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Models and Theories

All mathematical theories are born from inductive reasonings:

Observation ⇒ Pattern ⇒ Hypothesis ⇒ Theory

Once a theory is obtained, one then uses deductive reasonings to explain
other observations:

Theory ⇒ Hypothesis ⇒ Observation ⇒ Confirmation
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Refinement of Theories

When a theory does not imply an observation ...

Theory ��ZZ⇒ Confirmation

... One usually decides to refine the theory by adding more axioms ...

Possible Theories
$,

dl Covered Examples

... One thus gets a back-and-forth between

. the poset of theories (ordered by the level of abstraction)

. the poset of classes of Examples (ordered by the inclusion)
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Refinement of Theories

Informally, we have an adjunction of order-preserving relations

Possible Theories

Right
$,

dl
Left

Covered Examples

For the Examples: We want to find a greastest fixed point

For the Theories: We want to find the right level of abstraction

... the refinement of a theory can be done in two ways:

. Either one piles up axioms, and we get a long list of properties
• •
_

. Or one can starts over the inductive process with the hope of finding

a better set of axioms
•̂ •̂
^
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Refinement of Theories

Informally, we have an adjunction of order-preserving relations

Possible Theories

Right

^(•
$,

dl
Left

Covered Examples

For the Examples: We want to find a greastest fixed point

For the Theories: We want to find the right level of abstraction

... the refinement of a theory can be done in two ways:

. Either one piles up axioms, and we get a long list of properties
• •
_

. Or one can starts over the inductive process with the hope of finding

a better set of axioms
•̂ •̂
^

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 24
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Quillen’s Model Categories

For instance, in 1967, D. Quillen came up with a set of axioms for the
concept of model category on the base of a particular set of examples.

sSet
Top
ChR

. . .

Induction (Left)
'/

em

Deduction (Right)

(a) 2/3-property
(b) Lifting properties
(c) Weak factorisations
(d) Retract axiom

But, using the concept of model category is generally not enough to
retrieve the combinatorial properties of these examples; e.g.

. Properness properties;

. The idea of smallness;

. The concept of CW-complex;

. The Whitehead theorem ...
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Cofibrantly Generated Model Categories

So, we add more axioms on the theoretical side (without losing too many
examples though)

sSet
Top
ChR

. . .

Induction (Left)
'/

em

Deduction (Right)

(a) 2/3-property
(b) Lifting properties
(c) Weak factorisations
(d) Retract axiom
(e) Set of cofibrations
(f) . . .

This need to further restrict our theoretical setting suggests that we have
not reached the right level of abstraction ...

... and thus have failed to see the existence of a more fundamental
setting...
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A More Fundamental Setting

For instance, in cofibrantly generated model categories, we distinguish
between

- the genuine structure (i.e. the given classes of arrows);

- the generating structure (i.e. some sets of cofibrations);

But the genuine structure is entirely determined by the generating
structure via lifting properties:

S

��

∀ // X

f
��

D
∀
//

∃
??

Y
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A More Fundamental Setting

Similarly, in tractable model categories, we can characterise the weak
equivalences of the model category from the generating structure ...

These can be characterised by using a lifting property with respect to
commutative squares of generating structure as follows:

S

!!

��

∀ // X

��

D1

∃

>>

��

D2

!!

∀
// Y

D′
∃

>>
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Generating Structure = Internal Logic

What really happens is that these generating arrows form an internal
logic of the model category.

... and as in every logic, the commutativity relations satisfied by these
generating arrows form the axioms of the internal logic...

Long list of Axioms
(a) 2/3-property
(b) Lifting properties
(c) Weak factorisations
(d) Retract axiom
(e) Set of cofibrations
(f) . . .

Deduction +3

Internal Logic
Generating arrows
Commutative squares
Commutativity relations
. . .
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(e) Set of cofibrations
(f) . . .

Deduction +3

Internal Logic
Generating arrows
Commutative squares
Commutativity relations
. . .
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Opposite Point of View

So, to avoid the Long List of Axioms ...

... we could take inspiration on these internal logics and take their
associated internal language as a starting point for a brand new
Homotopy Theory ...

Internal Logic
Set of arrows
. . .

Deduction +3

Homotopy Theories
. Model categories
. Fibrant categories
. Homotopical categories
. . . .

But what kind of axioms should we set for this new Homotopy logic?

...well, this will be determined by Induction from the world of Examples.
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Loading .

... After looking into how the internal logics work ...

... we notice that a very elementary structure appears constantly ...

... in any formulation of the internal axioms ...
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Loading ...

... After looking into how the internal logics work ...

... we notice that a very elementary structure appears constantly ...

... in any formulation of the internal axioms ...
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Elementary Structure for Homotopy Theory

This elementary structure is made of :

. a pushout square;

. and an additional arrow as follows.

• //

��

x

•

��
• // • // •

This diagram encodes nothing but the internal logic of a cell or disc:

• &&
88⇓ •
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Elementary Structure for Homotopy Theory

This elementary structure is made of :

. a pushout square;

. and an additional arrow as follows.

• //

��

x

•

��
• // • // •

This diagram encodes nothing but the internal logic of a cell or disc:

• &&
88⇓ •

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 75
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Elementary Structure for Homotopy Theory

We can also retrieve the representatives of the so-called generating
structure seen previously as follows:

. generating cofibrations;

. generating trivial cofibrations;

. generating squares;

• //

��
x
•

��
• // • // •
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Examples

In the category of topological spaces Top:

Sn−1 //

��

x

Dn

��

Dn // Sn // Dn+1

In the category of simplicial sets sSet:

∂∆n−1
//

��

x
Λk
n

��

∆n−1
// ∂∆n

// ∆n
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Examples

In the topos Sh(C∞Ringop):

{0} //

��

D

��

D // D(2) // D

... many other examples exist.
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Examples

In the topos Sh(C∞Ringop):

{0} //

��

D

��

D // D(2) // D

... many other examples exist.

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 90
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A Mini-Homotopy Theory

By taking inspiration on the (previously seen) characterisations of

. fibrations;

. trivial fibrations;

. weak equivalences;

we can define a mini-homotopy theory for each structure of the form

• //

��
x

•

��
• // • // •
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A Mini-Homotopy Theory

By taking inspiration on the (previously seen) characterisations of

. fibrations;

. trivial fibrations;

. weak equivalences;

we can define a mini-homotopy theory for each structure of the form

S //

��
x

D1

��

D2
// S′ // D′
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A Mini-Homotopy Theory

So, for every structure S //

��

x D1

��

D2
// S′ // D′

we say that a morphism
f : X → Y is ...

a fibration if •

��

∀ // X

f
��

•
∀
//

∃
??

Y

a trivial fibration if D1

��

∀ // X

f
��

D′
∀
//

∃
>>

Y

a surtraction if S
!!

��

∀ // X

��

D1
∃

==

��

D2

!!

∀
// Y

D′ ∃

>>

an intraction if S′

��

∀ // X

f
��

D′
∀
//

∃
>>

Y
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A Mini-Homotopy Theory

So, for every structure S //

��

x D1

��

D2
// S′ // D′

we say that a morphism
f : X → Y is ...

a fibration if D1

��

∀ // X

f
��

D′
∀
//

∃
>>

Y

a����XXXXtrivial fibration if
a pseudo fibration

•

��

∀ // X

f
��

•
∀
//

∃
??

Y

a surtraction if S
!!

��

∀ // X

��

D1
∃

==

��

D2

!!

// Y

D′ ∃

>>

an intraction if S′

��

∀ // X

f
��

D′
∀
//

∃
>>

Y

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 111
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A Mini-Homotopy Theory

weak equivalence = surtraction + intraction
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A Mini-Homotopy Theory

And now, let the magic happen... It follows from the definitions that:

isomorphisms are intractions;

f ◦ g intraction ⇒ g intraction;

f and g intractions ⇒ f ◦ g intraction;

f ◦ g surtraction and f intraction ⇒ g surtraction;

isomorphisms are * fibrations;

* fibrations are stable under pullbacks;

* fibrations/surtractions/intractions are stable under retracts;

* = pseudo / trivial / ∅
. . .

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 118
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A Mini-Homotopy Theory

trivial fibrations ⊆ pseudo fibrations

fibrations ∩ surtractions ⊆ pseudo fibrations

trivial fibrations ⊆ fibrations ∩ intractions

The last two items remind of:

fibrations ∩weak equivalence = trivial fibrations

But we cannot really prove more if we do not require more...

It is possible to obtain more properties if we add give some axioms to our
internal logic.
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A Mini-Homotopy Theory

trivial fibrations ⊆ pseudo fibrations

fibrations ∩ surtractions ⊆ pseudo fibrations

trivial fibrations ⊆ fibrations ∩ intractions

The last two items remind of:

fibrations ∩weak equivalence = trivial fibrations

But we cannot really prove more if we do not require more...

It is possible to obtain more properties if we add give some axioms to our
internal logic.

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 133



Axioms

Recall that S //

��

x D1

��

D2
// S′ // D′

= •
##

;;⇓ • so if we encode:

. an identity cell • ..00}� • we obtain:

If r ◦ i = idX where r is an intraction, then i is a weak equivalence.

fibrations ∩weak equivalence
s�

&&

oo ? _ trivial fibrations

pseudofibrations
��
⊆

. a composition of cells ⇓
•

��

EE
// •⇓

we obtain:

weak equivalences are stable under composition.
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Axioms

Also, to be able to finish proving the 2/3-property, we need to “draw”
more complex axioms than identities or compositions

In fact we need to draw and fully understand the internal logic of higher
coherence theory

Basically, the main operations that I define are:

whiskerings • // •
""

<<⇓ • // • in all dimensions;

a very weak notion of invertible cell •
∼= // • in all dimensions.
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How do we encode dimensions?

... and we need to extend the elementary structures S //

��

D1
��

D2
// S′ // D′

to

longer ones made out of the elementary ones:

S0

��

//

x

D0
1

��

D0
2

// S1 . . .
Sn //

��

x

Dn
1

��

Dn
2

// Sn+1
// D′

... this encodes the dimension of a cell!
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Vertebrae & Spines

I call every elementary structure · //

��

x

·
��

· // · // ·

a vertebra and I call every

structure
·
��

//

x

·
��

· // · //

��

x

·
��

· // ·
��

//

x

·
��

· // · . . .
· //

��

x

·
��

· // · // ·

a spine (which is made of vertebrae)
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Spinal Categories

If you now take

a category C;

a bunch of vertebrae in C equipped with spine structures;

+

the axioms I previously described on the vertebrae and spines, we get the
notion of

SPINAL CATEGORY

equipped with three classes of morphisms (defined vertebra-wise)

weak equivalences;

fibrations  trivial cofibrations;

trivial fibrations  cofibrations;
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Spinal Categories  Model Categories

“acyclic fibrations” = cofibrations + weak equivalences

Theorem

If pushouts of acyclic cofibrations are weak equivalences (and some
smallness condition holds), then a spinal category is a model category.

The proof does not even need the Jeff Smith’s criteria as all the desired
properties come from my definitions.
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More General Structures

... more general structures are sometimes needed ...

Local (e.g. stacks) non-algebraic algebraic

• //

��

•

��

• //

??

��

x

•

��

??

• // • // •

• //

??

• //

??

•

??

• //

��

x

•
��

•
...• // • //

??

•
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��

x

•
��

• // • // •

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 171



More General Structures

... more general structures are sometimes needed ...

Local (e.g. stacks) non-algebraic algebraic

• //

��

•

��

• //

??

��

x

•

��

??

• // • // •

• //

??

• //

??

•

??

• //

��

x

•
��

•
...• // • //

??

•

• //

��

x

•
��

• // • // •

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 172
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Homotopy Hypothesis

Can we apply our theory to the category of Grothendieck’s ∞-groupoids
∞-Grp?

It follows from the definition of a Grothendieck’s ∞-groupoid that any pair
of parallel arrows in ∞-Grp ...

Dn+1
∃

!!

Dn

f //

g
//

sn

OO

tn

OO

B

...can be filled by a homotopy.
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Homotopy Hypothesis

Equivalently, this amount to saying that ...

Sn−1

x

γn
//

γn

��

Dn

δn1
��

g

$$
Dn δn2

//

f

44Sn //
γn+1

// Dn+1
// B
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Homotopy Hypothesis

Equivalently, this amount to saying that ...

Sn−1

x

γn
//

γn

��

Dn

δn1
��

g

$$
Dn δn2

//

f

44Sn //Dn+1 B

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 178
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Homotopy Hypothesis

On the one hand, the operations on ∞-groupoids come from the
existence of a certain homotopy filling of a certain pair of parallel
arrows going to a certain globular sum.

On the other hand, all the operations defined on vertebrae and spines
come from existence of a certain vertebra filling a certain given
commutative square of parallel arrows going to a certain globular sum.

Theorem

The category of Grothendieck’s ∞-groupoids admits a spinal structure.
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Homotopy Hypothesis

On the one hand, the operations on ∞-groupoids come from the
existence of a certain homotopy filling of a certain pair of parallel
arrows going to a certain globular sum.

On the other hand, all the operations defined on vertebrae and spines
come from existence of a certain vertebra filling a certain given
commutative square of parallel arrows going to a certain globular sum.

Theorem

The category of Grothendieck’s ∞-groupoids admits a spinal structure.

Sketches in Higher Category Theories and the H.H. Rémy Tuyéras 180



Conclusion

Key points of this talk:

internal logic of homotopy theory  Spinal categories;

Category of Grothendieck’s ∞-groupoids admits a spinal structure;

What remains to be proven:

pushouts of acyclic cofibrations in ∞-Grp are weak equivalences;

Consider the canonical adjunction

Top
U

//

oo F

⊥ ∞-Grp

For every X such that there exists some Y for which
∞-Grp(X ,U(Y )) 6= ∅, the unit X ⇒ FU(X ) is a component-wise
weak equivalence.
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The End

Thank you!

References:
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