definition 5.5.1, see also [44, Section 5.3], to exhibit a Brownian motion on the
unitary dual group). This approach nevertheless fails for S+

N , as indicated by [23, Proposition
8.6], which states that there are no gaussian generators on S+

N .
As an alternative, we will be interested in the class of ad-invariant generating functionals (see
section 6 of [14]), ie the functionals invariant under the adjoint action. Linear functionals L that
are ad-invariant are exactly those such that there exist numbers (cs)s such that L(u

(s)
ij ) = csδij .

They are classified for O+
N in [14, Section 10] and in [23, Section 10.4] for S+

N . This approach to
the definition of a Brownian motion seems natural. Indeed, in the classical case of Lie groups, [30,
Propositions 4.4, 4.5] shows that ad-invariant processes (or, equivalently, conjuguate-invariant
processes) on simple Lie groups have a generator constituted of the Laplace-Beltrami operator
plus a part due to the Lévy measure. It therefore seems reasonable to define a Brownian motion
from within the class of ad-invariant functionals and this will be the approach which we will use
in this paper.

4.2.2 Heat semigroup on the free orthogonal quantum group

We will need for this section and the next one a definition of Chebyshev polynomials of the
second kind.
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Definition 4.2.1. The Chebyshev polynomials of the second kind are the polynomials Us given
by this relation

Us(X) =

⌊s/2⌋
∑

p=0

(−1)p
(

s− p
p

)

Xs−2p

They are an orthonormal family of C[X] for the scalar product defined via the semicircular
measure.

We recall the following proposition, found in [14, Proposition 10.3], showing that ad-invariant
functionals on O+

N are classified with pairs (b, ν) where b is a non-negative real number and ν a
finite measure with support on the interval [−N,N ].

Proposition 4.2.2. The ad-invariant generating functional on Pol(O+
N ) with characteristic pair

(b, ν) (b ≥ 0 and ν a measure on [−N,N ] such that
∫N

−N (N − x)ν(dx) < ∞) acts on the

coefficients of unitary irreducible representations of O+
N as:

L(u
(s)
ij ) =

δij
Us(N)

(

−bU ′
s(N) +

∫ N

−N

Us(x)− Us(N)

N − x ν(dx)

)

for s ∈ N, where Us denotes the sth Chebyshev polynomial of the second kind (considered on the
interval [−N,N ]).

The generator of the Markov semigroup, which is defined by: TL = (id⊗ L) ◦∆, acts as:

TL(u
(s)
ij ) =

1

Us(N)

(

−bU ′
s(N) +

∫ N

−N

Us(x)− Us(N)

N − x ν(dx)

)

u
(s)
ij

The Markov semigroup is given by Tt = exp(tTL). We will be interested in this paper in the case
b = 1 and ν = 0, which is not only the easiest, but also it is what seems to be the most logical
definition of what a Brownian motion should be. Indeed, the formula seems somewhat similar
to Hunt’s formula in the case of Lévy processes on Lie groups and it therefore seems natural to
take ν, which seems to play a role analogous to the Lévy measure of Hunt’s formula, equal to
zero.
Let us now investigate further this Markovian semigroup. We have:

L(u
(s)
ij ) = − δij

Us(N)
U ′
s(N)

Therefore, the eigenvalues of TL are given by:

λs = −U
′
s(N)

Us(N)

with eigenspace Vs = span{u(s)
ij , 1 ≤ i, j} and multiplicity ms = (dim u(s))2 = Us(N)2 (see

[14], section 10). Now, since the leading coefficient of Us is equal to one, we can write these
polynomials with the help of their zeros:

Us(x) = (x− x1) . . . (x− xs)
And therefore:

U ′
s(x)

Us(x)
=

s∑

k=1

1

x− xk
for x ∈ R\{x1, . . . xs}. We will need the following classical lemma about Chebyshev polynomials,
which will be useful to us in this section and also in the next.



4.3. ULTRACONTRACTIVITY AND HYPERCONTRACTIVITY 27

Lemma 4.2.3. The zeros of Us are comprised between −2 and 2.

Proof. We will use the fact that the Chebyshev polynomials of the second kind constitute an
orthonormal family with regard to Wigner’s semicircle law 1

π

√
4− x2 on [−2, 2]. Let ∈ N. Let

us denote by S = {y1, . . . , yl} the set of all zeros of Us in (−2, 2) that have an odd multiplicity.
We set Q =

∏l
k=1(X − xk). It is obvious that Q divides Us. Let us now assume that degQ <

s = degUs. Therefore, we have:
∫ 2

−2
Q(x)Us(x)

1

π

√

4− x2dx = 0

But the very definition of Q means that the zeros of UsQ that are in (−2, 2) have an even
multiplicity, ie UsQ has a constant sign on this interval. For the integral to be zero, we must
have UsQ = 0, which is absurd. Therefore we must have Us = Q and this proves the lemma.

We thus have the following lemma:

Lemma 4.2.4. For N ≥ 2,

s

N + 2
≤ −λs =

U ′
s(N)

Us(N)
=

s∑

k=1

1

N − xs
≤ s

N − 2

where, for N = 2, we take the convention that 1/0 =∞.

4.2.3 Heat semigroups on the Free Permutation quantum group

We rely on the results of [23] for S+
N . We consider semigroups with generating functionals defined

by:

L(u
(s)
ij ) = − δijU

′
2s(
√
N)

2
√
NU2s(

√
N)

We follow the same reasoning as before. The eigenvalues are:

λs = − U ′
2s(
√
N)

2
√
NU2s(

√
N)

with eigenspace Vs = {u(s)
ij , 1 ≤ i, j} and multiplicity ms = U2s(

√
N)2. We finally find the

estimate:

Lemma 4.2.5. For N ≥ 4,

s√
N(
√
N + 2)

≤ −λs =
1

2
√
N

2s∑

k=1

1√
N − xk

≤ s√
N(
√
N − 2)

where, for N = 4, we take the convention that 1/0 =∞.

4.3 Ultracontractivity and hypercontractivity

When we need to distinguish the semigroups, we will denote by TOt (resp, TSt ) the semigroup
we introduced on O+

N (resp. S+
N )
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4.3.1 Ultracontractivity

We say that a semigroup Tt is ultracontractive if it is bounded from L2 into L∞ for all t > 0.
In the sequel, we will denote by ||.||∞ = ||.|| the operator norm and by ||x||pp = h((x∗x)p/2) the
p-norm (h being the Haar state). We will prove the following result:

Theorem 4.3.1. Let Tt be a semigroup on a compact quantum group, such that the following
assumptions hold:

• The subspaces Vs spanned by the coefficients of the irreducible corepresentations us are
eigenspaces for the generator TL of the Markov semigroup, ie:

TLx = λsx

for x ∈ Vs
• We have an estimate of the form λs ≤ −αs for some α > 0.

• We have an inequality of the form:

||x||∞ ≤ (βs+ γ)||x||2

for x ∈ Vs, with β, γ ≥ 0 and β, γ are independant of s.

Then, Tt is ultracontractive: ||Ttx||∞ ≤
√

f(t)||x||2, where:

f(t) =
β2e−2αt(1 + e−2αt) + 2βγe−2αt(1− e−2αt) + γ2(1− e−2αt)2

(1− e−2αt)3
.

Proof. We have for x =
∑

s xs with xs ∈ Vs:

||Ttx||∞ ≤
∑

s∈N

||Ttxs||∞ =
∑

s

eλst||xs||∞

≤
∑

s

e−αst||xs||∞ ≤
∑

s

e−αst(βs+ γ)||xs||2

≤
(
∑

s

(βs+ γ)2e−2αst

)1/2(
∑

s

||xs||22
)1/2

=
√

f(t)||x||2

where we used the Cauchy-Bunjakowski-Schwarz inequality in the second to last line.
The computation of f(t) =

∑

s(β
2s2 + 2βγs+ γ2)e−2αst is done via the classical series:

∑

k∈N

e−λk =
1

1− e−λ

∑

k∈N

ke−λk =
e−λ

(1− e−λ)2

∑

k∈N

k2e−λk =
e−λ(1 + e−λ)

(1− e−λ)3
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Let us mention the following nice consequence

Corollary 4.3.2. We have for the heat semigroup on O+
N (resp. S+

N ):

‖Ttx‖∞ ≤ f(t/2)‖x‖1

with f the same function as in the previous Theorem.

Let us remark that, when t goes to zero, f(t) is equivalent to 1/t3. On R
d, the behavior

when t goes to zero of a heat semigroup is in 1/td/2, as can be seen e.g. in [45, Property Rn,
section II.1], so that we have here a behavior as if we were in "dimension" 6.

Proof. We are following the reasoning of [6, Corollary 3].
The semigroup we consider are self-adjoint on L2(G, h). Indeed, by [14, Remark 4.7], it follows
from the fact that L(u

(s)
ij ) = L(u

(s)
ji ). By self-adjointness, we can dualize the inequality of

Theorem 4.3.1 so as to obtain ‖Ttx‖2 ≤
√

f(t)‖x‖1. We can then combine it to get:

‖Ttx‖∞ ≤
√

f(t/2)‖Tt/2x‖2 ≤ f(t/2)‖x‖1

As a consequence of the Theorem, we deduce that the semigroup we considered on the free
Orthogonal quantum group is ultracontractive. Indeed, [8, Proof of Theorem 2.2] shows that
there exists a constant D (depending on N) such that:

||x||∞ ≤ D(s+ 1)||x||2

when x ∈ Vs. Thus we can apply Theorem 4.3.1 with α = 1/(N + 2) and β = γ = D.
In the same way, [7, Theorem 4.10] shows that there exists a constant C depending on N such
that on S+

N and for x ∈ Vs, we have:

||x||∞ ≤ C(2s+ 1)||x||2

This means that we can obtain ultracontractivity for our semigroup on S+
N by applying Theorem

4.3.1 with α = 1√
N(

√
N+2)

, β = 2C and γ = C.

4.3.2 Special cases O
+
2 and S

+
4

We can say something more in the case of O+
2 . Indeed, we have Us(2) = s+ 1 and, by differen-

tiating the recurrence relation, we get U ′
s(2) = s(s+ 1)(s+ 2)/6. This therefore means that we

have an exact value for the eigenvalues:

λs = −s(s+ 2)

6

If we then take up the computations from Theorem 4.3.1, we see that we have a somewhat better
estimation:

||Ttx||∞ ≤
√

D2
∑

s

e− s(s+2)
3

t(s+ 1)2||x||2
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How to compute the exact value of this series does not seem obvious. We can nevertheless find
a better estimate for the "dimension" of the semigroup (cf remark following Corollary 4.3.2).
Indeed, we first observe that:

∑

s

e− s(s+2)
3

t(s+ 1)2 ≤
∑

s

e− s2

3
t(s+ 1)2

Moreover,
∞∑

s=0

e− s2

3
t ≤ 1 +

∞∑

s=1

se− s2

3
t ≤ 1 +

∞∑

s=1

s2e− s2

3
t

This yields an inequality:

||Ttx||∞ ≤
√

g(t)||x||2 with g(t) = 4D2
∞∑

s=1

s2e− s2

3
t +D2

Now, we will try to estimate the series. The function s 7→ s2e− s2t
3 is decreasing on [

√
3
t ,+∞[

and increasing on [0,
√

3
t ]. Let’s set s0 =

√
3
t . For fixed t, we have:

∫ s0

0
s2e− s2t

3 ds ≤
s0∑

s=1

s2e− s2t
3 ≤

∫ s0

0
s2e− s2t

3 ds+
3

et
∫ ∞

s0

s2e− s2t
3 ds ≤

∞∑

s=s0

s2e− s2t
3 ≤ 3

et
+

∫ ∞

s0

s2e− s2t
3 ds

We do the change of variable u = s
√

t/3:

(
3

t

)3/2 ∫ 1

0
u2e−u2

du ≤
s0∑

s=1

s2e− s2t
3 ≤

(
3

t

)3/2 ∫ 1

0
u2e−u2

du+
3

et
(

3

t

)3/2 ∫ ∞

1
u2e−u2

du ≤
∞∑

s=s0

s2e− s2t
3

≤ 3

et
+

(
3

t

)3/2 ∫ ∞

1
u2e−u2

du

And by combining:

(
3

t

)3/2 ∫ ∞

0
u2e−u2

du ≤ 3

et
+

∞∑

s=0

s2e− s2t
3

≤ 2
3

et
+

(
3

t

)3/2 ∫ ∞

0
u2e−u2

du

In other words, when t goes to zero, g(t) behaves like t−3/2 and, in the spirit of the remark
following Corollary 4.3.2, this yields a "dimension" 3 for the semigroup.
The same reasoning yields for S+

4 that the eigenvalues are:

λs = −s(s+ 1)

6

And the exact same computations can be done to find that the "dimension" of the semigroup on
S+

4 is also 3.
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4.3.3 Hypercontractivity

Definition 4.3.3. We say that a semigroup Tt is hypercontractive if for each 2 < p <∞, there
exists a τp > 0 such that for all t ≥ τp we have:

‖Ttx‖p ≤ ‖x‖2 (4.1)

Let us remark that if the semigroup Tt is hypercontractive, then the inequality (4.1) is also
true for 1 ≤ p ≤ 2 because for such a p and for any x ∈ C(G) we have ‖Ttx‖p ≤ ‖x‖p ≤ ‖x‖2.
We can also notice that due to duality, we have:

‖Ttx‖2 ≤ ‖x‖q

for t ≥ τp and q such that 1/p + 1/q = 1. Therefore, for t big enough, Tt is also a contraction
from Lq to L2 for any 1 < q < 2.

Theorem 4.3.4. The semigroup TOt (resp. TSt ) we consider on O+
N (resp. S+

N ) is hypercon-
tractive.

Proof. We use the following inequality shown in [37, Theorem 1], for 2 < p <∞. This inequality
can indeed be applied in our setting, as L∞(G) = Cr(G)′′ is a von Neumann algebra and h is a
faithful, finite normal trace on it. Thus,

‖x‖2p ≤ ‖h(x)1‖2p + (p− 1)‖x− h(x)1‖2p

To use this inequality, we will write x = h(x)1 +
∑

s≥1 xs with xs ∈ Vs. We notice that
h(Tt(x))1 = Tt(h(x)1) because the Vs are eigenspaces for Tt. Therefore, we have:

‖Tt(x)‖2p ≤ ‖Tt(h(x)1)‖2p + (p− 1)‖Tt(x− h(x)1)‖2p

≤ |h(x)|2 + (p− 1)




∑

s≥1

||Tt(xs)||p





2

≤ |h(x)|2 + (p− 1)




∑

s≥1

eλst||xs||p





2

≤ |h(x)|2 + (p− 1)




∑

s≥1

eλst||xs||∞





2

≤ |h(x)|2 + (p− 1)




∑

s≥1

eλst(βs+ γ)||xs||2





2

≤ |h(x)|2 + (p− 1)
∑

s≥1

(

(βs+ γ)eλst
)2∑

s≥1

||xs||22

≤ ||x||22

for t ≥ τp and τp such that:
(p− 1)

∑

s≥1

(βs+ γ)2e2λsτp ≤ 1
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Proposition 4.3.5. Hypercontractivity is achieved for TOt at least from the time τ
(O)
p on which

verifies:

τ (O)
p = −(N + 2)

2
lnX

and X is the smallest real positive root of
X3 − 3X2 + 4X

(1−X)3
=

1

(p− 1)D2

Hypercontractivity is achieved for TSt at least from the time τ
(S)
p on which verifies:

τ (S)
p = −

√
N(
√
N + 2)

2
lnY

and Y is the smallest real positive root of
Y 3 − 2Y 2 + 9Y

(1− Y )3
=

1

(p− 1)C2

Proof. We use the expression:

(p− 1)
∑

s≥1

(βs+ γ)2e2λsτp = 1

drawn from the proof of Theorem 4.3.4. The precise value of the eigenvalues is too cumbersome
to compute, therefore we use a minoration of them:

λs ≥ − s

N − 2
for O+

N

λs ≥ − s√
N(
√
N − 2)

for S+
N

By then setting X = exp(−2τ
(O)
p

N−2 ) and Y = exp(− 2τ
(S)
p√

N(
√
N−2)

) and using the classical series that

were already used in the proof of Theorem 4.3.1, we obtain the desired equation for X and Y .
The fact that the root must be the smallest real one comes from the fact that we need to take
the biggest time τp such that the inequalities

X3 − 3X2 + 4X

(1−X)3
≤ 1

D2(p− 1)

Y 3 − 2Y 2 + 9Y

(1− Y )3
≤ 1

(p− 1)C2

are verified always for t ≥ τ . But X and Y diminish when the time increase. Therefore we need
to take the smallest positive root.

Nevertheless, there is no reason for τ (O)
p (resp. τ (S)

p ) to be the optimal times.

4.4 Further properties of the semigroups

We will note Pol(G)+ the subset of Pol(G) consisting of all such x such that |x| = x.
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4.4.1 Spectral gap

Definition 4.4.1. We say that Tt verifies a spectral gap inequality with constant m > 0 if we
have for all x ∈ Pol(G)+:

m||x− h (x) ||22 ≤ −h (xTLx)

Proposition 4.4.2. Our semigroup TOt on O+
N verifies the spectral gap inequality with constant

m = 1
N+2 .

Proof. The eigenvalues of the generator TL are of the form:

−U
′
s (N)

Us (N)
= −

s∑

i=1

1

N − λi

Because −2 ≤ λi ≤ 2, we get U ′
s(N)

Us(N) ≥ s
N+2 .

Let us now write x =
∑

s xs. We then get:

h (xTLx) =
∑

s

−U
′
s (N)

Us (N)
||xs||22

Using the fact that the Vs are in orthogonal direct sum, we deduce that: −h (xTLx) ≥ 1
N+2 ||x||22.

But, we also see that ||x− h (x) ||2 ≤ ||x||2 and thus we finally get:

||x− h (x) ||22 ≤ − (N + 2)h (xTLx)

We can prove the following in the same way:

Proposition 4.4.3. Our semigroup TSt on S+
N verifies the spectral gap inequality with constant

m = 1
2
√
N(

√
N+2)

.

4.4.2 Logarithmic Sobolev inequalities

Hypercontractivity is closely related to a class of inequalities called Logarithmic Sobolev in-
equalities, or, shorter, log-Sobolev inequalities. See, e.g., [36, Theorem 3.8]. There is nothing
new in our argumentation and we will use many arguments similar to those contained in [36];
we only give it here for clarity’s sake and so as to have a condensed proof.

Proposition 4.4.4. There exist constants c, t0 > 0, such that, if we denote q (t) = 1 + e2t/c, we
then have for 0 ≤ t ≤ t0:

||TAt : L2 → Lq(t)|| ≤ 1

where A = O+
N or S+

N

Proof. For simplicity’s sake, we will drop the exponent A of TAt .
We want to use Hadamard’s three line lemma. Let z be a complexe number whose real part is
in [0, 1]. Let x =

∑

ijs xs be an element of Pol (A) and we define:

Tt0z (x) =
∑

ijs

eλst0zxs
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where we take for t0 the optimal time for hypercontractivity Tt : L2 → L4. We note that this
definition is a holomorphic continuation of the semigroup Tt. We now set (with c = 2t0/ ln 3):

φ (z) = h
[

|Tt0z (x) |1+e2t0z/c
]

We must first observe that φ is holomorphic on its definition domain. Indeed, we may write:

φ (z) = h

[

exp

(

1 + e2t0z/c

2
log (Tt0z (x)∗ Tt0z (x))

)]

We shall note ζ (z) the argument of h. Let w be a complex such that z+w is still in the domain.
Then, by using Taylor expansions:

ζ (z + w)− ζ (z) =

e
1+e2t0z/c

2
log[Tt0z(x)∗Tt0z(x)+

∑

s
λst0w̄Ttoz(x)+

∑

s
λst0wTtoz(x)∗+o(||w||)]

−e 1+e2t0z/c

2
log Tt0z(x)∗Tt0z(x)

By using the Taylor series expansion of the Logarithm and the Exponential we get the existence
of the holomorphic derivative.
Let now y be a real. We observe:

|φ (iy) | = |h
[

|x|1+e2t0iy/c
]

|

≤ h
[

|x|2
]

≤ ||x||22

because
∣
∣
∣|x|exp(2ist0/c)

∣
∣
∣ ≤ |x|Re(exp(2t0is/c)).

We also have:

|φ (1 + is) | = |h
[

|Tt0 (x) |1+e2t0/ce2ist0/c
]

|

≤ h
[

|Tt0 (x) |1+exp(2t0/c)
]

≤ ||x||42

Where the last inequality was obtained thanks to the L2 → L4 hypercontractivity (indeed,
1 + e2t0/c = 4 since c = 2t0/ ln 3).
From now on we will assume that ||x||2 = 1. Let t be positive. By applying Hadamard’s three
lines lemma, we get:

||Tt (x) ||q(t)q(t) = |φ (t/t0) |

≤ ||x||2(1−t/t0)
2 ||Tt0x||

4t/t0
4 ≤ 1

Theorem 4.4.5. For all x ∈ A such that x = |x| and with the same assumptions as in Propo-
sition 4.4.4, we have the following inequality:

h
(

x2 ln x
)

− ||x||22 ln ||x||2 ≤ −
c

2
h (xTLx)

where c = 2t0/ ln 3.
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Proof. We define : F (t) = ||xt||q(t), where we note xt = Ttx. Because of Proposition 4.4.4, we
know that logF (t) ≤ logF (0). Hence:

d

dt
logF (t)|t=0 ≤ 0

Let us calculate this term:

d

dt
log ||xt||q =

d

dt

(
1

q
log ||xt||qq

)

= − q̇
q

log ||xt||q +
1

q||xt||qq
d

dt
||xt||qq

We will calculate this last derivative.

1

∆t

[

||xt+∆t||q(t+∆t)
q(t+∆t) − ||xt||qq

]

=
1

∆t
h
(

x
q(t+∆t)−1
t+∆t (xt+∆t − xt)

)

︸ ︷︷ ︸

K1

+
1

∆t
h
[(

x
q(t+∆t)−1
t+∆t − xq(t+∆t)−1

t

)

xt
]

︸ ︷︷ ︸

K2

+
1

∆t
h
[(

x
q(t+∆t)−1
t − xq(t)−1

t

)

xt
]

︸ ︷︷ ︸

K3

Let us then treat the three terms separately:

1. The first one K1 converges towards h
[

xq−1
t TLxt

]

.

2. The second one K2 converges towards 0. This is proven just as in [36].

3. The third one K3 can be written as follows We assume first that x is invertible in order
to use the holomorphic functional calculus:

K3 =
1

∆t

[

||xt||q(t+∆t)
q(t+∆t) − ||xt||qq

]

=
1

∆t
τ

[∫ 1

0
ds

d

ds
x
q(t+s∆t)
t

]

=
1

∆t
h

[∫ 1

0
ds

d

ds
eq(t+s∆t) log xt

]

= τ

[∫ 1

0
ds log xtq̇ (t+ s∆t) eq(t+s∆t) log xt

]

And this converges towards τ (q̇xqt log xt).
Now, what happens if x is not invertible? We introduce ψn(z) = zq ln(z + 1/n) which is
defined on [0,+∞[ and ψ(z) = zq ln z which is also defined (by continuity) on [0,+∞[. It
is easy to see that (ψn − ψ)(0) = 0 and ψn − ψ is increasing and pointwise converging to
zero when n goes to infinity. By Dini’s Theorem, this means that ψn converges towards ψ
uniformly on the compact subsets of [0,+∞[. This will allow us to intervert limits, since
the spectrum is anyways compact. We replace in the same wise z 7→ zq by z 7→ (z+ 1/n)q.
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Therefore we can take up the above calculation in the following way:

K3 =
1

∆t

[

||xt||q(t+∆t)
q(t+∆t) − ||xt||qq

]

=
1

∆t
h

[∫ 1

0
ds

d

ds
lim
n→∞(xt + 1/n)q(t+s∆t)

]

= lim
n

1

∆t
h

[∫ 1

0
ds

d

ds
eq(t+s∆t) log(xt+1/n)

]

= lim
n
h

[∫ 1

0
ds log(xt + 1/n)q̇ (t+ s∆t) eq(t+s∆t) log(xt+1/n)

]

= h

[∫ 1

0
ds log xtq̇ (t+ s∆t) eq(t+s∆t) log xt

]

Putting all of this together we obtain our inequality, because q (0) = 2, q̇ (0) = 2/c.
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5

Convergence of the (classical)
Brownian motion on U(nd)

In this chapter we show that the Brownian motion on the (classical) unitary group converges
block-wise, when the size of the matrices goes to infinity, to a quantum Lévy process on the
unitary dual group. After having recalled a previous result by Biane [5] and given a new proof
of it, relying on stochastic calculus and combinatorial considerations, we will introduce the main
theorem of this section, Theorem 5.2.1, which generalizes Biane’s result. We prove it by using
the same method. In the course of a later chapter, we will see another proof of Theorem 5.2.1,
as it will be seen to be the special case of Theorem 6.2.2. Nevertheless, the author thinks that
the method presented here is interesting for itself and therefore deserves a chapter.

This chapter is taken from my first article [44], which I wrote alone.

5.1 Biane’s result about the Brownian motion on the Unitary
group

In all the following, we assume that a unital noncommutative probability space (A, φ) be given.
Let us remind what we mean by that definition: a unital noncommutative probability space is a
couple (A, φ) where A is a unital ∗-algebra and φ is a linear functional on A such that φ(a∗a) ≥ 0
for each a ∈ A and φ(1) = 1.
We will also write by δab Kronecker’s symbol, which is equal to 0 when a 6= b and is equal to 1
when a = b. Let us recall following definitions and result:

Definition 5.1.1. We denote by (νt)t≥0 the same family of measures on the unit circle as in
[5], ie νt is the only probability measure such that ξνt(z) = z exp[1

2
1+z
1−z ], where ξνt is the inverse

function of
ψνt

1+ψνt
and ψνt =

∫ zζ
1−zζ dνt(ζ) where the integration is done on the unit circle.

Definition 5.1.2. A free multiplicative Brownian motion is a family (Ut)t≥0 such that:

• For every 0 ≤ t1 < t2 < . . . < tn, the family
(

Ut1 , Ut2U
−1
t1 , . . . , UtnUtn−1

)

is free.

• For every 0 ≤ s < t the element UtU
−1
s has a distribution νt−s.

38
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In his paper [5], Biane proved that Brownian motion on the group U (d) converges, as d
goes to infinity, towards a multiplicative free Brownian motion. To do this, he proves first the
convergence of the marginals using representation theory arguments and secondly the freeness
of the increments. We suggest here that there is an other way to prove the convergence of the
marginals based on the Itô formula.
Let us first observe that the Brownian motion on the Unitary group U (d) can be defined as the
unique solution of:

dU
(d)
t = idHtU

(d)
t − 1

2
U

(d)
t dt

with initial condition U0 = I. Note that we denote by i the complex number, so as to differentiate
it from the index i. In the same way we write d the differential operator so as to distinguish
it from the size of the matrices. In this equation, we have noted by Ht a Brownian motion on
hermitian matrices defined by:

• The family (Hij(t))1≤i≤j≤d is an independent family of random variables

• For 1 ≤ i ≤ d, we have Hii(t) a gaussian variable N (0, 1
d)

• For 1 ≤ k ≤ j ≤ d, we have Hkj(t) = H
(1)
kj (t) + iH

(2)
kj (t) with H

(1)
kj (t) and H

(2)
kj (t) two

independent gaussian variables N (0, 1
2d)

• The matrix H(t) is hermitian for each t.

In particular this means that each entry of Ht is of variance 1/d.

Note: we shall omit the exponent (d) when there is no confusion possible.
Let us now denote by fk1,...,kr the following function of t:

fk1,...,kr = E

[

tr
(

Uk1
t

)

. . . tr
(

Ukr
t

)]

where the trace is normalized1 by 1/d. We will find a differential equation involving those
functions.

Lemma 5.1.3. We have the following formula:

d (Ui1j1 . . . Uirjr) = martingale − 1

2

r∑

k=1

Ui1j1 . . . Uirjr dt

− dt

d

∑

1≤p<q≤r
Ui1j1 . . . Uipjq . . . Uiqjp . . . Uirjr

This means that the non-martingale part is constituted by two terms, the first one where nothing
is changed in the indices and the second one where you have switched two indices: jq replaces
jp and jp replaces a jq.

Proof. This is obtained by using Itô’s formula and by reasoning for each element in the matrix,
because:

d (Ui1j1 . . . Uirjr) =
r∑

k=1

Ui1j1 . . . (dUikjk) . . . Uirjr +
∑

1≤k<l≤r

∏

s 6=k,l
Uisjsd [Uikjk , Uiljl ]

1The convention we adopt in this chapter is following: whenever we mean the normalized trace, we write tr
and we write T r whenever we speak of the usual trace.
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The [., .] denotes the quadratic variation. We remark that:

∀i, j,dUij(t) = i
d∑

r=1

dHirUrj −
1

2
Uijdt

and

d[Hikrk
, Hilrl

] = d[H
(1)
ikrk

+ iH
(2)
ikrk

, H
(1)
ilrl

+ iH
(2)
ilrl

]

But we know that the quadratic variation of two processes is zero if they are independent. Thus,
d[Hikrk

, Hilrl
] is equal to:

• If ik = il and jl = jk, d[Hikjk , Hiljl ] = 1
2d − 1

2d = 0

• If ik = jl and jk = il, d[Hikjk , Hiljl ] = 1
2d + 1

2d = 1
d

• And it is equal to zero in all other cases.

And thus, the quadratic variation can be expressed as:

d[Uikjk , Uiljl ] = i
d∑

rl,rk=1

UrkjkUrljld[Hikrk
, Hilrl

] + martingale

= iUiljkUikjl

When we take the expectation, the martingale part vanishes.
If we expand fk1,...,kr , we get:

fk1,...,kr =
1

dr
E[

d∑

i11,...,i
1
k1...

ir1,...,i
r
kr

=1

Ui11i12
. . . Ui1

k1
i11
. . . Uir1ir2 . . . Uirkr

ir1
]

To get a system of differential equations we will use the former formula that we have obtained
thanks to Itô’s Lemma. Especially we must see how the last term, switching p and q, can be
rewritten in terms of the functions fk1,...,kr . There are actually two cases to study: first when p
and q come from the same trace and second when they come from different traces.
When they come from the same trace: If for instance p and q both come from the mth

trace, the contribution of this trace is of the kind:

1

dr
. . . Uim1 im2 . . . Uimp imp+1

. . . Uimq imq+1
. . . Uim

km
im1
. . .

So when we do the switching it yields:

1

dr
. . . Uim1 im2 . . . Uimp imq+1

. . . Uimq imp+1
Uimq+1i

m
q+2

. . . Uim
km

im1

And when we sum over all those indices we see that we actually get: dfk1,...,km−(q−p),q−p,...,kr
, ie

the switching has produced one more trace.
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When they come from two different traces: We shall here suppose that p comes from the
uth trace and q comes from the vth trace, with u < v. The contribution of those two traces are:

1

dr
. . . Uiu1 iu2 . . . Uiup iup+1

. . . Uiu
ku
iu1
. . . Uiv1iv2 . . . Uivq ivq+1

. . . Uiv
kv
iv1
. . .

Switching p and q yields to:

1

dr
. . . Uiu1 iu2 . . . Uiup ivq+1

. . . Uiu
ku
iu1
. . . Uiv1iv2 . . . Uivq iup+1

Uiq+1iq+2 . . . Uivkv
iv1
. . .

And so if we sum over all indices we see that we get 1
dfk1,...ku+kv ,...kr , ie we have merged two

traces together.

So, if we put it all together we see by using Lemma 5.1.3 that the system of differential
equations we get is:

f ′
k1,...,kr

= −k1 + . . . kr
2

fk1,...,kr −
r∑

κ=1

kκ∑

l=1

(kκ − l) fk1,...,kκ−l,l,...,kr

− 1

d2

∑

1≤κ<λ≤r

kκ∑

p=1

kλ∑

q=1

fk1,...,kκ+kλ,...

Let us observe here that we have a nice combinatorial structure for these equations. Indeed,
we can interpret (k1, . . . , kr) as an integer partition for the integer k1 + . . . + kr. By doing so,
we see that the equation only involves partitions for the same integer because we either split an
integer into two parts or we merge two integers into one. These equations thus have the same
structure as the equations in Proposition 2.3 in [28] via the identification between a permutation
and the length of the cycles of its canonical decomposition.
Let us also note that an integer l has only finitely many partitions.2 So that means that each
function is involved in a system of finitely many linear differential equations with fixed initial
conditions.
What can we say about the convergence of this family of functions? We actually have that for
each r ≥ 1 and every k1, . . . , kr ≥ 1, the function f (d)

k1,...,kr
converges, as d goes to infinity, towards

a function fk1,...,kr verifying:

f ′
k1,...,kr

= −k1 + . . .+ kr
2

fk1,...,kr −
r∑

κ=1

kκ∑

l=1

(kκ − l) fk1,...,kκ−l,l,...,kr

Indeed, let us fix such a partition k1 + . . .+ kr = k. If we note

P (k) := {(k1, . . . , kr)|r ≥ 0, k1 + . . .+ kr = k}

the set of partitions of the integer k, we have just shown that this set if finite. The function
f

(d)
k1,...,kr

thus only shows up in a finite number of linear differential equations with constant

2Without going into the details of the theory of integer partitions, we may find a gross upper bound for this
number in the following way: A partition of l cannot have more than l parts. So let’s consider a line consisting
of l + l − 1 = 2l − 1 boxes. We then put crosses in l − 1 boxes. Each such cross helps separate two parts of the

partition. For instance: ��❅❅��❅❅ ��❅❅ represents the partition (1, 1, 2) of the integer 4. Hence we
see that the number of such partitions is bounded by

(
2l−1
l−1

)
, which is finite.
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coefficients. This finite number of differential equations can be rewritten in a matricial form:
let Φ(d)

t be a vector in C
♯P (k) consisting of all functions f (d)

p1,...,pl where p1, . . . , pl is a partition of
the same integer k. Then Φ(d) is solution of a differential equation of the form:

(Φ(d))′ = A(d)Φ(d)

where A(d) is a (constant) matrix formed with the coefficients of our differential equations. It is
well-known that Φ(d) is thus of the form Φ(d) = Φ

(d)
0 eA

(d)t. But the coefficients of the equations
for f (d), namely A(d), converge towards the coefficients for the equation of f , namely A, and
thus Φ(d) converges towards Φ, or in other words, f (d)

k1,...,kr
converges towards fk1,...,kr .

We will now denote by Fk1,...,kr the function φ
(

uk1
t

)

. . . φ
(

ukr
t

)

where u is here a free mul-
tiplicative Brownian motion. To prove the convergence of the marginals it will be enough to
prove that the family of functions F verifies the differential equations system:

F ′
k1,...,kr

= −k1 + . . . kr
2

Fk1,...,kr −
r∑

κ=1

kκ∑

l=1

(kκ − l)Fk1,...,kκ−l,l,...,kr

Indeed, if we have proven it, then it implies that for all r ≥ 1 and all 0 ≤ t1 ≤ . . . ≤ tr the
function f (d)

t1,...,tr converges towards Ft1...tr when d goes to infinity. In particular, if we take r = 1,
we see that we have the convergence of the marginals (in moments).
In order to prove that formula we must remark that a free multiplicative Brownian motion is
given by a free stochastic equation with initial conditions u0 = 1 (1 is the unit element of A):

dut = idXtut −
1

2
utdt

where Xt is a free additive Brownian motion. This result is stated in [5, Theorem 2]. We will
simplify the calculations by putting Vt := et/2ut. Using the free analogue of Itô’s Lemma (see
e.g. [27, Theorem 5]), Biane demonstrated following formula

dV n
t = i

n∑

k=0

V k
t dXtV

n−k
t −

n−1∑

k=1

kV k
t φ

(

V n−k
t

)

dt

In other words this means:

dunt = i
n∑

k=0

uktdXtu
n−k
t −

n−1∑

k=1

kukt φ
(

un−k
t

)

dt− n

2
unt dt

Taking the trace of it we obtain:

φ (unt )′ = −
n−1∑

k=1

kφ
(

ukt

)

φ
(

un−k
t

)

− n

2
φ (unt )

And so it finally yields the following system of differential equations:

F ′
k1,...kr

= −k1 + . . .+ kr
2

Fk1...kr −
r∑

κ=1

kκ−1∑

p=1

pFk1,...,p,kκ−p,...,kr

And this is exactly the system we wanted because Fk1,...,p,kκ−p,... = Fk1,...,kκ−p,p,....
To put it in a nutshell: we were able to reprove Biane’s result by using a different method
(by comparing systems of differential equations) to prove the convergence of marginals. The
freeness of the increments can still be proven as did Biane but it will also follow from the results
of section 4. We will now try to use that alternative method to generalize Biane’s result. To do
that we will need the concept of dual groups.
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5.2 The main Theorem

How can express this result in the language of quantum Lévy processes? Can we relate it to
dual groups? We could indeed generalize Biane’s question by taking U 〈d〉

t a Brownian motion on
the Unitary Group U(nd), where n is a fixed integer. The matrix U 〈d〉

t can be decomposed in n2

blocks of size d×d. In the sequel of the article we will denote by [U
〈d〉
t ]ij the (i, j)th block of our

Brownian motion. For each d we thus get a quantum stochastic process on the Dual Unitary
Group by setting for 0 ≤ s ≤ t:

j
〈d〉)
st : Unc

n → (A, φ)

uij 7→ [U
〈d〉
t ]ij

We will in the sequel of the article omit the exponent 〈d〉 whenever no confusion can arise.
The question that is natural to ask and that generalizes Biane’s result is whether or not jst
converges to a Lévy process on U〈n〉 in the limit when d goes to infinity.
We will show that we have following result

Theorem 5.2.1 (Main Theorem). We assume that φ is tracial.
Let X = (Xij)1≤i,j≤n be a matrix whose entries are free stochastic variables verifying that:

• For each i, Xii is an additive free Brownian motion.

• For every i 6= j, Xij = X
(1)
ij + iX

(2)
ij with

√
2X

(1)
ij and

√
2X

(2)
ij who are two additive free

Brownian motions who are free one with another.

• For each i, j we have Xij = X∗
ji.

• The family (Xij)1≤i≤j≤n is free.

Let also Ψ = (Ψij) be a free stochastic process defined by the free stochastic equation with initial
condition Ψ0 = I:

dΨt =
i√
n
dXtΨt −

1

2
Ψtdt

Through Ψ we may define a free Lévy process J through3:

Jst : Unc
n → (A, φ)

uij 7→ Ψij

Then, (j
〈d〉)
st ) converges towards (Jst) as d goes to infinity.

In the rest of this chapter we will give a proof of Theorem 5.2.1 by combinatorial and
stochastic calculus arguments. In Section 6.2, we give another proof by showing that Theorem
5.2.1 is actually a special case of a more general result given by Theorem 6.2.2.

3By calculating d(
∑

k
Ψ∗

kiΨkj) we find zero. Moreover, when we calculate d(
∑

k
ΨikΨ∗

jk) we find a free stochas-
tic diffenrential equation that is verified by the constant δij . By unicity of the solution (see e.g. [27][Theorem 4]),
we have that

∑

k
ΨikΨ∗

jk = δij . Thus Jst respects the defining relations of U〈n〉
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5.3 Convergence of the marginals

We will first study the convergence of the marginals. Hence we will fix in this section a t ≥ 0.
To prove such a convergence we must study the moments of the type φ◦j0t(uǫ1i1j1 . . . u

ǫr
irjr

), where
ǫ1, . . . , ǫr ∈ {∅, ∗}. For convenience, we will identify ∅ with 0 and ∗ with 1. We will use exactly
the same method as in the first section but, because there are n2 variables, we will have many
more indices.

5.3.1 Notations

We consider the dual group U〈n〉 which is generated by n2 variables. We will need to introduce
some notations to describe all the indices that will be involved.
From now on and until the end of the paper, when we have a matrix M ∈ Mnd(C), we will
denote:

• by Mij the (i, j)-matrix entry of M .

• by [M ]ij the (i, j)-block of size d× d of the matrix M

We denote by [I] the set [I] = {1, . . . , n}2×{0, 1}. For such a triple α = (i, j, ǫ), we will denote
[U ]α the d× d block [U ]ǫij where we identity ǫ = 1 with ∗ and ǫ = 0 with ∅.
We denote by I the set I = {1, . . . , nd}2×{0, 1}. For such a triple ρ = (µ, ν, ω), we will denote
Uρ the coefficient Uµν if ω = 0 and the coefficient Ūµν if ω = 1.
When Ψ is in Mn(A), with A a ∗-algebra, we denote by Ψα the element Ψǫ

ij .

5.3.2 A system of differential equations for the Brownian motion on U(nd)

To achieve our purpose we need to consider the family of functions (as always, we will omit the
exponents everytime we may do so without risk):

γ〈d〉
α11,...,αk11;...;α1r,...,αkrr

= E[tr([U ]α11 . . . [U ]αk11
) . . . tr(. . . [U ]αkrr

)]

where r ≥ 1; k1, . . . , kr ∈ N, αkl ∈ [I].
In other words, we take functions very similar to what we had before in the simpler case of the
convergence to Biane’s result. They still are the product of traces4. The difficulty arises here
from the fact that we consider blocks and that we thus have to consider all possible products of
the blocks and their adjoints. The indices we use specify which Uij appear and if they have a ∗
or not and the semicolumns separate two traces. We will, as previously, try to find a system of
differential equations. Let us fix the indices α11 . . . αkrr.
Again, we apply Lemma 5.1.3 in order to calculate the differential equation. For the sake of
simplicity let us first observe what happens if we suppose that there are no ∗ in our function
and we will later explain how to get the general case. As previously we treat separately the case
where the switch occurs inside a same trace and the case where it affects two distinct traces.
The switch occurs in the same trace: Let’s say that the switch is between p and q inside

4The renormalization is here done with a coefficient 1/d.
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the κth trace. Then, when we develop the traces, we see that the contribution of this trace, after
the switch, is of the type:

E[
∑

s11...skrr

. . . U(ipκ−1)d+spκ,(jqκ−1)d+sqκ
. . . U(iqκ−1)d+sqκ,(jpκ−1)d+spκ

. . .]

As we could have expected the κth trace will be divided into two distinct traces: we get
dγ...;i1κj1κ,...,ipκjqκ,iq+1,κjq+1,κ,...;ip+1,κjp+1,κ,...,iqκjpκ;... (we recall that the normalization constant we
now use for the trace is 1/d).
The switch concerns two distinct traces: If we do the calculations, we see that we reunite
these two traces and that we get a multiplicative factor 1/d.
So, if we put it all together (in the case we have no ∗ at all), the equation we will have is:

γ′
α11,...,αk11;...;...,αkrr

= −k1 + . . .+ kr
2

γα11,...,αk11;...;...,αkrr

−
r∑

κ=1

∑

1≤p<q≤kκ

1

n
γ...;α1κ,...,(ipκjqκ0),αq+1,κ,...;αp+1,κ,...,(iqκ,jpκ,0);...

+ O(
1

d2
)

Now, in the general case. We can remark that [U∗]ij = [U ]∗ji. We also have:

dUµν = i
d∑

τ=1

dHµτUτν −
1

2
Uµνdt

dŪµν = −i
d∑

τ=1

ŪτνdHτµ −
1

2
Ūµνdt

In turn this yields the more general Lemma:

Lemma 5.3.1. We have, for ρ1, . . . , ρr ∈ I:

d(Uρ1 . . . Uρr ) = −r
2
Uρ1 . . . Uρr dt

+ martingale part− dt

nd

∑

1≤p<q≤r
(−1)ωp+ωqζ〈d〉)

pq

where:

ζ〈d〉)
pq =







Uρ1 . . . Uµpνq . . . Uµqνp . . . Uρr if ωp = ωq = 0

Uρ1 . . . Ūµpνq . . . Ūµqνp . . . Uρr if ωp = ωq = 1
∑nd
τ=1 δµpνqUρ1 . . . Ūτνp . . . Uτνq . . . Uρr if ωp = 1, ωq = 0

∑nd
τ=1 δµpµqUρ1 . . . Uτνp . . . Ūτνq . . . Uρr if ωp = 0, ωq = 1

(5.1)

Proof. It is an application of Itô’s Lemma along with the observation that:

d[Uµν , Uθη] = −dt

nd
UθνUµη and d[Ūµν , Uθη] =

nd∑

τ=1

dt

nd
BτνBτηδµθ
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So, taking up the same calculations as before, we get the following system of differential
equations:

γ′
α11,... = −k1 + . . .+ kr

2
γα11,...

−
r∑

κ=1

∑

1≤p<q≤kκ

(−1)ǫpκ+ǫqκγ(p,q,κ)

+ O(
1

d2
)

where we note:
If ǫpκ = ǫqκ = 0:

γ(p,q,κ) = γ...;α1κ,...,(ipκjqκǫqκ),αq+1,κ,...;αp+1,κ,...,(iqκjpκǫpκ);...

That is, we have a switch exactly as before.
If ǫpκ = ǫqκ = 1:

γ(p,q,κ) = γ...;α1κ,...,αp−1,κ,(iqκjpκǫpκ),...;(ipκjqκǫqκ),...;...

That is, we also have here a switch as we have already seen.
If ǫpκ = 1, ǫqκ = 0:

γ(p,q,κ) =
n∑

t=1

δipκiqκγ...;α1κ,...,(tjpκǫpκ),(tjqκǫqκ),...;αp+1,κ...αq−1,κ;...

The structure is here a little more complicated, with a sum over t and t replacing the indices ip
and iq and everything situated between the places p and q gets located in a new trace.
If ǫpκ = 0, ǫqκ = 1:

γ(p,q,κ) =
n∑

t=1

δipκiqκγ...;α1κ,...,αp−1,κ,αq+1,κ,...;(tjpκǫpκ),...,(tjqκǫqκ);...

the structure is almost the same as in the previous case, with the only difference that the places
p and q and everything in between gets into a new trace.

5.3.3 A system of differential equations for the free stochastic process

We will now introduce:

Γα11,...;...;α1r,...,αkrr
= φ(Ψα11 . . .) . . . φ(Ψα1r . . .Ψαkrr

)

To prove the convergence of the marginals, we will show that Γ verifies the system of differ-
ential equations that we have just found, in the limit where d goes to infinity.
By using free stochastic calculus we can see that the quadratic variation is dXijdXkl = δilδjkdt.
Moreover, the free stochastic differential equation yields, coefficient by coefficient:

dΨuv =
i√
n

n∑

k=1

dXukΨkv −
1

2
Ψuvdt

and

dΨ∗
uv = − i√

n

n∑

k=1

Ψ∗
kvdXku −

1

2
Ψ∗
uvdt

This allows us to prove following technical Lemma:
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Lemma 5.3.2. For each r ≥ 2 and all indices we have:

d(Ψα1 . . .Ψαr ) = −rdt
2

Ψα1 . . .Ψαr

+
i√
n

r∑

l=1

n∑

k=1

(−1)ǫlΨα1 . . .

{

dXilkΨkjl if ǫl = 0
Ψ∗
kjl

dXkil if ǫl = 1

}

. . .Ψαr

− dt

n

∑

1≤p<q≤r
(−1)ǫp+ǫqζpq

where

ζpq =







Ψα1 . . .Ψαp−1φ(Ψ
ǫp
iqjp

. . .Ψαq−1)Ψ
ǫq
ipjq

. . . if ǫp = ǫq = 0

Ψα1 . . .Ψαp−1Ψ
ǫp
iqjp

φ(Ψαp+1 . . .Ψαq−1Ψ
ǫq
ipjq

)Ψαq+1 . . . if ǫp = ǫq = 1
∑n
k=1 δipiq Ψα1 . . .Ψαp−1φ(Ψ

ǫp
kjp

. . .Ψαq−1Ψ
ǫq
kjq

) . . . if ǫp = 0, ǫq = 1
∑n
k=1 δipiq Ψα1 . . .Ψ

ǫp
kjp
φ(Ψαp+1 . . .Ψαq−1)Ψ

ǫq
kjq

. . . if ǫp = 1, ǫq = 0

Proof. The proof is done by recurrence and by using Itô’s formula. For simplicity’s sake we will
do it only in the case where all ǫ are put equal to zero.
For r = 2 we get:

d(ΨijΨkl) =
i√
n

n∑

s=1

ΨijdXksΨsl +
i√
n

n∑

s=1

dXisΨsjΨkl −ΨijΨkldt−
dt

n
φ(Ψkj)ψil

Hence we have the desired result for r = 2. Let us now assume that the Lemma is right until a
certain r. Then, by Itô’s Lemma:

d(Ψu1v1 . . .Ψur+1vr+1) = −r + 1

2
ψu1v1 . . .Ψur+1vr+1dt

+
i√
n

n∑

k=1

ψu1v1 . . .Ψurvr dXur+1kΨkvr+1

+
i√
n

n∑

k=1

r∑

l=1

Ψu1v1 . . .dXulkΨkvl
. . .Ψur+1vr+1

− dt

n

∑

1≤p<q≤r
Ψu1v1 . . . φ(Ψuqvp . . .)Ψupvq . . .Ψur+1vr+1

− dt

n

r∑

l=1

Ψu1v1 . . .Ψul−1vl−1
φ(Ψur+1vl

. . .Ψurvr )Ψulvr+1

And so we see that the result is also right for r + 1.

We now introduce, as expected, the family of functions:

Γα11,...;...;α1r = φ(Ψα11 . . .) . . . φ(Ψα1r . . .)

By applying Lemma 5.3.2 we get:

Γ′
α11,...;...;α1r,... = −k1 + . . .+ kr

2
Γα11,...;...;α1r,...

− 1

n

r∑

κ=1

∑

1≤p<q≤kκ

(−1)ǫp+ǫq Γ(p,q,κ)
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where we defined:

Γ(p,q,κ) =






Γ...;α1κ,...,ipκjqκǫqκ,...,αkκκ;iqκjpκǫpκ,...,αq−1,κ;... if ǫpκ = ǫqκ = 0

Γ...;α1κ,...,iqκjpκǫpκ,αq+1,κ,...;αp+1,κ,...,ipκjqκǫqκ;... if ǫpκ = ǫqκ = 1
∑n
l=1 δipκiqκΓ...;α1κ,...,αp−1κ,αq+1,κ...;ljpκǫpκ,...,ljqκǫqκ;... if ǫpκ = 0, ǫqκ = 1

∑n
l=1 δipκiqκΓ...;α1κ,...,ljpκǫpκ,ljqκǫqκ,...;αp+1,κ...,αq−1,κ;... if ǫpκ = 1, ǫqκ = 0

Hence we see that the family of functions γ truly converges towards the family of functions Γ.
In particular, taking r = 1, we see that the ∗-moments of the family (U

〈d〉)
ij )1≤i,j≤n converges

towards the ∗-moments of (Ψij)1≤i,j≤n. This proves the convergence of the marginals.

5.4 Conditional expectation

In order to prove Theorem 5.2.1 we must prove the convergence of all mixed moments of the
kind: E ◦ tr(U ǫ1i1j1(t1) . . . U ǫrirjr (tr)) towards φ(Ψǫ1

i1j1
(t1) . . .Ψǫr

irjr
(tr)). In the previous section we

have already proven that this is indeed the case when ♯ {t1, . . . , tr} = 1. In order to prove
the general case we will use a method consisting of computing the joint moments by taking
recursively conditional expectations.

5.4.1 Notations

In order to use this method, we must generalize somewhat our notations. In the sequel, we fix
s ≥ 0 and our time variable t will always verify t ≥ s. We note:

1. by [I] the set {1, . . . , n}2 × {0, 1} ×M(s)
d , where M(s)

d is the set of d × d matrices whose
entries are Fs-measurable random variables. Of course, we have Fs = σ(ju, u ≤ s).

2. by I the set {1, . . . , nd}2 × {0, 1} × V (s), where V (s) designates the set of Fs-measurable
random variables.

3. by If the set {1, . . . , n}2 × {0, 1} × As, where As is the ∗-algebra generated by all
Ψpq(u), u ≤ s.

We use these sets as sets of indices in the following way:

1. If α = (i, j, ǫ,m) ∈ [I], we note [U ]α = m[U ]ǫij

2. If ρ = (µ, ν, ω, π) ∈ I, we note Uρ = πUωµν

3. If α = (i, j, ǫ,m) ∈ If , we note Ψα = mΨǫ
ij .

5.4.2 A system of differential equations for the Brownian motion on U(nd)

We are interested in the family of functions:

γα11,...,αk11;...;...,αkrr
(t)

= E[tr([U ]α11(t) . . . [U ]αk11
(t)) . . . tr(. . . [U ]αkrr

(t))]
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In other words, we use the same family as before but we put Fs-measurable elements between
the blocks of the Brownian motion.
We want to use the same method as before. We will need following Lemma:

Lemma 5.4.1. We have for any choice of indices in I and for t ≥ s:

d(Uρ1 . . . Uρk
) = −k

2
Uρ1 . . . Uρk

dt

− 1

nd

∑

1≤p<q≤k
(−1)ωp+ωqζ〈d〉>

pq dt

+ martingale part

where:

ζ〈d〉
pq =







Uρ1 . . . πpUµpνq . . . πqUµqνp . . . Uρk
if ωp = ωq = 0

Uρ1 . . . πpU
∗
µpνq

. . . πqU
∗
µqνp

. . . Uρk
if ωp = ωq = 1

∑nd
τ=1 δµpµqUρ1 . . . πpU

∗
τνp

. . . πqUτνq . . . Uρk
if ωp = 1, ωq = 0

∑nd
τ=1 δµpµqUρ1 . . . πpUτνp . . . πqU

∗
τνq

. . . Uρk
if ωp = 0, ωq = 1

(5.2)

Proof. As always, this is proven using Itô’s Lemma.

Applying this Lemma, we get:

Lemma 5.4.2. The system of differential equations is:

γ′
α11,...,αk11;...;...,αkrr

= −k1 + . . .+ kr
2

γα11,...,αk11;...;...,αkrr

− 1

n

r∑

κ=1

∑

1≤p<q≤kκ

(−1)ǫpκ+ǫqκγ(p,q,κ)

+ O(
1

d2
)

where:
If ǫpκ = ǫqκ = 0:

γ(p,q,κ) = γ...;...,(mpκ,ipκjqκǫqκ),αq+1,κ...;αp+1,κ,...,(mqκ,iqκjpκǫpκ);...

If ǫpκ = ǫqκ = 1:

γ(p,q,κ) = γ...;...,(mpκ,iqκjpκǫpκ),αq+1,κ,...;αp+1,κ,...,(1,ipκjqκǫqκ);...

If ǫpκ = 1, ǫqκ = 0:

γ(p,q,κ) =
n∑

t=1

δipκiqκγ...;...,(mpκ,t,jpκǫpκ),(t,jqκ,ǫqκ,1),...;(ip+1,κ,jp+1,κ,ǫp+1,κ,mqκmp+1,κ),...;...

If ǫpκ = 0, ǫqκ = 1:

γ(p,q,κ) =
n∑

t=1

δipκiqκγ...;...,(iq+1,κ,jq+1,κ,ǫq+1,κ,mpκmq+1,κ,)...;(t,jpκ,ǫpκ,1),...,(t,jqκ,ǫqκ,mqκ);...
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The structure is very similar to what we had proved in the previous section. We just have
to be careful to what happens with the m’s.
When we proved Biane’s result we saw that the system of differential equations had a combina-
torial structure related to the idea of integer partitions. I do not see any obvious combinatorial
structure in this generalized formula but it is a question that is worth being asked.

5.4.3 A system of differential equations for the free stochastic process

Of course, we will be interested in the behavior of the family of functions:

Γα11,...,αk11;... = φ(Ψα11(t) . . .) . . . φ(. . .)

Lemma 5.4.3. For any choice of indices in If and for t ≥ s, we have:

d(Ψα1 . . .Ψαk
) = −k

2
Ψα1 . . .Ψαk

dt

+
i√
n

n∑

r=1

k∑

l=1

Ψα1 . . . αl

{

dXilrΨrjl if ǫl = 0
ΨrjldXril if ǫl = 1

}

. . .Ψαk

− dt

n

∑

1≤p<q≤k
(−1)ǫp+ǫqζpq

where

ζpq =







Ψα1 . . . φ(Ψ
ǫp
iqjp

. . .Ψαq−1mq)Ψ
ǫq
ipjq

. . . if ǫp = ǫq = 1

Ψα1 . . . αpΨ
ǫp
iqjp

φ(Ψαp+1 . . .Ψ
ǫq
ipjq

)Ψαq+1 . . . if ǫp = ǫq = 1
∑k
t=1 δipiq Ψα1 . . . αpφ(Ψ

ǫp
tjp
. . .Ψ

ǫq
tjq

)Ψαq+1 . . . if ǫp = 0, ǫq = 1
∑k
t=1 δipiq Ψα1 . . .Ψ

ǫp
tjp
φ(Ψαp+1 . . . αq)Ψ

ǫq
tjq
. . . if ǫp = 1, ǫq = 0

Proof. It is the same proof as before, based on Itô’s formula.

Applying this Lemma, we get:

Lemma 5.4.4. The system of differential equations for the free stochastic process is:

Γ′
α11,...;...

= −k1 + . . .+ kr
2

Γα11,...;...

−
r∑

κ=1

∑

1≤p<q≤kκ

(−1)ǫpκ+ǫqκΓ(p,q,κ)

where:
If ǫpκ = ǫqκ = 0:

Γ(p,q,κ) = Γ...;...,(ipκjqκǫqκmpκ),...;(iqκjpκǫpκmqκ),...,αq−1,κ;...

If (ǫpκ, ǫqκ) = (1, 1):

Γ(p,q,κ) = Γ...;...,(iqκjpκǫpκmpκ),αq+1,κ,...;αp+1,κ,...,(ipκjqκǫqκ1);...
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If ǫpκ = 0, ǫqκ = 1:

Γ(p,q,κ) =
n∑

t=1

δipκiqκΓ...;...,(iq+1,κ,jq+1,κ,ǫq+1,κ,mpκmq+1,κ),...;(tjpκǫpκ1),...,(tjqκǫqκmqκ);...

If ǫpκ = 1, ǫqκ = 0:

Γ(p,q,κ) =
n∑

t=1

δipκiqκΓ...;...,(tjpκǫpκmpκ),(tjqκǫqκ1),...;(ip+1,κ,jp+1,κ,ǫp+1,κ,mqκmp+1,κ),...,...

5.4.4 Recurrence

We are now able to finish the proof of Theorem 5.2.1. We want to show that the moments
E ◦ tr([U ]i1j1(t1)ǫ1 . . . [U ]ǫkikjk(tk)) converge towards φ(Ψǫ1

i1j1
(t1) . . .Ψǫk

ikjk
(tk)). Let us denote σ =

♯ {t1, . . . , tk} the number of different times showing up in our moment. We are going to prove
that result through recurrence on σ.

1. If σ = 1 the result has already been shown because it is just the convergence of the
marginals.

2. Let us suppose that the result is true until a certain σ. We will now consider a moment
using σ + 1 different times. We can order those times in increasing order: t1 ≤ t1 ≤ . . . ≤
tσ+1.The recurrence hypothesis tells us that:

(Up,q(ti)) 1≤i≤σ
1≤p,q≤n

−→
in ∗-moments

(Ψp,q(ti)) 1≤i≤σ
1≤p,q≤n

We can write the moment under consideration as:

γ
(i1j1ǫ1m

(d)
1 ),,...,(ikjkǫkm

(d)
k

)
(tσ+1)

where the m
(d)
i are Ftσ -measurable. Now, let us remark that the family of functions

(γα11,...,αk11;α12,...) is entirely characterized by the system of differential equations from

Lemma 5.4.2 along with all the relationships between the {m(d)
ij , 1 ≤ j ≤ r, 1 ≤ i ≤ kj}.

In the same way, the family Γ... is entirely defined by the system from Lemma 5.4.4 along
with the relationships between the {mij , 1 ≤ j ≤ r, 1 ≤ i ≤ kj}
Now, the recurrence hypothesis allows us to say that the m(d)

i , 1 ≤ i ≤ k converges towards

some mi, 1 ≤ i ≤ k. This tells us that the relationships between the {m(d)
i } "converges"

towards the relationships between the {mi}. Moreover, the system of differential equations
from Lemma 5.4.2 converges towards that of Lemma 5.4.4. To put it in a nutshell, this
means:

γ
α

(d)
1 ,...,α

(d)
1

(tσ+1) −→
d→∞

Γα1,...,αk
(tσ+1)

Or, in other words, we have the convergence of our moment.

Thus, we have proven that all ∗-moments converge and this means that Theorem 5.2.1 is proven.
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5.5 Some examples of calculations and gaussianity

We will now use the differential equations that we obtained to calculate some simple moments
of our process. We will then be able to draw a consequence about the gaussianity of the free
process. In the sequel, we denote by φt the function defined on Unc

n by φt = φ ◦ J0t where Jt is
the limit (free) process.

5.5.1 The first moments

Let us take now 1 ≤ i 6= j ≤ n. We have the following differential equations:

d

dt
φt(uii) = −1

2
φt(uii)

d

dt
φt(uij) = −1

2
φt(uij)

with initial conditions: φ0(uii) = 1 and φ0(uij) = 0. It thus yields:

φt(uii) = e− 1
2
t

φt(uij) = 0

We find the same expression for φt(u∗
ii) and φt(u

∗
ij) because they obey the same differential

equation with the same initial conditions.

5.5.2 The second moments

Let us take 1 ≤ i, j, k, l ≤ n. We have following equation:

d

dt
φt(uijukl) = −φt(uijukl)− φt(uil)φt(ukj)

1

n

= −φt(uijukl)−
1

n
δilδkje

−t

with initial conditions φ0(uijukl) = δijδkl because Ψ0 = I. This equation is a linear differential
equation of order 1 and the well-known method allows us to say:

φt(uijukl) =
δijδkl
n

e−t − tδilδkje−t

The moments φt(u∗
iju

∗
kl) also obey the same equation with the same initial condition and they

therefore have the same expression. If we are interested in φt(uiju
∗
kl) we get the equation:

d

dt
φt(uiju

∗
kl) = −φt(uiju∗

kl) +
1

n

n∑

p=1

φt(upju
∗
pl)

with initial conditions φ0(uiju
∗
kl) = δijδkl. This can be put in the form of a system of linear

differential equations by puting Φt = (φt(uijukl))1≤i,j,k,l≤n seen as a vector of C
n4

and A =

(a(r1,r2,r3,r4),(s1,s2,s3,s4)) as a matrix acting on C
n4

, with:






ars = 0 if s1 = s3 and r = s

ars = 1/n if s1 = s3 and r 6= s

ars = −1 if r = s and r1 6= r3
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The equation then is:

Φ′ = AΦ

The solution of such an equation is of the form Φt = CeAt with C a constant.

5.5.3 Gaussianity

We would like to define a Brownian motion on U〈n〉 as a free stochastic process having the same
law (the same ∗-moments) as Ψt. This would seem natural because it is just the limit of the
Brownian motion on U (nd). To know if this definition makes sense, we would like Ψt to verify
some properties, and especially the gaussian property as defined in [20], Proposition 1.12 and in
[39], Proposition 5.1.1.

Definition 5.5.1 (Proposition 5.1.1 from [39]). We say that a Lévy process on U〈n〉 is gaussian
if one of the following equivalent properties are verified:

• For each a, b, c ∈ Kerδ, we have L(abc) = 0.

• For each a, b ∈ Kerδ, we have L(b∗a∗ab) = 0.

• For all a, b, c ∈ U〈n〉 we have the following formula:

L(abc) = L(ab)δ(c) + L(ac)δ(b) + δ(a)L(bc)− δ(a)δ(b)L(c)

− δ(a)δ(c)L(b)− L(a)δ(b)δ(c)

• The representation π is zero on Kerδ: π|Kerδ = 0.

• We have for each a ∈ U〈n〉: π(a) = δ(a)Id.

• For each a, b in Kerδ, we have: η(ab) = 0.

• We have for all a, b in U〈n〉: η(ab) = δ(a)η(b) + η(a)δ(b).

Theorem 5.5.2. Let us take D =Mn(C). We then define a Schürmann triple by setting:

η(ujk) = ǫjk/
√
n, η(u∗

jk) = −ǫkj
√
n

π(ujk) = δjkId

L(ujk) = −1

2

n∑

r=1

〈η(u∗
rj), η(urk)〉

where ǫjk describe the elementary matrices.
Then, the Schürmann triple (η, π, L) is associated to the Lévy process on U〈n〉 we are interested
in.

Proof. We prove it by recurrence on the length of the words:
For the length 1: we have:

L(ujk) = −1

2

n∑

r=1

〈ǫrj , ǫrk〉 = − 1

2n

n∑

r=1

Tr(ǫjrǫrk) = −δjk/2
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Let us suppose the result is true for words of length up to k: We must first find an
expression for η. The cocycle property for η allows us to find through an easy recurrence that:

η(uǫ1i1j1 . . . u
ǫk
ikjk

) =
k∑

p=1

δi1j1 . . .

{

ǫipjp if ǫp = 0

−ǫjpip if ǫp = 1
. . . δikjk

We can now use the coboundary property to write:

L(uǫ1i1j1 . . . u
ǫk+1

ik+1jk+1
) = ǫ(uǫ1i2j2 . . . u

ǫk+1

ik+1jk+1
)L(u

ǫk+1

i1j1
) + L(uǫ2i2j2 . . . u

ǫk+1

ik+1jk+1
)ǫ(uǫ1i1j1)

+ 〈η(u1−ǫ1
i1j1

), η(uǫ2i2j2 . . . u
ǫk
ikjk

u
ǫk+1

ik+1jk+1
)〉

= −k
2
δi1j1 . . . δikjkδik+1jk+1

−
∑

2≤p<q≤k+1

(−1)ǫp+ǫq Γ(p,q,1)δi1j1

− δi1j1δi2j2 . . . δik+1jk+1
/2

+ ♣

where we have used the fact that the Brownian motion on U(nd) at time t = 0 is just Id. So we
only have to compute the value of♣, which is the term arising from 〈η(u1−ǫ1

i1j1
), η(uǫ2i2j2 . . . u

ǫk
ikjk

u
ǫk+1

ik+1jk+1
)〉.

We also remark that to finish our recurrence, it suffices to show that this ♣ is equal to

−
∑

2≤p≤k+1

(−1)ǫp+ǫ1Γ(1,p,1)

So we may now write:

〈η(u1−ǫ1
i1j1

), η(uǫ2i2j2 . . . u
ǫk
ikjk

u
ǫk+1

ik+1jk+1
)〉

=
1

n
〈
{

−ǫj1i1 if ǫ1 = 0

ǫi1j1 if ǫ1 = 1
,
k+1∑

p=2

δi2j2 . . .

{

ǫipjp if ǫp = 0

−ǫjpip if ǫp = 1
. . . δik+1jk+1

〉

=
k+1∑

p=2

♠p

We may now study the four cases:
Case where ǫ1 = ǫp = 0: we have

♠p = − 1

n
δi1jpδi2j2 . . . δipj1 . . . = −(−1)ǫ1+ǫpΓ(1,p,1)

Case where ǫ1 = ǫp = 1: we have

♠p = − 1

n
δi1jpδi2j2 . . . δipj1 . . . = −(−1)ǫ1+ǫpΓ(1,p,1)

Case where ǫ1 = 0,= ǫp = 1: we have

♠p =
1

n
δi1ipδi2j2 . . . δjpj1 . . . = −(−1)ǫ1+ǫpΓ(1,p,1)

Case where ǫ1 = 1, ǫp = 0: we have

♠p =
1

n
δi1ipδi2j2 . . . δjpj1 . . . = −(−1)ǫ1+ǫpΓ(1,p,1)

Thus, we have proven the result by recurrence.
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Theorem 5.5.3. The Lévy process from Theorem 5.2.1 is gaussian.

Proof. It is immediate by using the fifth characterization from Definition 5.5.1.

Because it satisfies the gaussianity property, the quantum Lévy process under consideration
is a good candidate to define what we would like to call a Brownian motion on U〈n〉.



6

Free Lévy processes on the unitary
dual group

In this section, we study free Lévy processes on the unitary dual group. We recall their definition
and the correspondence between Lévy processes, generators, and Schürmann triples. We describe
a class of free Lévy processes which appears as limit of Lévy processes on the classical unitary
group, and compute their generators thanks to a representation theorem which was still missing
in the free case.

This chapter is taken from section 4 of the article [11], which I co-authored with G. Cébron.

6.1 Free Lévy processes

Definition 6.1.1. A free unitary Lévy process is a family (Ut)t≥0 of unitary elements of a
noncommutative probability space (A, φ) such that:

• U0 = 1A.

• For all 0 ≤ s ≤ t, the distribution of U−1
s Ut depends only on t− s.

• For all 0 ≤ t1 ≤ . . . ≤ tk, the random variables Ut1 , U
−1
t1 Ut2 , . . . , U

−1
tn−1

Utn are free.

• The distribution of Ut converges weakly to δ1 as t goes to 0.

One can generalize this definition by considering a process (Ut)t≥0 of matrices of elements
of A which are unitary, instead of considering only one element. In other words, we want
to consider a process (jt)t≥0 of quantum random variables on U〈n〉 over (A, φ) (for all times
t ≥ 0, jt : Unc

n → A is a ∗-homomorphism, which is equivalent with requiring that the matrix
(jt(uij))

n
i,j=1 is unitary).

Definition 6.1.2. A free Lévy process on U〈n〉 over (A, φ) is a family of quantum random
variables (jt)t≥0 on U〈n〉 over A such that:

56
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• j0 = δ1A.

• For all 0 ≤ s ≤ t, φ ◦ ((js ◦ Σ) ⋆ jt) = φ ◦ jt−s (stationarity of the distributions).

• For all 0 ≤ t1 ≤ . . . ≤ tk, the homomorphisms jt1 , (jt1 ◦ Σ) ⋆ jt2 , . . . , (jtn ◦ Σ) ⋆ jtn−1 are
freely independent in the sense that the image ∗-algebras of Unc

n are freely independent in
(A, φ).

• For all b ∈ Unc
n , φ ◦ js(b) converges towards δ(b) when s tends to 0.

Some authors find more convenient to make the following assumptions on the family of
increments (jst)0≤s≤t linked with (jt)t≥0 by the relation jst = (js ◦ Σ) ⋆ jt (for all 0 ≤ s ≤ t):

• For all 0 ≤ t, jtt = δ1A.

• For all 0 ≤ r ≤ s ≤ t, jrs ⋆ jst = jrt.

• For all 0 ≤ s ≤ t, φ ◦ jst = φ ◦ j0,t−s.

• For all 0 ≤ t1 ≤ . . . ≤ tk, the homomorphisms j0t1 , . . . , jtn−1tn are freely independent in
the sense that the image algebras are freely independent.

• For all b ∈ Unc
n , φ ◦ j0s(b) converges towards δ(b) when s tends to 0.

Of course, the two points of view are equivalent. Let us observe that a free unitary Lévy process
(Ut)t≥0 in (A, φ) is also a free Lévy process (u 7→ Ut)t≥0 on U〈1〉 over (A, φ).

6.2 Free Lévy processes as limit of random matrices

Let us present here an example of a free Lévy process constructed thanks to the homomor-
phism jU described in Section 7.1, and which is the limit of random matrices in the sense of
Theorem 6.2.2. We will see that it generalizes results from Chapter 5.

Proposition 6.2.1. Let (Ut)t≥0 be a free unitary Lévy process. Let us consider the family of
quantum random variables (jt)t≥0 on U〈n〉 over E11(A ⊔Mn(C))E11 defined by jt := jUt, or,
in other words, for all 1 ≤ i, j ≤ n, we have jt(uij) = E1iUtEj1.

Then, (jt)t≥0 is a free Lévy process on U〈n〉 over the non-commutative probability space
(

E11(A ⊔Mn(C))E11, n(φ ∗ trn)
)

.

Proof. The fact that (jt)0≤t is indeed a free Lévy process on U〈n〉 follows from Proposition 7.2.2,
and from the definition of a free unitary Lévy process (Ut)t≥0.

Theorem 6.2.2. Let (Ut)t≥0 be a free unitary Lévy process in (A, φ) and let (jt)t≥0 be the
Lévy process over U〈n〉 defined by Proposition 6.2.1. For each N ∈ N, let us consider a process

(U
(N)
t )t≥0 on the classical unitary group U(N).

Assume that the family {U (N)
t }t≥0 converges almost surely in ∗-distribution to the family

{Ut}t≥0 as N tends to ∞. Then, the block matrices
(

[U
(nN)
t ]ij

)

1≤i,j≤n
t≥0

converge almost surely

in ∗-distribution to
(

jt(uij)
)

1≤i,j≤n
t≥0

as N tends to ∞.
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In the particular case where (Ut)t≥0 is a free unitary Brownian motion (see the last section
of the paper), this theorem above is the result stated in Theorem 5.2.1 that has been proved in
Chapter 5 via stochastic calculus and combinatorial arguments.

Proof. Setting {A(N)
k }k∈K = {U (N)

t }t≥0 (with K = {t ≥ 0}), it is a direct consequence of Corol-
lary 7.4.2.

In [12], one of the authors defined a matrix model for every unitary free Lévy process (Ut)t≥0.
More precisely, for each N ∈ N, there exists a Lévy process (U

(N)
t )t≥0 on the classical unitary

group U(N) such that the family {U (N)
t }t≥0 converges almost surely in ∗-distribution to the

family {Ut}t≥0. As a consequence, every free Lévy process defined according to Proposition 6.2.1
from a one-dimensional free Lévy process is indeed the limit of a family of random matrices when
the dimension tends to ∞.

The rest of this chapter is devoted to compute the generator of such free Lévy processes,
whose expression is given in Theorem 6.3.3.

6.3 Generator and Schürmann triple

In this section, we define two different objects which characterize Lévy processes on U〈n〉.
Definition 6.3.1. The generator of a free Lévy process (jt)t≥0 on (A, φ) over U〈n〉 is the linear
form L : Unc

n → C defined, for all u ∈ Unc
n , by

L(u) =
d

dt
φ ◦ jt(u) = lim

t→0

1

t
(φ(jt(u))− δ(u)) .

In [2], it is proved that L is well-defined and determines completely the family of law (φ ◦
jt)t≥0. The generator satisfies L(1) = 0, is hermitian and is conditionally positive, in the sense
that

• L(u∗) = L(u) for all u ∈ Unc
n ,

• L(u∗u) ≥ 0 for all u ∈ Unc
n such that δ(u) = 0.

Conversely, the recent article [40] proves that, for any hermitian and conditionally positive
L : Unc

n → C such that L(1) = 0, there exists a free Lévy process on U〈n〉 whose generator is
L. We will call such a linear functional a generator, without mentioning any Lévy process. The
description of the generators is made easier by the following notion of Schürmann triple.

Definition 6.3.2. A Schürmann triple (ρ, η, L) on U〈n〉 over a Hilbert space H consists of

• a generator L,

• a linear map η : Unc
n → H such that, for all a, b ∈ Unc

n , we have

L(ab) = δ(a)L(b) + 〈η(a∗), η(b)〉+ L(a)δ(b),

• a unital ∗-representation ρ of Unc
n on H such that, for all a, b ∈ Unc

n , we have

η(ab) = ρ(a)η(b) + η(a)δ(b).
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It simplifies the data of L because the three maps ρ, η and L of a Schürmann triple are
uniquely determined by their values on the generators {uij , u∗

ij}1≤i,j≤n of Unc
n . A sort of GNS-

construction (see [38]) allows conversely to construct a Schürmann triple (ρ, η, L) for every
generator L.

In the next section, we will prove the following theorem, which computes the Schürmann
triple of the Lévy process over U〈n〉 defined by Proposition 6.2.1.

Theorem 6.3.3. Let (Ut)t≥0 be a free unitary Lévy process in (A, φ) and let (ρ, η, L) be its
Schürmann triple on U〈1〉 = C[u, u−1] over a Hilbert space H. Let jt : U〈n〉 → E11(A ⊔
Mn(C))E11 be the Lévy process defined by setting, for all 1 ≤ i, j ≤ n, jt(uij) = E1iUtEj1.

The Schürmann triple (ρn, ηn, Ln) of (jt)t≥0 over H ⊗Mn(C) is given, for all 1 ≤ i, j ≤ n,
by

ρn(uij) =
1

n
(ρ(u)− IdH)⊗ Eij + δijIdH ⊗ IN ,

ηn(uij) = η(u)⊗ Eij , ηn(u∗
ij) = η(u−1)⊗ Eij , Ln(uij) = δijL(u). (6.1)

As a corollary, we have a sufficient characterization for the existence of a random matrix
model in terms of the generator (we believe that this condition is not necessary).

Corollary 6.3.4. Let (jt)t≥0 be a free Lévy process on U〈n〉. Let H be a Hilbert space such that
the Schürmann triple (ρn, ηn, Ln) of (jt)t≥0 is given over H ⊗Mn(C) by

ρn(uij) =
1

n
(W − IdH)⊗ Eij + δijIdH ⊗ IN ,

ηn(uij) = h⊗ Eij , ηn(u∗
ij) = −W ∗h⊗ Eij , Ln(uij) = (iR− 1

2
‖h‖2H)δij ,

where W is a unitary operator of B(H), h ∈ H and R ∈ R. Then, for each N ∈ N, there exists

a process (U
(N)
t )t≥0 on the classical unitary group U(N) such that the family of N × N -blocks

(

[U
(nN)
t ]ij

)

1≤i,j≤n
t≥0

converges almost surely in ∗-distribution to
(

jt(uij)
)

1≤i,j≤n
t≥0

as N tends to ∞.

We give the proof of Corollary 6.3.4 right now, and postpone the proof of Theorem 6.3.3 to
the next section.

Proof. Let us show that we are indeed in the situation of Theorem 6.3.3, and that W , h and R
can be read as the Schürmann triple of some Lévy process over U〈1〉. This is a consequence of
the following general description of the generators on U〈n〉.
Proposition 6.3.5 (Proposition 4.4.7 of [39]). Let H be a Hilbert space, (hij)1≤i,j≤n ∈Mn(H)
be elements of H, (Wij)1≤i,j≤n ∈ Mn(B(H)) unitary and (Rij)1≤i,j≤n ∈ Mn(C) self-adjoint.
Then there exists a unique Schürmann triple (ρ, η, L) over H such that

ρ(uij) = Wij ; η(uij) = hij ; η(u∗
ij) = −

n∑

k=1

W ∗
kihkj ; L(uij) = iRij −

1

2

n∑

k=1

〈hki, hkj〉H . (6.2)

Conversely, each generator L appears in a Schürmann triple (ρ, η, L) over a Hilbert space H
as (6.2) for some (hij)1≤i,j≤n, (Wij)1≤i,j≤n unitary, and (Rij)1≤i,j≤n selfadjoint given by

hij = η(uij); Wij = ρ(uij); Rij = −i
(

L(uij) +
1

2

n∑

k=1

〈η(uki), η(ukj)〉H
)

. (6.3)
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Using this proposition for W , h and R shows that the generator (ρn, ηn, Ln) can be written in
the form (6.1) for some Schürmann triple (ρ, η, L) over H. But let us consider a free unitary Lévy
process (Ut)t≥0 with Schürmann triple (ρ, η, L), and the Lévy process (jUt)t≥0 of Theorem 6.3.3
defined by setting, for all 1 ≤ i, j ≤ n, jUt(uij) = E1iUtEj1. Using the result [12, Theorem

3], there exists a random matrix model (U
(N)
t )t≥0 on the unitary group for the Lévy process

(Ut)t≥0, and Theorem 6.2.2 allows us to conclude that
(

[U
(nN)
t ]ij

)

1≤i,j≤n
t≥0

is a random matrix

model for (jUt)t≥0. Theorem 6.3.3 shows that (jUt)t≥0 has the same Schürmann triple that our
Lévy process (jt)t≥0. Thus their distributions are equal, and

(

[U
(nN)
t ]ij

)

1≤i,j≤n
t≥0

is also a random

matrix model for (jt)t≥0.

6.4 Proof of Theorem 6.3.3

In the three next steps, we will

1. establish a concrete realization of any free Lévy process (jt)t≥0 on U〈n〉 on a full Fock
space, starting from any Schürmann triple;

2. show that, considering a one dimensional free Lévy process (Ut)t≥0, this concrete realization
behaves nicely when applying the boosting jUt(uij) = E1iUtEj1 to define a free Lévy
process (jUt)t≥0 on U〈n〉;

3. conclude the proof by reading the Schürmann triple directly from the stochastic equation
of (jUt)t≥0.

Step 1

In this step, we give a direct construction of a free Lévy process starting from a Schürmann
triple on U〈n〉. To achieve this purpose, we will use the free quantum stochastic calculus. We
do not recall the definition of the free stochastic equations on the full Fock space, but we define
now the objects involved, and we refer the reader to [27] and [42] for further details.

Let us consider a Hilbert space H. We denote by K the Hilbert space L2(R, H) ≃ L2(R)⊗H,
and consider the full Fock space

Γ(K) = CΩ⊕
⊕

n≥1

K⊗n.

We turn B(Γ(K)), the ∗-algebra of bounded operator on Γ(K), into a noncommutative proba-
bility space by endowing it with the state τ(·) = 〈Ω, (·)Ω〉. Let h ∈ H and t ≥ 0. The creation
operator ct(h) ∈ B(Γ(K)) is defined by setting, for all n ≥ 0,

ct(h)(k1 ⊗ · · · ⊗ kn) = (h1[0,t[)⊗ k1 ⊗ · · · ⊗ kn,

and the annihilation operator c∗
t (h) ∈ B(Γ(K)) is its adjoint operator. Let W a bounded

operator on H and t ≥ 0. The conservation operator Λt(W ) ∈ B(Γ(K)) is defined by setting,
for all n ≥ 1,

Λt(W )((h1[r,s[)⊗ · · · ⊗ kn) = ((W (h)1[0,t[∩[r,s[)⊗ · · · ⊗ kn)
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and Λt(W )(Ω) = 0 otherwise.

The following general result is the free counterpart of the general results of Schürmann (see
Section 4.4. of [39] for the tensor case). The free case turns out to be the only case which has
not yet been written down.

Theorem 6.4.1. Let H be a Hilbert space, and let (ρ, η, L) be a Schürmann triple on U〈n〉 over
the Hilbert space H. Then the coupled free stochastic equations

djt(uij) =
∑

1≤k≤n
jt(uik)

(

dc∗
t (η(ukj)) + dct(η(u∗

kj)) + dΛt((ρ− δ)(ukj)) + L(ukj)dt
)

(6.4)

for 1 ≤ i, j ≤ n, with initial conditions j0(uij) = δijId, has a unique solution
(
jt(uij)

n
i,j=1

)

t≥0

which extends to a free Lévy process (jt)t≥0 on U〈n〉 with value in (B(Γ(L2(R, H))), τ), and with
generator L.

Proof. The existence and uniqueness of the solution of (6.4) is a consequence of a very general
theorem in [42], from which we can also deduce the extension of the solution to a free Lévy
process. On the contrary, proving that L is indeed the generator of this solution is not a direct
consequence of [42], and requires some computations very similar to those of [38].

The existence theorem which we will use is [42, Theorem 10.1]. In order to use Theorem 10.1
of [42], we must write the n2 stochastic equations (6.4) as one stochastic equation involving only
one variable. This is routine using the explanations of Chapter 13 of [42]. For the convenience
of the reader, we sketch the ideas: we consider the full Fock MN (C)-module MN (B(Γ(K))) ≃
B(Cn ⊗ Γ(K)). The stochastic equations (6.4) can be summed up into the following stochastic
equation in MN (B(Γ(K))) (where ct, c∗

t and Λt are defined accordingly)

d
(

jt(uij)
n
i,j=1

)

=
(

jt(uij)
n
i,j=1

)

·
(

dc∗
t (η(uij)

n
i,j=1) + dct(η(u∗

ij)
n
i,j=1) + dΛt(ρ(uij)

n
i,j=1 − Id) + L(uij)

n
i,j=1dt

)

(6.5)

with initial condition (jt(uij))
n
i,j=1 = Id. Let us define h = (hij)1≤i,j≤n, W = (Wij)1≤i,j≤n

unitary, and R = (Rij)1≤i,j≤n selfadjoint by the relation (6.3). The stochastic equation (6.5)
can be rewritten

d
(

jt(uij)
n
i,j=1

)

=
(

jt(uij)
n
i,j=1

)

·
(

dc∗
t (h)−dct(W

−1h)+dΛt(W−Id)+
(
iR− 1

2

n∑

k=1

〈hki, hkj〉H
)
dt
)

.

(6.6)
According to Theorem 10.1 of [42] (see the end of [42, Chapter 10] to make the link with
this particular case), there exists a unique solution to (6.6) whenever W = (Wij)1≤i,j≤n is
unitary and R = (Rij)1≤i,j≤n is selfadjoint, which is indeed true thanks to Proposition 6.3.5.
Finally, there exists a unique solution (jt(uij))

n
i,j=1 to the coupled stochastic equations (6.4),

and another consequence of [42, Theorem 10.1] is that (jt(uij))
n
i,j=1 is unitary. This is sufficient

to extend (jt(uij))
n
i,j=1 as a process (jt)t≥0 of quantum random variables. The stationarity of the

distribution is a consequence of the stationarity of the underlying driven process and the freeness
of the increments is a consequence of the particular underlying filtration for which (jt(uij))

n
i,j=1

is adapted (see Chapter 11 of [42] for the statements of those two facts).
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It remains to prove that L is indeed the generator of (jt)t≥0. Let us denote by L the generator
of (jt)t≥0, defined for all a ∈ Unc

n by

L(a) =
d

dt
φ ◦ jt(a). (6.7)

In order to prove that L = L, it suffices to prove first that, for all b, c ∈ Unc
n , we have

L(b∗c) = L(b∗)δ(c) + δ(b∗)L(c) + 〈η(b), η(c)〉, (6.8)

which implies that (ρ, η,L) is a Schürmann triple, and to prove secondly that (L(ui,j))
n
i,j=1 =

(L(ui,j))
n
i,j=1, which implies that the Schürmann triples (ρ, η,L) and (ρ, η, L) are equal.

The quantum stochastic calculus allows us to write the quantum stochastic differential equa-
tion of jt(b∗c), thanks to the following result.

Theorem 6.4.2 (Corollary 9.2. of [42]). Let h, h′ ∈ H and W,W ′ ∈ B(H). Let It be one of the
following four processes t 7→ t, ct(h), c∗

t (h) or Λt(W ), and I ′
t one of the following four processes

t 7→ t, ct(h
′), c∗

t (h
′) or Λt(W

′). Let F,G, F ′ and G′ be adapted and bounded. For all Mt and
M ′
t such that dMt = FtdItGt and dM ′

t = F ′
tdI

′
tG

′
t, we have

d(MtM
′
t) = FtdIt(GtM

′
t) + (MtF

′
t)dI

′
tG

′
t + τ(GtF

′
t)FtdI

′′
t G

′
t,

where the integrator dI ′′
t has to be chosen according to Itô’s table (see Table 6.1).

dIt\dI ′
t dt dct(h

′) dc∗
t (h

′) dΛt(W
′)

dt 0 0 0 0

dct(h) 0 0 0 0

dc∗
t (h) 0 〈h, h′〉dt 0 dc∗

t (W
′∗h)

dΛt(W ) 0 dct(Wh′) 0 dΛt(WW ′)

Table 6.1: Itô’s table

By induction, it follows that jt(b) and jt(c), which can be written as a polynomial in the op-
erators {jt(ui,j), jt(ui,j)∗}1≤i,j≤n, satisfies a quantum stochastic differential equation. Moreover,
by the previous theorem,

djt(b
∗c) = djt(b

∗)jt(c) + jt(b
∗)djt(c) + djt(b

∗) · djt(c) (6.9)

where the third term is computed thanks to the quantum Itô table. But in the definition (6.7)
of L, we are only dealing with expectations in the vacuum state τ , and the dct-part, the dc∗

t -part
and the dΛt-part are martingales under the vacuum state τ . Thus we need only to compute the
integrand of the dt-part of djt(b

∗c). This coefficient is a complex valued function in t ∈ R+ and
its value at t = 0 gives us L(b∗c). Using the initial condition, one checks that the first two terms
on the right hand side of (6.9) give rise, under the vacuum state, to the first two terms on the
right hand side of (6.8). We are left with the computation of the coefficient of the dt-part of
djt(b

∗) · djt(c) at t = 0. Because of the Itô table, this dt-part is coming from the dct-parts of
djt(b) and djt(c) by the formula

dc∗
t (h) · dct(h′) = 〈h, h′〉dt. (6.10)
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Thus we are left to compute the dct-parts of djt(b) and djt(c). Of course, we can assume that
both b and c are monomials in uij and u∗

ij . Assuming b = uǫ1i1,j1 · · ·u
ǫr
ir,jr

, we can compute from
the differential equation of jt and the quantum Itô table the exact expression for the dct-part
of djt(b). For simplicity, we give here the expression of the dct-part of djt(b) where we have
already put the integrand at time t = 0, as this will not affect the final result (notice that it
allows us to replace j0(uij) by δ(uij), and

∑n
k=1 j0(uik)dΛt((ρ− δ)(ukj)) by dΛt((ρ− δ)(uij))):

∑

1≤l≤r
1≤m(1)≤...≤m(l)≤r

δ(uǫ1i1,j1 · · · û
ǫm(1)

im(1)jm(1)
· · · ûǫm(l−1)

im(l−1)jm(l−1)
· · · ûǫm(l)

im(l)jm(l)
· · ·uǫrir,jr )

· dΛt((ρ− δ)(u
ǫm(1)

im(1)jm(1)
)) · · ·dΛt((ρ− δ)(u

ǫm(l−1)

im(l−1)jm(l−1)
))dct(η(u

ǫm(l)

im(l)jm(l)
)

=
∑

1≤l≤r
dΛt(ρ(uǫ1i1j1)) · · ·dΛt(ρ(u

ǫl−1

il−1jl−1
))dct(η(uǫliljl)δ(u

ǫl+1

il+1,jl+1
· · ·uǫrir,jr )

=dct(η(uǫ1i1,j1 · · ·u
ǫr
ir,jr

)) = dct(η(b)),

where the hats mean that we omit the terms in the product. Finally, using (6.10), the integrand
of the dt-part of (djt(b

∗)) · (djt(c)) at time t = 0 is equal to 〈η(b), η(c)〉, which completes the
equality (6.8).

Now, for 1 ≤ i, j ≤ n, L(uij) is given by the integrand of the dt-part of djt(uij) at time
t = 0. Indeed, the three other parts are martingales. This integrand is given by (6.4):

L(uij) =
n∑

k=1

τ(j0(uik)L(ukj)) =
n∑

k=1

δ(uik)L(ukj) = L(uij);

and it concludes the proof.

Using Proposition 6.3.5, it is possible to rewrite Theorem 6.4.1 without mentioning any
Schürmann triple.

Corollary 6.4.3. Let H be a Hilbert space, (hij)1≤i,j≤n ∈Mn(H) be elements of H, (Wij)1≤i,j≤n ∈
Mn(B(H)) unitary and (Rij)1≤i,j≤n ∈ Mn(C) self-adjoint. Then the coupled free stochastic
equations

djt(uij) =
∑

1≤k≤n
jt(uik)

·
(

dc∗
t (hkj)− dct(

n∑

l=1

W ∗
lkhlj) + dΛt(Wkj − δkjIdH) + (iRkj −

1

2

n∑

l=1

〈hlk, hlj〉H)dt
)

for 1 ≤ i, j ≤ n, with initial conditions j0(uij) = δijId has a unique solution
(
jt(uij)

n
i,j=1

)

t≥0

which extends to a free Lévy process (jt)t≥0 on U〈n〉 over (B(Γ(L2(R, H))), τ).

Step 2

Let H be a Hilbert space, (ρ, η, L) be a Schürmann triple on U〈1〉 over H, and K = L2(R+, H).
From Theorem 6.4.1, we know that

dUt = Ut
(

dc∗
t (η(u)) + dct(η(u)∗) + dΛt((ρ− δ)(u)) + L(u)dt

)

(6.11)
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with initial conditions U0 = 1, has a unique solution
(
Ut)t≥0 in (B(Γ(K)), τ) which is a free Lévy

process with Schürmann triple (ρ, η, L). We consider

jt : U〈n〉 → E11(B(Γ(K)) ⊔Mn(C))E11 (6.12)

the free Lévy process defined by setting jt(uij) = E1iUtEj1 as in Proposition 6.2.1. The following
theorem gives a stochastic equation on B(Γ(L2(R, H) ⊗Mn(C))) whose solution has the same
distribution under the vacuum state than jt.

Let us first remark that L2(R, H) ⊗Mn(C) ≃ L2(R, H ⊗Mn(C)). Thus, for all h ⊗M ∈
H ⊗Mn(C), the process c∗

t (h⊗M), ct(h⊗M) ∈ B(Γ(K ⊗Mn(C))) are defined as previously.
Furthermore, for all W ∈ B(H) and M ∈ Mn(C), the conservation operator Λt(W ⊗M) is
defined as previously, with M acting on Mn(C) by the left multiplication.

Proposition 6.4.4. Let H be a Hilbert space and (ρ, η, L) be a Schürmann triple on U〈1〉 =
C[u, u−1] over H. Let (Ut)t≥0 defined by (6.11) and (jt)t≥0 defined by (6.12). There exists a
homomorphism of noncommutative probability spaces

ρ :
(

E11(B(Γ(K)) ⊔Mn(C))E11, n(φ ∗ trn)
)

→
(

B(Γ(K ⊗Mn(C))), 〈Ω, (·)Ω〉
)

such that the free Lévy process (Jt)t≥0 = (ρ ◦ jt)t≥0 is the solution of the following differential
equation, starting at J0(uij) = δijId:

dJt(uij) =
∑

1≤k≤n
Jt(uik)

·
(

dc∗
t (η(u)⊗ Ekj) + dct(η(u∗)⊗ Ekj) +

1

n
dΛt(((ρ− δ)(u))⊗ Ekj) + δkjL(u)dt

)

.

Proof. Let us first describe the free product representation of B(Γ(K)) ⊔Mn(C) given in [46].
We considerMn(C) acting on itself by the left multiplication. We denote by Γ(K)◦ the Hilbert
space

⊕

n≥1K
⊗n and by Mn(C)◦ the Hilbert space Mn(C)⊖ CIn, in such a way that

Γ(K) = Γ(K)◦ ⊕ CΩ and Mn(C) =Mn(C)◦ ⊕ CIn.

We denote by k 7→ k◦ and M 7→ M◦ the respective orthogonal projection of Γ(K) onto Γ(K)◦

and of Mn(C) onto Mn(C)◦. We consider the Hilbert space Γ(K) ∗Mn(C) given by

Γ(K) ∗Mn(C) = CΩ⊕
⊕

m≥1








⊕

H1,...,Hn=Γ(K)◦ or Mn(C)◦

Hi 6=Hi+1

H1 ⊗ · · · ⊗Hm







.

The algebra B(Γ(K)) acts on Γ(K) ∗ Mn(C) as follows: for A ∈ B(Γ(K)), k ∈ Γ(K)◦ and
M ∈Mn(C)◦, we have

(π(A)) (Ω) = (AΩ)◦ + 〈Ω, AΩ〉Ω,
(π(A)) (k ⊗ (· · · )) = (Ak)◦ ⊗ (· · · ) + 〈Ω, Ak〉 · (· · · ),

(π(A)) (M ⊗ (· · · )) = (AΩ)◦ ⊗M ⊗ (· · · ) + 〈Ω, AΩ〉 ·M ⊗ (· · · ).
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Similarly, the algebraMn(C) acts on Γ(K) ∗Mn(C) as follows: for A ∈Mn(C), k ∈ Γ(K)◦ and
M ∈Mn(C)◦, we have

(λ(A)) (Ω) = A◦ + 〈IN , A〉Ω,
(λ(A)) (k ⊗ (· · · )) = A◦ ⊗ k ⊗ (· · · ) + 〈IN , A〉 · k ⊗ (· · · ),

(λ(A)) (M ⊗ (· · · )) = (AM)◦ ⊗ (· · · ) + 〈IN , AM〉 · (· · · ).

According to [46, Section 1.5], the ∗-homomorphism π ⊔ λ :
(

B(Γ(K)) ⊔Mn(C), φ ∗ trn
)

→
(

B(Γ(K) ∗Mn(C)), 〈Ω, (·)Ω〉
)

is a ∗-homomorphism of noncommutative probability spaces.

Lemma 6.4.5. There exists a Hilbert space isomorphism

Γ(K) ∗Mn(C)→ Γ(K ⊗Mn(C))⊗Mn(C)

which induces a ∗-algebra isomorphism

f : B
(

Γ(K) ∗Mn(C)
)

→ B
(

Γ(K ⊗Mn(C))⊗Mn(C)
)

.

Proof. We will use the three well-known isomorphisms

K ≃ K ⊗ C, (K ⊗ C)⊕ (K ⊗Mn(C)◦) ≃ K ⊗Mn(C) and Mn(C) ≃ C
n ⊗ C

n.

It suffices to write

Γ(K) ∗Mn(C) ≃ CΩ⊕
⊕

m≥1








⊕

H1,...,Hm=Γ(K)◦ or Mn(C)◦

Hi 6=Hi+1

H1 ⊗ · · · ⊗Hm








≃ CΩ⊕
⊕

m≥1







⊕

k1+1+k2+...+1+kN =m
k2,...,kN−1≥1

K⊗k1 ⊗Mn(C)◦ ⊗K⊗k2 · · · ⊗Mn(C)◦ ⊗K⊗kN







≃
⊕

m′≥1




⊕

H1,...,Hm′ =C or Mn(C)◦

H1 ⊗K ⊗H2 ⊗ · · · ⊗K ⊗Hm′





≃
⊕

m′≥1

Mn(C)⊗K ⊗Mn(C)⊗ · · · ⊗K ⊗Mn(C)
︸ ︷︷ ︸

where Mn(C) appears m′ times

≃
⊕

m′≥1

(Cn ⊗ C
n)⊗K ⊗ (Cn ⊗ C

n)⊗ · · · ⊗K ⊗ (Cn ⊗ C
n)

︸ ︷︷ ︸

where Cn⊗Cn appears m′ times

≃ C
n ⊗






⊕

m≥0

(Cn ⊗K ⊗ C
n)⊗ · · · ⊗ (Cn ⊗K ⊗ C

n)
︸ ︷︷ ︸

where Cn⊗K⊗Cn appears m times




⊗ C

n

≃ C
n ⊗ Γ(Cn ⊗K ⊗ C

n)⊗ C
n

≃ Γ(K ⊗Mn(C))⊗Mn(C)

and to define the Hilbert space isomorphism Γ(K) ∗ Mn(C) → Γ(K ⊗Mn(C)) ⊗Mn(C) ac-
cordingly.
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Unfortunately, we do not see any way of writing f directly, and for computing it, we will
always follow the different steps of the proof of Lemma 6.4.5.

We are interested in the ∗-subalgebra E11(B(Γ(K)) ⊔ Mn(C))E11, and it is important to
remark here that its image by f ◦ (π ⊔ λ) is an algebra of operators which leaves the space
Γ(K ⊗Mn(C)) ⊗ CE11 invariant (it suffices to follow each step of the proof of Lemma 6.4.5).
Consequently, when restricted to E11(B(Γ(K)) ⊔Mn(C))E11, the ∗-homomorphism f ◦ (π ⊔ λ)
can be seen as a ∗-homomorphism

ρ : E11(B(Γ(K)) ⊔Mn(C))E11 → B (Γ(K ⊗Mn(C)))

using the trivial isomorphism Γ(K ⊗Mn(C)) ⊗ CE11 ≃ Γ(K ⊗Mn(C)). It is now a routine,
following the steps of Lemma 6.4.5, to verify that

• n(φ ∗ trn)(A) = 〈Ω, ρ(A)Ω〉 for all A ∈ E11(B(Γ(K)) ⊔Mn(C))E11;

• ρ(E1ic
∗
t (h)Ej1) = c∗

t (h⊗ Eij) for all h ∈ H,

• ρ(E1ict(h)Ej1) = ct(h⊗ Eij) for all h ∈ H,

• and ρ(E1iΛt(W )Ej1) = 1
nΛt(W ⊗ Eij) for all W ∈ B(H).

To conclude, let us write

djt(uij) =E1idUtEj1

= E1iUt · (dc∗
t (η(u)) + dct(η(u)∗) + dΛt((ρ− δ)(u)) + L(u)dt)Ej1

=
∑

1≤k≤n
E1iUtEk1 · E1k (dc∗

t (η(u)) + dct(η(u)∗) + dΛt((ρ− δ)(u)) + L(u)dt)Ej1

=
∑

1≤k≤n
jt(uik) · E1k (dc∗

t (η(u)) + dct(η(u)∗) + dΛt((ρ− δ)(u)) + L(u)dt)Ej1

and then apply the homomorphism ρ.

Step 3

We conclude the proof of Theorem 6.3.3. Recall that we start from a free unitary Lévy pro-
cess (Ut)t≥0 with Schürmann triple (ρ, η, L). Because Theorem 6.3.3 uniquely depends on the
distribution of our random variables, we can without loss of generality represent (Ut)t≥0 as the
solution of the stochastic equation (6.11). Let jt : U〈n〉 → E11(B(Γ(K)) ⊔Mn(C))E11 be the
Lévy process defined by setting, for all 1 ≤ i, j ≤ n, jt(uij) = E1iUtEj1 as in Proposition 6.2.1.

We want to prove that (ρn, ηn, Ln) defined by setting, for all 1 ≤ i, j ≤ n,

ρn(uij) =
1

n
(ρ(u)− IdH)⊗ Eij + δijIdH ⊗ IN ,

ηn(uij) = η(u)⊗ Eij , ηn(u∗
ij) = η(u∗)⊗ Eij , Ln(uij) = δijL(u), (6.13)

is the Schürmann triple of (jt)t≥0.
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First of all, (ρn, ηn, Ln) given by (6.13) is a well-defined Schürmann triple. Indeed, defining
(hij)1≤i,j≤n, (Wij)1≤i,j≤n unitary, and (Rij)1≤i,j≤n selfadjoint by

Wij =
1

n
(ρ(u)− IdH)⊗ Eij + δijIdH ⊗ IN ,

hij = η(u)⊗ Eij , Rij = −i
(

δijL(u) +
1

2

n∑

k=1

〈hki, hkj〉H⊗Mn(C)

)

,

we can apply Proposition 6.3.5 and conclude that (ρn, ηn, Ln) is a Schürmann triple whenever
η(u∗)⊗Eij = −∑n

k=1W
∗
kihkj (because in that case the relations (6.2) and (6.13) are the same).

Let us verify this fact:

−
n∑

k=1

W ∗
kihkj = − 1

n

n∑

k=1

(ρ(u)∗η(u)⊗ EikEkj − η(u)⊗ EikEkj)− η(u)⊗ Eij

= −ρ(u)∗η(u)⊗ Eij = η(u∗)⊗ Eij .

Proposition 6.4.4 gives us the stochastic equation which drives the process (jt)t≥0 (or at least a
process which has the same distribution):

djt(uij) =
∑

1≤k≤n
jt(uik)

·
(

dc∗
t (η(u)⊗ Ekj) + dct(η(u∗)⊗ Ekj) +

1

n
dΛt(((ρ− δ)(u))⊗ Ekj) + δkj(L(u))dt

)

,

or equivalently,

djt(uij) =
∑

1≤k≤n
jt(uik)

(

dc∗
t (ηn(ukj)) + dct(ηn(u∗

kj)) + dΛt((ρn − δ)(ukj)) + Ln(ukj)dt
)

. (6.14)

Theorem 6.4.1 allows us to conclude that (ρn, ηn, Ln) is the Schürmann triple of (jt)t≥0, which
concludes the proof of Theorem 6.3.3.

6.5 An example: the free unitary Brownian motion

The free unitary Brownian motion introduced in [5] is the unique solution (Ut)t≥0 in B(Γ(L2(R,C))),
starting at U0 = Id, of the free stochastic equation

dUt = iUt(dc
∗
t (1) + dct(1))− 1

2
Utdt,

or equivalently, of the equation dUt = Ut · (dc∗
t (−i) + dct(i) − 1

2dt). It corresponds to a Lévy
process over U〈1〉 given by (u 7→ Ut)t≥0, and from Theorem 6.4.1, we know that the Schürmann
triple (ρ, η, L) over C of this process is given by ρ(u) = IdC, η(u) = −η(u∗) = −i and L(u) =
−1

2 . Concretely, using the definition of a Schürmann triple, it means that, for all polynomials
P ∈ C[X],

d

dt
τ(P (Ut)) = L(P (u)) = −1

2
P ′(1)− P ′′(1).
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The free Lévy process jt : U〈n〉 → E11(B(Γ(K)) ⊔Mn(C))E11 defined by jt(uij) = E1iUtEj1 is
then (thanks to Proposition 6.4.4), equal in distribution to the solution (Jt)t≥0 of

dJt(uij) =
∑

1≤k≤n
Jt(uik) ·

(

dc∗
t (−iEkj) + dct(iEkj)−

1

2
δkjdt

)

= i
∑

1≤k≤n
Jt(uik) · (dc∗

t (Ekj) + dct(Ekj))−
1

2
Jt(uij)dt, (6.15)

the Lévy process on U〈n〉 under study in [44]. Theorem 6.2.2 gives the same conclusion as
in [44]: because the Brownian motion (U

(N)
t )t≥0 on the unitary group U(N) defined and studied

in [5] converges in ∗-distribution to the free unitary Brownian motion (Ut)t≥0 as N tends to
∞, the N × N -block matrices

(

[U
(nN)
t ]ij

)

1≤i,j≤n
t≥0

converge almost surely in ∗-distribution to
(

Jt(uij)
)

1≤i,j≤n
t≥0

as N tends to ∞.



7

Haar states and Haar traces on dual
groups

This section is devoted to define a convenient counterpart to the notion of Haar measures on
Lie groups or Haar states on quantum groups. We will focus on the dual groups U〈n〉, as this is
the one that has been most studied during my thesis. This work has been done in collaboration
with Guillaume Cébron1.

This chapter is adapted from the article [11], which I co-authored with G. Cébron.

7.1 How to build states on U〈n〉?

We expose now a general method for defining quantum random variables on U〈n〉. Consider the
noncommutative probability space Mn(C) composed of matrices of dimension n equipped with
its normalized trace trn := 1

n Tr. Let us denote by Eij the usual matricial units (ie, the matrix
whose entries are zero, except for the (i, j)-th coefficient which is 1).

Let A be a random variable in a noncommutative space (A, φ). One way to consider A as
a matrix is to count A as an element of Mn(A) ≃ A⊗Mn(C). In this way, the (i, j)-th block
of A is just δijA. The starting point of our reflexion is the following: there is another way to
consider A as a matrix. Let us denote by E11(A ⊔Mn(C))E11 the ∗-subalgebra {E11XE11 :
X ∈ A ⊔Mn(C)} ⊂ A ⊔Mn(C). We have the ∗-isomorphism

A ⊔Mn(C) ≃
(

E11(A ⊔Mn(C))E11

)

⊗Mn(C)

X 7→
∑

1≤i,j≤n
E1iXEj1 ⊗ Eij

∑

1≤i,j≤n
Ei1AijE1j ←[

∑

1≤i,j≤n
Aij ⊗ Eij .

It tells us that the (i, j)-th blocks of A viewed as an element of A ⊔Mn(C) can be defined as
E1iAEj1 ∈ E11(A ⊔Mn(C))E11. We endow the ∗-algebra E11(A ⊔Mn(C))E11 with the state
n(φ ∗ trn), where we recall that trn is the normalized trace on Mn(C).

1Cébron is postdoc at the Universität des Saarlandes (Germany).
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Proposition-Definition 7.1.1. For any unitary random variable U ∈ A, there exists a unique
quantum random variable jU : Unc

n → E11(A ⊔Mn(C))E11 determined by jU (uij) = E1iUEj1,
which induces a state (n φ ∗ trn) ◦ jU on U〈n〉.

Proof. It follows from the unitarity of (E1iUEj1)1≤i,j≤n. Indeed, we have

n∑

k=1

E1iU
∗Ek1E1kUEj1 = E1iU

∗InUEj1 = δij

and the same for the other relation.

The elements jU (uij) = E1iUEj1 have to be considered as the (i, j)-th blocks of U , and,
when there is no confusion, we will denote them by Uij . The matrix (Uij)1≤i,j≤n seen as an
element of E11(A⊔Mn(C))E11⊗Mn(C) ≃ A⊔Mn(C) is exactly U ∈ A seen as an element of
A ⊔Mn(C), which justifies this notation.

Remark that we have (Uij)
∗ = (U∗)ji, and that the notation U∗

ij is ambiguous.

7.2 Free cumulants

The compression of random variables by a family of matrix units has been considered in different
situations, and it is possible to write explicitly the free cumulants of Uij in terms of those of U .
For the definition of free cumulants, we refer to Section 3.3.

Let us express the free cumulants of Uij = jU (uij) = E1iUEj1 as defined in Proposition-
Definition 7.1.1 in terms of the free cumulants of U ∈ A.

Proposition 7.2.1 (Theorem 14.18 of [35]). Let U (1), . . . , U (m) be unitary random variables
of (A, φ). The free cumulants of (U (k))ij = jU(k)(uij) in the noncommutative probability space
(

E11(A ⊔Mn(C))E11, n(φ ∗ trn)
)

are given as follows. Let 1 ≤ i1, j1, . . . , iq, jq ≤ n and 1 ≤
m1, . . . ,mq ≤ m. If the indices are cyclic, i.e. if il = jl−1 for 2 ≤ l ≤ q and i1 = jq, we have

κq
(

(U (m1))i1j1 , . . . , (U
(mq))iqjq

)

= n κq
( 1

n
U (m1), . . . ,

1

n
U (mq)

)

.

If the indices are not cyclic, the left handside is equal to zero.

Let us mention two basic properties about the quantum random variables jU : U〈n〉 →
E11(A ⊔Mn(C))E11 defined in Definition 7.1.1.

Proposition 7.2.2. Let U, V ∈ A be two unitary variables of (A, φ).

1. We have jU−1 = jU ◦ Σ and jUV = jU ⋆ jV .

2. If U and V are ∗-free, then, the image ∗-algebras of jU and jV are ∗-free in the noncom-
mutative probability space (E11(A ⊔Mn(C))E11, n(φ ∗ trn)).

Proof. The first property follows from the relation jUV (uij) =
∑

k jU (uik)jV (ukj). The second
one follows from Proposition 7.2.1 and the characterization of freeness of Proposition 3.3.2.
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7.3 Haar state on the unitary dual group

In this section, we will investigate the existence of the Haar state on U〈n〉 for the five different
convolutions. Unfortunately, the definition of a Haar state on U〈n〉 is too strong, and we need
to define a weaker notion of Haar state, namely the notion of Haar trace, to have some existence
results.

Definition 7.3.1. The free (resp. tensor independent, boolean, monotone, anti-monotone) Haar
state on U〈n〉, if it exists, is the unique state h on Unc

n such that, for all other states φ on Unc
n ,

we have φ ⋆F h = h = h ⋆F φ (resp. the same relation for ⋆T , ⋆B, ⋆M or ⋆AM ).

Theorem 7.3.2. 1. The Haar measure on {z ∈ C : |z| = 1} is the Haar state for the free,
tensor independent, boolean, monotone and anti-monotone convolution on U〈1〉.

2. For all n ≥ 2, there exists no Haar state on U〈n〉 for the free, tensor independent, boolean,
monotone or anti-monotone convolution.

Proof. In Section 7.3.1, we prove the first item. In Section 7.3.2, we prove the second item
for the free and the tensor convolution. In Section 7.3.3, we prove the second item for the
boolean convolution, and finally, in Section 7.3.4, we prove the second item for the monotone
and anti-monotone convolution.

Let us define a weaker notion of Haar state. A state φ on Unc
n is called a tracial state, or a

trace, if, for all a, b ∈ Unc
n , we have φ(ab) = φ(ba).

Definition 7.3.3. The free (resp. tensor independent, boolean, monotone, anti-monotone) Haar
trace on U〈n〉, if it exists, is the unique tracial state h on Unc

n such that, for all other tracial
states φ on Unc

n , we have φ ⋆F h = h = h ⋆F φ (resp. the same relation for ⋆T , ⋆B, ⋆M or ⋆AM ).

Remark that a Haar state which is tracial is automatically a Haar trace.

Theorem 7.3.4. 1. For all n ≥ 2, there exist no Haar trace on U〈n〉 for the boolean, mono-
tone or anti-monotone convolution.

2. For all n ≥ 1, there exist a Haar trace on U〈n〉 for the free convolution, which is faithful,
and a Haar trace on U〈n〉 for the tensor convolution, which is not faithful whenever n 6= 1.

Remark 7.3.5. As nicely communicated by Moritz Weber, a careful examination of the proof of
Theorem 7.3.4 allows us to conclude a more general result: the free Haar trace h on U〈n〉 is such
that φ⋆F h = h = h⋆F φ for all states φ on Unc

n such that φ(
∑n
k=1 ukiu

∗
kj) = φ(

∑n
k=1 u

∗
ikujk) = δij

(1 ≤ i, j ≤ n), a case which includes the tracial states but not only. For example, a state which
factorizes on the unitary quantum group, where

∑n
k=1 ukiu

∗
kj =

∑n
k=1 u

∗
ikujk = δij , fulfills this

condition and so is absorbed by the free Haar trace.

Proof. In Section 7.3.3, we prove the first item for the boolean convolution. In Section 7.3.4,
we prove the first item for the monotone and anti monotone convolution. In Section 7.3.5, we
prove the second item for the free convolution, and give a more explicit description of the free
Haar trace. In Section 7.3.6, we prove the second item for the tensor convolution, and give a
more explicit description of the tensor Haar trace.
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Let us remark that one could also choose a side and ask about a right (resp. left) Haar state
for each of these independences. It would be a state h such that for each state φ, it holds that
h ⋆ φ = h (resp. φ ⋆ h = h). We define similarly a right (resp. left) Haar trace. Nevertheless,
the following result shows that this notion does not introduce any more generality.

Proposition 7.3.6. Let us consider one of the five notions of independence. If h is a right
(resp. left) Haar state on U〈n〉 then it is also a left (resp. right) Haar state. As well, if h is a
right (resp. left) Haar trace on U〈n〉 then it is also a left (resp. right) Haar trace.

Proof. Let h be a right Haar state. We define the flip τ on Unc
n ⊔Unc

n as the ∗-homomorphism such
that τ(u

(1)
ij ) = u

(2)
ij and τ(u

(2)
ij ) = u

(1)
ij , where the exponent (1) and (2) indicate if the element is

in the first leg of Unc
n ⊔ Unc

n or in the second leg. A simple computation on the generators uij
shows that τ ◦ (Σ⊔Σ) ◦∆ = ∆ ◦Σ. Therefore, by denoting the notion of independence at hand
by ⊙, we have for all states φ:

h ◦ Σ = (h⊙ φ) ◦∆ ◦ Σ = (h⊙ φ) ◦ τ ◦ (Σ ⊔ Σ) ◦∆ = [(φ ◦ Σ)⊙ (h ◦ Σ)] ◦∆.

Because Σ is invertible, this says exactly that h ◦ Σ is a left Haar state. But then we have:

h = h ⋆ (h ◦ Σ) = h ◦ Σ

by using the right (resp. left) Haar state property of h (resp. h ◦ Σ). Therefore, h = h ◦ Σ is a
right and left Haar state. The argument is valid when replacing h and φ by tracial states since
it implies that h ◦ Σ and φ ◦ Σ are also tracial.

7.3.1 The Haar state in the one-dimensional case

Let us emphasize first that we identify the states on U〈1〉 with the probability measures on
{z ∈ C : |z| = 1} via µ(uk) =

∫

U
zkdµ(z) and µ(u∗k) =

∫

U
z̄kdµ(z) for k ∈ N. The Haar measure

is the uniform measure on the unit circle and is given by h(uk) = h(u∗k) = δk0 for k ∈ N.

The free, tensor independent, boolean, monotone and anti-monotone convolutions on U〈1〉
correspond to five different multiplicative convolutions on probability measures on U which have
been already studied in the literature. In each of those cases, it is straightforward to prove that
h is absorbing.

For the free multiplicative convolution, we refer to [46], or to Section 7.3.5. For the tensor
independent convolution, one has just to observe that φ ⋆T h(uk) = φ(uk)h(uk) = δk0.

For the Boolean, the monotone, and the anti-monotone convolutions, our references are [3,
21, 22]. Let µ be a probability measure on U. We define the K-transform of µ for |z| < 1 by

Kµ(z) =

(∫

U

zx

1− zxdµ(x)

)/(∫

U

1

1− zxdµ(x)

)

.

Let us remark that Kh(z) = 0. The K-transform of the multiplicative Boolean convolution of µ
and ν is given by 1

zKµ(z) ·Kν(z), and consequently, h is absorbing for the Boolean convolution.
The K-transform of the multiplicative monotone (resp. anti-monotone) convolution of µ and ν
is given by Kµ ◦ Kν (resp. Kν ◦ Kµ), and consequently, h is absorbing for the monotone and
anti-monotone convolutions.
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7.3.2 The non existence of Haar state in the free and tensor cases

In this section, we prove that there exists no free Haar state, nor tensor Haar state, for n ≥ 2.

Let us take n ≥ 2 and assume that h is a free Haar state. We take 1 ≤ k ≤ n − 1 and
we consider the unitary matrix of size 2n × 2n (which is a version of [50, Non-example 4.1],
attributed to Woronowicz):

Mk =



















I2k−2 | 0 0 | 0 0 | 0
−−−− | −− −− | −− −− | − −−−

0 | 0 1 | 0 0 | 0
0 | 0 0 | 1 0 | 0

−−−− | −− −− | −− −− | − −−−
0 | 1 0 | 0 0 | 0
0 | 0 0 | 0 1 | 0

−−−− | −− −− | −− −− | − −−−
0 | 0 0 | 0 0 | I2n−2k−2



















.

For all 1 ≤ i, j ≤ n, we set jk(uij) the (i, j)-th block of Mk of size 2× 2. Because Mk is unitary,
jk extends to a quantum random variable j : Unc

n → M2(C). We define the state φk for all
a ∈ Unc

n as φk(a) = 〈e2, jk(a)e2〉, or equivalently, as the (2, 2)-th coefficient of jk(a). Then, for
every 1 ≤ i, j ≤ n, we have φk(uiku∗

jk) = 0. Let us remark that h being a free Haar state, we
also have

h(uiku
∗
ik) =

n∑

p,q=1

(h ⋆F φk)(u
(1)
ip u

(2)
pk u

(2)∗
qk u

(1)∗
iq ) =

n∑

p,q=1

h(uipu
∗
iq)φk(upku

∗
qk) = 0

This reasoning can be done for any 1 ≤ k ≤ n − 1. For k = n we take the matrix Mk in the
which we have exchanged the last two columns of blocks. We therefore also have φk(uinu∗

jn) = 0
and thus h(uinu

∗
in) = 0. Therefore we should have:

n∑

k=1

h(uiku
∗
ik) =

n∑

k=1

0 = 0

which contradicts the unitarity relation
∑n
k=1 uiku

∗
ik = 1.

The same proof can be done for the tensor case as well. Indeed, the tensor independence
also verifies that, for any 1 ≤ i, j, p, q, k ≤ n,

(h ⋆T φ)(u
(1)
ip u

(2)
pk u

(2)∗
qk u

(1)∗
iq ) = h(uipu

∗
iq)φ(upku

∗
qk).

7.3.3 The boolean case

In this section, we prove that for n ≥ 2, there exist no boolean Haar state and no boolean Haar
trace on U〈n〉.

First of all, we remark the following general result: if φ and ψ are two states on Unc
n and if

a, c come from the left leg and b from the right leg of Unc
n ⊔ Unc

n , then we have

(φ ⋆B ψ)(abc) = (φ ⋆B ψ)
(

a(b− δ(b))c
)

+ δ(b)φ(ac) = φ(a)ψ(b− δ(b))φ(c) + δ(b)φ(ac).
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For all states φ, let us introduce the following matrices:

Nφ = (φ(uij))ij ∈Mn(C),

N̄φ = (φ(u∗
ij))ij ∈Mn(C),

Mφ = (φ(u∗
ijukl))(i,k)(j,l) ∈Mn2(C).

Suppose that there exists a boolean Haar state h. Then, for any state φ,

h(u∗
ijukl) =

n∑

α,β=1

(h ⋆B φ)(u
(2)∗
αj u

(1)∗
iα u

(1)
kβ u

(2)
βl )

=
n∑

α,β=1

[φ(u∗
αj)h(u∗

iαukβ − δ(u∗
iαukβ))φ(uβl) + δ(u∗

iαukβ)φ(u∗
αjuβl)]

=
n∑

α,β=1

φ(u∗
αj)h(u∗

iαukβ)φ(uβl)− φ(u∗
ij)φ(ukl) + φ(u∗

ijukl),

which can be written

Mh = Mh(N̄φ ⊗Nφ)− (N̄φ ⊗Nφ) +Mφ

= (Mh − In2)(N̄φ ⊗Nφ) +Mφ (7.1)

where ⊗ denotes here the tensor product (or Kronecker product) of matrices.

A measure µ on the unitary group U(n) = {M ∈ Mn(C) : U∗U = IN} can be seen as a
unique state on Unc

n via the integration map

µ(uǫ1i1j1 . . . u
ǫq
iqjq

) =

∫

U(n)
U ǫ1i1j1 . . . U

ǫq
iqjq

dµ(U).

Let us set φ1 = (1/2)(δIn + δ−In). For all 1 ≤ i, j, k, l ≤ n, we have φ1(uij) = φ1(u∗
ij) = 0 and

φ1(u∗
ijukl) = 1

2(δijδkl + δijδkl) = δijδkl, or equivalently Nφ1 = 0 and Mφ1 = In2 . By replacing it
into (7.1), we get Mh = In2 .

Consider now another state φ2 defined by (1/2)(δA + δĀ) where A = Diag(i, 1, . . . , 1). We
see that Mφ2 6= In2 because φ2(u∗

22u11) = 0. Replacing Mh by In2 and Mφ by Mφ2 6= In2 in (7.1)
yields to a contradiction.

Now, let us remark that φ1 and φ2 are both tracial, and consequently the proof allows also
to conclude that there exists no Haar trace for the boolean convolution.

7.3.4 The monotone and the antimonotone case

In the proof of the nonexistence of a boolean Haar state, the only property of the boolean
independence that we needed was

(h ⋆B φ)(abc) = φ(a)h(b− δ(b))φ(c) + δ(b)φ(ac)

for a, c in the right leg and b in the left leg of Unc
n ⊔ Unc

n . The monotone independence verifies
this same property and we can thus deduce that there exists no monotone Haar state. On the
contrary, the antimonotone case verifies (h⋆AM φ)(abc) = h(b)φ(ac). Nevertheless, for x, z in the
left leg and y in the right leg of Unc

n ⊔ Unc
n , we have

(φ ⋆AM h)(xyz) = φ(x)h(y − δ(y))φ(z) + δ(y)φ(xz).
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We can then do the computation of the relation h(uiju
∗
kl) = (φ ⋆AM h)∆(uiju

∗
kl) in the exact

same way as before and we find that Mh = (Nφ ⊗ N̄φ)(Mh − In2) + Mφ. We again find a
contradiction by looking on the particular states φ1 and φ2 . To sum it up, for n ≥ 2, there
exists no monotone (resp. antimonotone) Haar state on U〈n〉.

The same remark, about the traciality of the states used, allows us to conclude about the
non-existence of a Haar trace.

7.3.5 The free Haar trace

In this section, we define the free Haar trace and prove that is is indeed an absorbing state for
the free convolution on Unc

n with other tracial states.

Let us first interpret the existence result of the free Haar trace on U〈n〉 in a very concrete
way as follows. Let us denote by h the Haar trace of U〈n〉 for the free convolution, and by u =
(ui,j)1≤i,j≤n the collection of generators of Unc

n . Let A = (aij)1≤i,j≤n ∈ Mn(A) be a collection
of random variables in (A, φ) (φ tracial) such that (aij)1≤i,j≤n is unitary. Setting (bij)1≤i,j≤n =
uA ∈ Mn(A ⊔ Unc

n ) and (cij)1≤i,j≤n = Au ∈ Mn(A ⊔ Unc
n ), the collection {bij}1≤i,j≤n and

{cij}1≤i,j≤n have both the same distribution as {uij}1≤i,j≤n in the noncommutative probability
space (A ⊔ Unc

n , φ ∗ h).

In order to define the state which will play the role of the Haar trace, we have to define a
Haar unitary variable. A noncommutative variable U of a noncommutative probability space
(A, φ) is called Haar unitary if it is a unitary variable, and φ(Uk) = 0 for all k ≥ 0. Here is a
description of its free cumulants.

Proposition 7.3.7 (Remark 3.4.3. of [43]). Let U be a Haar unitary element on some noncom-
mutative probability space. Then, for all r ≥ 1 and ǫ1, . . . , ǫr ∈ {1, ∗}, we have:

κr(U
ǫ1 , . . . , U ǫr ) =

{

(−1)r/2−1Cr/2−1 if r is even and the ǫi are alternating (ǫi 6= ǫi+1)

0 else,

where Ci = (2i)!/(i+ 1)!i! designate the Catalan numbers.

Let us consider a Haar unitary random variable U in (A, φ) and construct from there a
quantum variable jU : Unc

n → E11(A⊔Mn(C))E11 determined by jU (uij) = E1iUEj1 for all 1 ≤
i, j ≤ n as indicated in Proposition-Definition 7.1.1. We will study the state h = [n(φ∗ trn)]◦ jU
on Unc

n . We compute first the free cumulants of our variables uij and u∗
ij . In fact, for all

1 ≤ i, j ≤ n, we denote by (u∗)ij the generator u∗
ji. The free cumulants of uij and (u∗)ij turn

out to be more convenient than the free cumulants of uij and u∗
ij .

Corollary 7.3.8. The free cumulants of (uij)1≤i,j≤n and ((u∗)ij)1≤i,j≤n = (u∗
ji)1≤i,j≤n in the

noncommutative probability space (Unc
n , h) are given as follows.

Let 1 ≤ i1, j1, . . . , ir, jr ≤ n and ǫ1, . . . , ǫr be either ∅ or ∗. If the indices are cyclic (i.e. if
jl−1 = il for 2 ≤ l ≤ q and i1 = jr), r is even and the ǫi are alternating, we have

κr
(

(uǫ1)i1j1 , . . . , (u
ǫr )irjr

)

= n1−r(−1)r/2−1Cr/2−1.

If not, the left handside is equal to zero.
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Proof. It suffices to apply Theorem 14.18 of [35], reminded in Proposition 7.2.1, to U (1) = U
and U (2) = U∗ in order to get the free cumulants of jU (uij) = Uij and jU ((u∗)ij) = (U∗)ij .

We will need another property of free cumulants. Let us first introduce new notation. For
all r ∈ N, S ⊂ {1, . . . , r}, σ ∈ NC(S), and A1, . . . , Ar ∈ A, set

φσ (A1, . . . , Ar) =
∏

{i1≤...≤ik}∈σ
φ(Ai1 · · ·Aik),

κσ (A1, . . . , Ar) =
∏

{i1≤...≤ik}∈σ
κk(Ai1 , . . . , Aik). (7.2)

Remark that, even if we write r variables on the left side, the right side only involves the variables
which correspond to indices which are in S ⊂ {1, . . . , r}.

Proposition 7.3.9. Let {1, . . . , r} = E ∪F be a disjoint union of two subsets. We suppose that
σ is a non-crossing partition on E. Then, for all A1, . . . , An ∈ A, we have

∑

µ∈NC(F )s.t.

µ∪σ∈NC(r)

κµ(A1, . . . , Ar) = φK(σ)(A1, . . . , Ar)

where K(σ) is the biggest partition on F such that σ ∪K(σ) is non-crossing.

Proof. Let us compute

φK(σ)(A1, . . . , Ar) =
∑

µ∈NC(F )
µ�K(σ)

κµ(A1, . . . , Ar) =
∑

µ∈NC(F )
µ∪σ∈NC(r)

κµ(A1, . . . , Ar)

because, by definition of K(σ), the set {µ ∈ NC(F ) : µ � K(σ)} is in one-to-one correspondence
with the set {µ ∈ NC(F ) : µ ∪ σ ∈ NC(r)}.

We are now ready to prove that h = [n(φ ∗ trn)] ◦ jU is indeed a Haar trace for the free
convolution.

Proof of Theorem 7.3.4 in the free case. Let φ be a tracial state on Unc
n . Let 1 ≤ i1, j1, . . . , ir, jr ≤

n, let ǫ1, . . . , ǫr be either ∅ or ∗ and set

m = (uǫ1)i1j1 . . . (u
ǫr )irjr

where we recall that ((u)ij)1≤i,j≤n = (uij)1≤i,j≤n and ((u∗)ij)1≤i,j≤n = (u∗
ji)1≤i,j≤n by conven-

tion. Remark that we prefer to work with the word m instead of the word uǫ1i1j1 . . . u
ǫr
irjr

, since
the computations are easier.

Let us compute (h ⋆F φ)(m). We have (h ⋆F φ)(m) = (h ∗ φ) ◦∆(m) and

∆(uij) =
n∑

k=1

u
(1)
ik u

(2)
kj , and ∆((u∗)ij) = ∆(u∗

ji) =
n∑

k=1

(u∗)
(2)
ik (u∗)

(1)
kj ,

where the exponent (1) and (2) indicate if the element is in the first leg of Unc
n ⊔ Unc

n or in
the second leg. So, when computing ∆(m), we obtain something of the form

∑

k1,...,kr
mk1,...,kr

where mk1,...,kr are words of length 2r of the form (uǫ1)i1k1(uǫ1)k1j1 · · · (uǫr )irkr (uǫr )krjr with the
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generators coming from both legs of Unc
n ⊔ Unc

n . More precisely, let us decompose {1, . . . , 2r} =
S ∪ T where S contains the positions of the generators which are in the first leg and T contains
the positions of the generators which are in the second leg, according to

S = {2i− 1 : 1 ≤ i ≤ n, ǫ(i) = ∅} ∪ {2i : 1 ≤ i ≤ n, ǫ(i) = ∗},
T = {1, . . . , 2r} \ S.

We can develop the computation using the freeness of the legs:

(h ∗ φ) ◦∆(m) = (h ∗ φ)




∑

k1,...,kr

mk1,...,kr





=
∑

k1,...,kr

∑

σ∈NC(S), µ∈NC(T )
s.t. σ∪µ∈NC(2r)

κhσ

(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

· κφµ
(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

,

where we recall that, according to (7.2), the free cumulant κhσ(· · · ) only involves the variables
which correspond to indices in S and κφµ(· · · ) only involves the variables which correspond to
indices in T .

Using Corollary 7.3.8, we know that, whenever the ǫi are alternating and the indices are cyclic
within the blocks of σ ∈ NC(S), the quantity κhσ((uǫ1)i1k1 , (u

ǫ1)k1j1 , . . . , (u
ǫr )irkr , (u

ǫr )krjr) does
not depend on the indices k1, . . . , kr. We denote it by κhσ, and compute

(h ∗ φ) ◦∆(m)

=
∑

σ∈NC(S), µ∈NC(T )
s.t. σ alternates the ǫi

and σ∪µ∈NC(2r)

∑

k1,...,kr
s.t. the indices are cyclic
within eack block of σ

κhσ · κφµ
(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

Thanks to Proposition 7.3.9, we can sum over µ and we obtain

(h ∗ φ) ◦∆(m) (7.3)

=
∑

σ∈NC(S)
s.t. σ alternates the ǫi

κhσ ·
∑

k1,...,kr
s.t. the indices are cyclic

within eack block of σ

φK(σ)

(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

.

So let us now examine equation (7.3) in greater details. Because the blocks of σ alternate the
ǫi, the blocks of K(σ) must also alternate the ǫi. One can convince himself on a few examples,
but also find a full proof in Proposition 7.7. of [34]. Now one has to understand how the cyclicity
of the indices i1k1, k1j1, . . . , irkr, krjr in the blocks of σ is translated in terms of the blocks of
K(σ). For every block B = {r(1) ≤ . . . ≤ r(q)}, we say that r(1) and r(q) are opposites in B.

A condition kq = kq′ for some 1 ≤ q < q′ ≤ r appears twice. Once in the case where 2q and
2q′ − 1 are opposites in the same block of σ, which is equivalent to the fact that 2q − 1 and 2q′

are consecutive in the same block of K(σ) (it corresponds to the case ǫq = ∗ and ǫq′ = ∅, see
the Figure 7.1). The other case is when 2q − 1 and 2q′ are consecutive in the same block of σ,
which is equivalent to the fact that 2q and 2q′ − 1 are opposites in the same block of K(σ) (it
corresponds to the case ǫq = ∅ and ǫq′ = ∗, see Figure 7.2).
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b b b bb b b b b b bbbb

(2) (1) (1) (2)
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b
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Figure 7.1: The case kq = kq′ in · · · (u∗)
(2)
iqkq

(u∗)
(1)
kqjq
· · ·u(1)

iq′kq′
u

(2)
kq′jq′

· · ·
(the continuous line represents σ while the dashed line represents K(σ))
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* *

bb b b
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Figure 7.2: The case kq = kq′ in · · ·u(1)
iqkq

u
(2)
kqjq
· · · (u∗)

(2)
iq′kq′

(u∗)
(1)
kq′jq′

· · ·
(the continuous line represents σ while the dashed line represents K(σ))

Now, let us consider one block B = {r(1) ≤ . . . ≤ r(q)} ∈ K(σ). If ǫ(r(1)) = ∗, a case
illustrated in Figure 7.3, we have

φB
(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

= φ
(

(u∗)ir(1)kr(1)
ukr(2)jr(2)

· · · (u∗)ir(q−1)kr(q−1)
ukr(q)jr(q)

)

= φ
(

u∗
kr(1)ir(1)

ukr(2)jr(2)
· · ·u∗

kr(q−1)ir(q−1)
ukr(q)jr(q)

)

and summing over the indices kr(1) = kr(2), kr(3) = kr(4), · · · , kr(q−1) = kr(q) yields to

δir(1)jr(2)
. . . δir(q−1)jr(q)

.

b b b b b b

bbbbbb

b b b b b b b b

(2) (1) (1) (2) (1) (2)
* *

bb
(2) (1)
* *

Figure 7.3: The case kr(1) = kr(2), kr(3) = kr(4), · · · , kr(q−1) = kr(q) in B
(the continuous line represents σ while the dashed line represents K(σ))

As well, if ǫ(r(1)) = ∅, a case illustrated in Figure 7.4, we have

φB
(

(uǫ1)i1k1 , (u
ǫ1)k1j1 , . . . , (u

ǫr )irkr , (u
ǫr )krjr

)

= φ
(

ukr(1)jr(1)
(u∗)ir(2)kr(2)

· · ·ukr(q−1)jr(q−1)
(u∗)ir(q)kr(q)

)

= φ
(

ukr(1)jr(1)
u∗
kr(2)ir(2)

· · ·ukr(q−1)jr(q−1)
u∗
kr(q)ir(q)

)
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and summing over the indices kr(2) = kr(3), · · · , kr(q−2) = kr(q−1) yields to

δir(q)jr(1)
. . . δir(q−2)jr(q−1)

φ
(

ukr(1)jr(1)
u∗
kr(q)ir(q)

)

.

Using the fact that φ is tracial, φ
(

ukr(1)jr(1)
u∗
kr(q)ir(q)

)

= φ
(

u∗
kr(q)ir(q)

ukr(1)jr(1)

)

. Thus we can also
sum over kr(1) and get δir(q)jr(1)

. . . δir(q−2)jr(q−1)
.

b b b b b b b b
(1) (2) (2) (1) (1) (2) (2) (1)

b b b b b b b b

b b b b b b b b b

* * * *

Figure 7.4: The case kr(q) = kr(1), kr(2) = kr(3), · · · , kr(q−2) = kr(q−1) in B
(the continuous line represents σ while the dashed line represents K(σ))

Those computations shows that the quantity (h ∗ φ) ◦ ∆(m) expressed as (7.3) does not
depend on the choice of φ, and in particular, we can replace φ by δ and obtain (h ∗φ) ◦∆(m) =
(h ∗ δ) ◦∆(m). Since m is arbitrary, we have (h ∗ φ) ◦∆ = (h ∗ δ) ◦∆. Now, let us remark that
h ∗ δ and h ◦ (Id ⊔ δ) are two unital linear functionals which vanish on products in Unc

n ⊔ Unc
n

which alternate elements from ker(h) in the first leg and elements from ker(δ) in the second leg.
As a consequence, we have h ∗ δ = h ◦ (Id ⊔ δ), and we can write (h ∗ φ) ◦ ∆ = (h ∗ δ) ◦ ∆ =
h ◦ (Id ⊔ δ) ◦∆ = h. This prove that h is a Haar trace, thanks to Proposition 7.3.6.

The free Haar state can be computed with the help of the following proposition, which is
just a reformulation of Corollary 7.3.8.

Proposition 7.3.10. When Unc
n is endowed with its Haar trace for the free convolution, the

free cumulants of {uij}1≤i,j≤n are given as follows.

Let 1 ≤ i1, j1, . . . , ir, jr ≤ n. We have

κr
(

ui1j1 , u
∗
i2j1 , ui2j2 , u

∗
i3j2 , . . . , uirjr , u

∗
i1jr

)

= n1−2r(−1)r−1Cr−1

and κr
(

u∗
i1j1 , ui1j2 , u

∗
i2j2 , ui2j3 , . . . , u

∗
irjr , uirj1

)

= n1−2r(−1)r−1Cr−1

where Cr = (2r)!/(r+ 1)!r! designate the Catalan numbers. Moreover, the free cumulants which
are not given in such a way are equal to 0.

In [31], Mc Clanahan defines a state on Unc
n which is in fact equal to our free Haar trace. More

precisely, let us denote by C(U) the algebra of continuous functions on the unit complex circle
U and byMn(C)′ the relative commutant ofMn(C) in C(U)⊔Mn(C). It is straightforward to
verify that there exists a unique ∗-homomorphism ϕ : Unc

n →Mn(C)′ such that

ϕ(uij) =
∑

1≤k≤n
EkiIdUEjk.

Endowing C(U) with the uniform measure λ on the unit circle gives us a state (λ∗trn)|Mn(C)′ ◦ϕ
on Unc

n .
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Proposition 7.3.11. The state (λ ∗ trn)|Mn(C)′ ◦ ϕ of Mc Clanahan is the Haar trace for the
free convolution on Unc

n .

Proof. Let us first observe the ∗-homomorphism of noncommutative probability spaces (where
A = C(U) equipped with Haar measure):

ϕ̃ :
(

E11(A ⊔Mn(C))E11, n(λ ∗ trn)
)

→
(

Mn(C)′, (λ ∗ trn)|Mn(C)′

)

A 7→
∑

1≤k≤n
Ek1AE1k

which follows from the equality λ ∗ trn(
∑

k Ek1AE1k) = n(λ ∗ trn(A)) for all elements A of
E11(A⊔Mn(C))E11. Observe also that IdU is a Haar unitary element U of (C(U), λ). The result
follows from the equality ϕ = ϕ̃◦jU which shows that the state of Mc Clanahan (λ∗trn)|Mn(C)′◦ϕ
is exactly the Haar trace [n(λ ∗ trn)] ◦ jU = (λ ∗ trn)|Mn(C)′ ◦ ϕ̃ ◦ jU .

Proposition 7.3.12. The free Haar trace h is faithful for n ≥ 1.

Proof. Let A be the dual groups Unc
1 generated by one element U (also known as the space of

Laurent polynomials C[U,U−1]) endowed with the uniform measure λ on the circle given by
Section 7.3.1 (for all k ∈ N, λ(Uk) = λ(U∗k) = δk0), which is faithul. As a consequence of [35,
Proposition 6.14], which says that the free product of faithful states is faithful, we know that
n(φ ∗ trn) is faithful on the ∗-algebra A ⊔Mn(C), thus also on E11(A ⊔Mn(C))E11.

We have h = [n(λ ∗ trn)] ◦ jU because U is a Haar unitary random variable in (A, λ). The
faithfulness of h follows then from the injectivity of the map jU , which can be seen in the
following way. Let us define the homomorphism of ∗-algebras k1 by

k1 : A ⊔Mn(C) → Uncn ⊗Mn(C)

U 7→
∑

ij

uij ⊗ Eij

Eij 7→ 1⊗ Eij

and the ∗-linear map k2 by

k2 : Uncn ⊗Mn(C) → Uncn

w ⊗M 7→ M(1, 1) · w.

Let us prove that k2 ◦ k1 ◦ jU = Id. First, k1(E11) = 1⊗ E11, and, as a consequence,

k1

(

E11(A ⊔Mn(C))E11

)

= Uncn ⊗ (C · E11).

Of course, k2 is a homomorphism of ∗-algebras on Uncn ⊗ (C ·E11), which means that k2 ◦ k1 is a
homomorphism of ∗-algebras on E11(A ⊔Mn(C))E11 and that k2 ◦ k1 ◦ jU is a homomorphism
of ∗-algebras from Unc

n to itself. Finally, for all 1 ≤ i, j ≤ n, we compute

k2 ◦ k1 ◦ jU (uij)

= k2 ◦ k1(E1iUEj1) = k2

[

(1⊗ E1i)(
∑

pq

upq ⊗ Epq)(1⊗ Ej1)

]

= k2(uij ⊗ E11) = uij .

Therefore, k2 ◦ k1 ◦ jU = Id, and consequently jU is injective, which concludes the proof.
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7.3.6 The tensor Haar trace

In this section, we prove that there exists a tensor Haar trace.

Let us define the state which will be the tensor Haar trace. It is constructed via a very differ-
ent method than the free Haar trace. We consider the Hilbert space H = ℓ2(Z)⊗⊗k∈ZMn(C),
where ℓ2(Z) is Hilbert space of square-summable families of complex numbers indexed by Z

and
⊗

k∈ZMn(C) is the infinite tensor product of copies of the Hilbert space Mn(C), where
the number of matrices different from In is finite and the scalar product on Mn(C) is given by
trn(A∗B) = Tr(A∗B)/n.

For all 1 ≤ i, j ≤ n, we define the following bounded operator on H by setting, for all
δk ⊗

⊗

l∈ZMl ∈ H,

Uij(δk ⊗ (. . .⊗Mk−1 ⊗Mk ⊗Mk+1 ⊗ . . .)) = δk+1 ⊗ (. . .⊗Mk−1 ⊗ EjiMk ⊗Mk+1 ⊗ . . .)
and therefore its adjoint, given by

U∗
ij(δk ⊗ (. . .⊗Mk−1 ⊗Mk ⊗Mk+1 ⊗ . . .)) = δk−1 ⊗ (. . .⊗ EijMk−1 ⊗Mk ⊗Mk+1 ⊗ . . .).

We introduce Ω = δ0 ⊗
⊗

k∈Z In and the state on the algebra B(H) of bounded operators on
H given by A 7→ 〈Ω, AΩ〉. The operators Uij verify that

∑n
k=1 U

∗
kiUkj = δij =

∑n
k=1 UikU

∗
jk and

so the quantum random variable over j : Unc
n ∋ uij 7→ Uij ∈ B(H) is well-defined. It induces a

state h on U〈n〉, given for all a ∈ Unc
n by

h(a) = 〈Ω, j(a)Ω〉.
Let us compute first the value of h, thanks to the following lemmas.

Lemma 7.3.13. For all 1 ≤ i1, j1, . . . , ir, jr ≤ n, we have

h(ui1j1u
∗
i2j2 . . . uir−1jr−1u

∗
irjr ) =

1

n
δi1i2δj2j3δi3i4 . . . δir−1irδjrj1 ,

h(u∗
i1j1ui2j2 . . . u

∗
ir−1jr−1

uirjr ) =
1

n
δj1j2δi2i3δj3j4 . . . δjr−1jrδiri1 .

Proof. We have

Ui1j1U
∗
i2j2 . . . Uir−1jr−1U

∗
irjr (Ω) = δ0 ⊗ (· · · ⊗ In ⊗ Ej1i1Ei2j2 . . . Ejr−1ir−1Eirjr

︸ ︷︷ ︸

at the level −1

⊗In ⊗ · · · ),

U∗
i1j1Ui2j2 . . . U

∗
ir−1jr−1

Uirjr (Ω) = δ0 ⊗ (· · · ⊗ In ⊗ Ei1j1Ej2i2 . . . Eir−1jr−1Ejrir
︸ ︷︷ ︸

at the level 0

⊗In ⊗ · · · ),

which yields the first and the second result.

For more general words, it is possible to reduce them and fit into the previous case. Fix
1 ≤ i1, j1, . . . , ir, jr ≤ n, ǫ1, . . . , ǫr ∈ {∅, ∗}, and consider the word uǫ1i1j1 . . . u

ǫr
irjr

. We can
decompose {1, . . . , r} into

⋃r
k=−r Sk, where

Sk =
{

l ∈ {1, . . . , r} : k = ♯{m > l : ǫm = ∅} − ♯{m ≥ l : ǫm = ∗}
}

. (7.4)

If we assume that ∅ corresponds to a North step, ∗ to a South step, and consider the path given
by ǫr, . . . , ǫ1, the set Sk contains the positions where the path goes from the level k to the level
k+ 1, or from the level k+ 1 to the level k. Consequently, the Sk form a partition of {1, . . . , r},
and the ǫm are alternating inside each Sk.
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Lemma 7.3.14. Let 1 ≤ i1, j1, . . . , ir, jr ≤ n and ǫ1, . . . , ǫr be either ∅ or ∗.
If ♯{m : ǫm = ∗} 6= ♯{m : ǫm = 1}, then h(uǫ1i1j1 . . . u

ǫr
irjr

) = 0.

If ♯{m : ǫm = ∗} = ♯{m : ǫm = 1}, then

h(uǫ1i1j1 . . . u
ǫr
irjr

) =
r∏

k=−r
h





→∏

l∈Sk

uǫliljl



 .

This lemma combined with Lemma 7.3.13 describes entirely the state h.

Proof. Let us prove by decreasing induction on l that, for all 1 ≤ l ≤ r, and l ∈ Sk, we have

U ǫliljl . . . U
ǫr
irjr

(Ω) = δk+1 ⊗
⊗

p∈Z





→∏

q∈Sp∩{l,...,r}
E
ǫq
jqiq



 if ǫl = 1,

and U ǫliljl . . . U
ǫr
irjr

(Ω) = δk ⊗
⊗

p∈Z





→∏

q∈Sp∩{l,...,r}
E
ǫq
jqiq



 if ǫl = ∗.

First of all, we have Uirjr(Ω) = δ1 ⊗ (. . . ⊗ Ejrir ⊗ . . .) with the non-identity matrix at level 0
and U∗

irjr (Ω) = δ−1 ⊗ (. . .⊗ Eirjr ⊗ . . .) where the non-identity matrix is at level −1. Thus the
property is true for l = r.

Fix now 1 ≤ l < r and assume that the property is true for l + 1. Suppose first that
ǫl = ǫl+1 = ∗, and denote by k the integer such that l + 1 ∈ Sk, then l ∈ Sk−1 and:

U ǫliljl . . . U
ǫr
irjr

(Ω) = U ǫliljl



δk ⊗
⊗

p∈Z





→∏

q∈Sp∩{l,...,r}
E
ǫq
jqiq









= δk−1 ⊗
⊗

p∈Z





→∏

q∈Sp∩{l+1,...,r}
E
ǫq
jqiq



 .

The other cases (i.e., ǫl = ǫl+1 = ∅, ǫl = ∗, ǫl+1 = ∅ and ǫl+1 = ∗, ǫl = ∅) are treated in the exact
same way. Therefore, the property is true for every l ∈ {1, . . . , r}.

Finally, h(uǫ1i1j1 . . . u
ǫr
irjr

) = 〈Ω, U ǫ1i1j1 . . . U
ǫr
irjr

(Ω)〉 is exactly as expected.

We are now ready to prove that h is indeed the Haar trace for the tensor convolution. Thanks
to Proposition 7.3.6, it is a consequence of the following proposition.

Proposition 7.3.15. The state h is tracial, and for all other tracial states φ, we have h⋆T φ = h.

Proof. Firstly, h is tracial. Indeed, let us fix 1 ≤ i1, j1, . . . , iq, jq ≤ n, ǫ1, . . . , ǫq ∈ {∅, ∗} and
compare h(uǫ1i1j1 . . . u

ǫr
irjr

) with h(uǫrirjru
ǫ1
i1j1

. . . u
ǫr−1

ir−1jr−1
). Thanks to Lemma 7.3.13, if the ǫi are

alternating, we are done. If not, remark that acting by a cyclic permutation just shifts the Sk’s.
Thus, up to a cyclic permutation, the decomposition in the Sk’s is the same for uǫ1i1j1 . . . u

ǫr
irjr

and uǫrirjru
ǫ1
i1j1

. . . u
ǫr−1

ir−1jr−1
. Consequently, by Lemma 7.3.14, the full traciality is a consequence

of the traciality for words alternating the ǫi’s.
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Now, let us prove that h⋆Tφ = h. Equivalently, we will prove that, for all 1 ≤ i1, j1, . . . , ir, jr ≤
n and ǫ1, . . . , ǫr ∈ {∅, ∗},

h ⋆T φ(uǫ1i1j1 . . . u
ǫr
irjr

) =
n∑

k1,...,kr=1

h(uǫ1i1k1
. . . uǫrirkr

)φ(uǫ1k1j1
. . . uǫrkrjr

) (7.5)

is equal to h(uǫ1i1j1 . . . u
ǫr
irjr

). If ♯{m : ǫm = ∗} 6= ♯{m : ǫm = 1}, this is a direct consequence of
Lemma 7.3.14. If not, let us prove the result by induction on the even length r = 2q of the word.

Remark that h⋆T φ(1) = h(1) = 1. Fix q > 0 and suppose that the result is true for words of
length less than 2q. Let us prove that the result is true for words uǫ1i1j1 . . . u

ǫr
irjr

of length r = 2q
such that ♯{m : ǫm = ∗} = ♯{m : ǫm = 1}.

Fix 1 ≤ i1, j1, . . . , ir, jr ≤ n and ǫ1, . . . , ǫr ∈ {∅, ∗}. Consider k0 = min{k : Sk 6= ∅}. For all
q ∈ Sk0 \ {1} such that ǫq = ∅, we must have ǫq−1 = ∗ and consequently q − 1 ∈ Sk0 (indeed, if
ǫq−1 = ∅, then q − 1 ∈ Sk0+1 and k0 is not minimal). Moreover, if 1 ∈ Sk0 and ǫ1 = ∅, we must
have ǫr = ∗ and consequently r ∈ Sk0 (indeed, in this case, ǫ1 = ∅ implies that 1 ∈ S−1 and
k0 = −1, and if ǫr = ∅, then r ∈ S0 and −1 is not minimal). To sum up, Sk0 can be written in
the form

{r(1) ≤ r(1) + 1 ≤ r(2) ≤ r(2) + 1 ≤ · · · ≤ r(q) ≤ r(q) + 1}

if the first element is labelled by ∗, and in the form

{1 ≤ r(1) ≤ r(1) + 1 ≤ · · · ≤ r(q) ≤ r(q) + 1, r}

if the first element is labelled by ∅.
In the case where the first element is labelled by ∗, let us decompose Sk0 = {r(1) ≤ r(1)+1 ≤

· · · ≤ r(q) ≤ r(q) + 1}. Set r(q + 1) = r(1), and compute, thanks to Lemmas 7.3.13 and 7.3.14,

h ⋆T φ(uǫ1i1j1 . . . u
ǫr
irjr

) =
n∑

k1,...,kr=1

h(uǫ1i1k1
. . . uǫrirkr

)φ(uǫ1k1j1
. . . uǫrkrjr

)

=
n∑

k1,...,kr=1

h





→∏

l /∈Sk0

uǫlilkl




1

n

q
∏

l=1

(δkr(l)kr(l)+1
δir(l)+1ir(l+1)

) · φ(uǫ1k1j1
. . . uǫrkrjr

).

Summing over the indices kr(1) = kr(1)+1, kr(2) = kr(2)+1, · · · , kr(q) = kr(q)+1 in φ and use the
induction hypothesis yields to

∑

l /∈Sk0
1≤kl≤n

h





→∏

l /∈Sk0

uǫlilkl



φ





→∏

l /∈Sk0

uǫlkljl




1

n

q
∏

l=1

(δjr(l)jr(l)+1
δir(l)+1ir(l+1)

)

= h ⋆T φ





→∏

l /∈Sk0

uǫliljl




1

n

q
∏

l=1

(δjr(l)jr(l)+1
δir(l)+1ir(l+1)

)

= h





→∏

l /∈Sk0

uǫliljl




1

n

q
∏

l=1

(δjr(l)jr(l)+1
δir(l)+1ir(l+1)

)

= h(uǫ1i1j1 . . . u
ǫr
irjr

).
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In the case where the first element is labelled by ∅, we decompose Sk0 = {1 ≤ r(1) ≤ r(1) + 1 ≤
· · · ≤ r(q) ≤ r(q) + 1 ≤ r}. The previous computation can be written as well, with a needed
shift which has to be done in order to sum over the index k1 = kr:

n∑

k1=1

φ(uk1j1u
ǫ2
k2j2

. . . u
ǫr−1

kr−1jr−1
u∗
krjr )

=
n∑

k1=1

φ(u∗
krjruk1j1u

ǫ2
k2j2

. . . u
ǫr−1

kr−1jr−1
) = δj1,jrφ(uǫ2k2j2

. . . u
ǫr−1

kr−1jr−1
).

Finally, we always have h ⋆T φ(uǫ1i1j1 . . . u
ǫr
irjr

) = h(uǫ1i1j1 . . . u
ǫr
irjr

) and the proof is done.

Proposition 7.3.16. The tensor Haar trace h is not faithful for n ≥ 2.

Proof. Set X = u∗
21u11. Then, h

(
X2(X2)∗) = 0 thanks to Lemma 7.3.13. But, on the other

hand, X2 is nonzero. This can be seen for instance via the representation π : Uncn → C given by

(

π(uij)
)

1≤i,j≤n
=






1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 In−2




 ,

which is a well-defined representation of U〈n〉 because the matrix (π(uij))
n
i,j=0 is unitary. We

have π(X2) = 1/4 6= 0, which implies that X2 is nonzero.

7.4 Random matrix and Haar traces

In this section we investigate the relationship between Haar traces and matrices.

7.4.1 Matrix models

In this section, we define a model of random matrices which converges to the free Haar trace
defined in Section 7.3.

Let us fix an arbitrary set I of indices. Let (Mi)i∈I be a family of random variables in some
non-commutative space (A, φ). For each N ∈ N, let (M

(N)
i )i∈I be a family of random N × N

matrices. We will say that (M
(N)
i )i∈I converges almost surely in ∗-distribution to (Mi)i∈I as N

tends to ∞ if for all noncommutative polynomials P ∈ C〈Xi, X
∗
i : i ∈ I〉 we have almost surely

the following convergence:

lim
N→∞

trN
(

P (M
(N)
i )

)

= φ (P (Mi)) ,

where we recall that trN is the normalized trace.

The following theorem, whose first version is due to Voiculescu [48], is a well-known phe-
nomenon which makes freeness appear from independence and invariance by unitary conjugation.
(see also [15, 29, 35, 46]).

Theorem 7.4.1 (Theorem 23.14 of [35]). Let I and J be two arbitrary set of indices. Let (Ai)i∈I
be a family of random variables in (A, φ) and (Bj)i∈J be a family of random variables in (B, τ).
We suppose that
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1. For each N ∈ N, {A(N)
i }i∈I is a family of random N ×N matrices which converges almost

surely in ∗-distribution to {Ai}i∈I as N tends to ∞.

2. For each N ∈ N, {B(N)
j }i∈J is a family of constant N×N matrices which converges almost

surely in ∗-distribution to {Bj}j∈J as N tends to ∞.

3. The law of {A(N)
i }i∈I is invariant by unitary conjugation, i.e. it is equal to the law of

{UM (N)
i U∗}i∈I for all U ∈MN (C) which is unitary.

Then the matrices {A(N)
i }i∈I ∪ {B

(N)
j }i∈J converge almost surely in ∗-distribution together to

{Ai}i∈I ∪ {Bj}i∈J seen as elements of (A ⊔ B, φ ∗ τ) as N tends to ∞

For a matrix M ∈MnN (C) and 1 ≤ i, j ≤ n, we denote by [M ]ij the (i, j)-block of M when
it is divided in n2 matrices of size N ×N .

Corollary 7.4.2. Let I be an arbitrary set of indices. Let (Ak)k∈K be a family of random

variables in (A, φ). For each N ∈ N, let {A(N)
k }k∈K be a family of random N × N matrices

which converges almost surely in ∗-distribution to {Ak}k∈K as N tends to ∞ and whose law is
invariant by unitary conjugation.

Then, the family of block matrices {[A(nN)
k ]ij}k∈K,1≤i,j≤n converges almost surely in ∗-distribution

to {E1iAkEj1}k∈K,1≤i,j≤n seen as an element of (E11(A ⊔Mn(C))E11, n φ ∗ trn) when N tends
to ∞.

Let us remark that the invariance of the law by unitary conjugation is not very restrictive.
Indeed, if the law of {A(N)

k }k∈K is not invariant by unitary conjugation, we can replace the

family {A(N)
k }k∈K by the family {UA(N)

k U∗}k∈K , where U is a uniform unitary random matrix

of MN (C) independent from {A(N)
k }k∈K .

Proof. First, remark that the family of constant nN × nN matrices {P (N)
ij }1≤i,j≤n defined by

the block matrices [P
(N)
ij ]lm = δilδjmIN (the block of P (N)

ij are zero except the (i, j)-th block
which is IN ) converges to {Eij}1≤i,j≤n ⊂ Mn(C) as N tends to ∞. Using Theorem 7.4.1, the

family {P (N)
1i A

(nN)
k P

(N)
j1 }k∈K,1≤i,j≤n converges to {E1iAkEj1}k∈K,1≤i,j≤n seen as an element of

(A ⊔Mn(C), φ ∗ trn) when N tends to ∞.

But let us remark that P (N)
1i A

(nN)
k P

(N)
j1 =

(

[A
(nN)
k ]ij 0

0 0

)

. Consequently, the morphism

of algebra from MN (C) to MnN (C) given by M 7→
(

M 0
0 0

)

and the previous convergence

implies the convergence of {[A(nN)
k ]ij}k∈K,1≤i,j≤n as N tends to ∞. However, one has to be

careful that the trace trN is transformed via this map into the linear functional n trnN , and
that consequently the family {[A(nN)

k ]ij}k∈K,1≤i,j≤n converges to {E1iAkEj1}k∈K,1≤i,j≤n seen as
elements of A ⊔Mn(C) endowed with the linear functional n(φ ∗ trn), or equivalently, seen as
elements of the noncommutative probability space (E11(A ⊔Mn(C))E11, n(φ ∗ trn)).

A Haar unitary matrix on the unitary group U(N) = {M ∈ MN (C) : U∗U = IN} is
a uniformly distributed unitary matrix U (N), or equivalently a random unitary matrix U (N)

which is equal in law to V U (N) and U (N)V for every unitary matrix V .
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Theorem 7.4.3. Let us consider (uij)1≤i,j≤n, the generators of the non-commutative space
U〈n〉 endowed with its free Haar trace. For all N ≥ 1, let U (N) be a Haar unitary matrix on the
classical unitary group U(N).

Then, the matrices
(

[U (nN)]ij
)

1≤i,j≤n
converge almost surely in ∗-distribution to (uij)1≤i,j≤n

when N tends to ∞.

Proof. Setting {U (N)
k }k∈K = {U (N), U (N)∗} (with K = {1, 2}), it is a direct consequence of

Corollary 7.4.2. Indeed, U (N) converge almost surely to a Haar unitary random variable U , and
the Haar trace is given by [n(φ ∗ trn)] ◦ jU ).

7.4.2 Back to the Brownian motion on U〈n〉

In Chapter 5, we have shown that the free quantum Lévy process that was considered there
satisfied the gaussianity property and was therefore a nice candidate to be called a Brownian
motion on U〈n〉. We show in this section that it converges, when times goes to infinity, toward
the free Haar trace, thus providing one more argument to call it a Brownian motion.

Proposition 7.4.4. Let (Jt)t≥0 be the Lévy process on U〈n〉 defined in Chapter 5. Then, when
t goes to infinity, the distribution of (Jt)t≥0 converges towards the free Haar trace.

Proof. Let (Ut)t≥0 be a free multiplicative Brownian motion in a non-commutative probability
space (A,Φ). Then, (Jt)t≥0 is equal in distribution to jt : U〈n〉 → E11(A ⊔Mn(C))E11 defined
by setting, for all 1 ≤ i, j ≤ n, jt(uij) = E1iUtEj1.

It is well-known that (Ut)t≥0 converges in ∗-distribution to a Haar unitary variable U as t
tends to ∞. Indeed, there is an explicit description of the moments of Ut in [5], namely

τ(Ukt ) = e− kt
2

k−1∑

i=0

(−1)i
ti

i!
ki−1

(

k

i+ 1

)

, k ≥ 1,

and they converge to zero, which are the moments of a Haar unitary variable U . As a conse-
quence, (jt(uij))1≤i,j≤n converges in ∗-distribution to (E1iUEj1)1≤i,j≤n as t tends to ∞, where
(Eij)1≤i,j≤n are free from U . But uij 7→ E1iUEj1 is a quantum random variable whose distri-
bution is the free Haar trace (see Section 7.3.5). Consequently, (jt)t≥0 converge in distribution
to the free Haar trace, and so do (Jt)t≥0.
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