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Remark 0.1. J’ai décidé d’écrire ces notes en anglais, car il y a trop d’accents auxquels
il faut faire gaffe....

1 The Serre-Tate theorem
Let S0 → S be a nilpotent thickening of schemes (so S0 → S is a closed immersion whose
ideal I is locally nilpotent). Suppose that p is a prime which is locally nilpotent on S.
If X is an object over S, let X0 be its base-change to S0. If A/S is an abelian scheme,
let A[p∞] be its p-divisible group.

Theorem 1.1. (Serre-Tate)
a) Let A,B be abelian schemes over S and let f0 ∈ HomS0(A0, B0). Then f0 has

a lifting to some f ∈ HomS(A,B) if and only if f0[p∞] ∈ Hom(A0[p∞], B0[p∞]) has a
lifting to some f∞ ∈ Hom(A[p∞], B[p∞]). If such liftings exist, then they are unique.

b) Let A0/S0 be an abelian scheme, let G/S be a p-divisible group and finally let
i : A0[p∞]→ G0 be an isomorphism of p-divisible groups. Then one can find an abelian
scheme A/S and an isomorphism i : A[p∞]→ G such that (A, i) lifts (A0, i0). Moreover,
the pair (A, i) is unique up to unique isomorphism.

The proof will span over the next subsections.

1.2 Formal completion of fppf abelian sheaves

A k-thickening of S is a closed immersion X → S whose defining ideal I satisfies Ik+1 =
0.

Let G be an abelian fppf sheaf on a scheme S and let k ≥ 1. Define the subsheaf
infk(G) of G, whose sections over T (an S scheme) are those sections t ∈ G(T ) for which
there is an fppf covering {Ti → T} and k-thickenings Xi → Ti such that t = 0 on Xi.
Example 1.3. Let G/S be a commutative group scheme with augmentation ideal I.
Descent theory allows us to see G as an abelian fppf sheaf. Then one checks (first page
of chapter II of Messing’s book) that infk(G) = Spec(OG/I

k+1).

Definition 1.4. The formal completion of G is the subsheaf of G defined by Ĝ =
lim→ infk(G).
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Example 1.5. Let A be an abelian scheme over S. Then Â is really the formal completion
of A along the unit section of A and this is a formal Lie group by the usual theory of
smooth group schemes (A being smooth, its completed local ring at the identity section
is a formal power series ring and inherits operations via the operations on A).

Theorem 1.6. (Grothendieck-Messing) Suppose that p is locally nilpotent on S and that
G is a p-divisible group. Then G is formally smooth and Ĝ is a formal Lie group.

Proof. This deep theorem is one of the main results of chapter II in Messing’s book.

Remark 1.7. 1) One has G = Ĝ if and only if G[p] is radicial. In this case we also say
that the p-divisible group G is formal.

2) Suppose that R is a complete local noetherian ring and that A is an abelian scheme
over R. Then one can easily check that

Â[pn] = A[pn]0, Â = A[p∞]0.

Definition 1.8. An abelian fppf sheaf G on S is called almost formal if p : G → G is
an epimorphism and Ĝ is a formal Lie group.

So, if p is locally nilpotent on S, then p-divisible groups and abelian schemes are
almost formal.

1.9 Drinfeld’s rigidity lemma

From now on we assume, without loss of generality, that S (hence also S0) is affine, say
S = Spec(R) and S0 = Spec(R0). Let I be the kernel of the surjection R → R0 and
assume that IN+1 = 0. Also, let k ≥ 1 be such that pkR = 0.

Lemma 1.10. (Drinfeld) Let G be an almost formal abelian fppf sheaf on S. Then pnk

kills the kernel of the map G(A)→ G(A/IA) for any R-algebra A.

Proof. By definition of the formal completion, any element in the kernel lies in Ĝ(A). It
is thus sufficient to prove that pnk kills the kernel of Ĝ(A)→ Ĝ(A/IA). Pick coordinates
X1, ..., Xd on the formal Lie group Ĝ and let x in the kernel have coordinates x1, ..., xd.
Then xi ∈ IA for all i, so that (since pkxi = 0) necessarily the coordinates of pk · x live
in I2. Replacing I by any of its powers, we see that pk sends the kernel of Ĝ(A) →
Ĝ(A/IjA) into the kernel of Ĝ(A)→ Ĝ(A/Ij+1A) for all j. Applying this N times and
using IN+1 = 0 yields the result.

Corollary 1.11. (Drinfeld’s rigidity lemma) Let G,H be almost formal abelian fppf
sheaves on S. The natural map HomS(G,H)→ HomS0(G0, H0) is injective.

Proof. Since multiplication by p is an epimorphism on an almost formal group, it suffices
to prove that pNkf = 0 for any f ∈ HomS(G,H) which dies in HomS0(G0, H0). But for
any R-algebra A, the induced morphism f : G(A)→ H(A) takes values in Ker(H(A)→
H(A/I)), which is killed by pNk (previous lemma). Hence pNk kills f .
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1.12 "Canonical lifting"

Keep the same assumptions as in the previous section.

Proposition 1.13. ("canonical lifting") Let G,H be almost formal groups over R and let
f0 ∈ HomS0(G0, H0). There exists a unique fN ∈ HomS(G,H) lifting pNkf0. Moreover,
fN kills G[pNk] if and only if f0 lifts to a homomorphism between G and H

Proof. Define fN : G(A)→ H(A) (for an R-algebra A) as the composite

G(A)→ G(A/IA)→ H(A/IA)→ H(A),

where the middle map is induced by f0 and the map on the right is pNks, where s is
any (set-theoretical) section of the surjective map H(A)→ H(A/IA) (this map is onto
since H is formally smooth). The resulting map fN does not depend on the choice of
s by lemma 1.10. By construction, the various fN defined for various A yield an fppf
homomorphism lifting pNkf0.

Let us prove the second part. First, assume that f0 lifts to some f ∈ Hom(G,H).
Then fN = pNkf , by Drinfeld’s rigidity lemma and since both of them lift pNkf0.
Hence fN kills G[pNk]. Conversely, suppose that fN kills G[pNk]. Then we can find
f ∈ Hom(G,H) such that fN = pNkf (indeed, multiplication by pNk induces an exact
sequence of abelian fppf sheaves 0 → G[pNk] → G → G → 0, which allows us to define
f as G ' G/G[pNk] → H). It remains to check that f lifts f0. But pNk kills f0 − (f
(mod I)) and it is immediate to see (use the same exact sequence) that this forces f0 = (f
(mod I)).

1.14 Proof of Serre-Tate’s theorem

Let us prove 1) first. Drinfeld’s rigidity lemma yields uniqueness of the liftings, in
case they exist. One direction being clear, assume that f0[p∞] lifts to a morphism
g∞ ∈ Hom(A[p∞], B[p∞]). Let fN ∈ Hom(A,B) be the canonical lifting of pNkf0.
Then, by rigidity, we must have fN [p∞] = pNkg∞ (both of them lift pNkf0[p∞]. Hence
fN kills A[pNk] and so f0 lifts to some f ∈ Hom(A,B), finishing the proof.

Let us prove 2) now. See the next section for a proof (in a special case, which is
however enough for most applications, including what we need for local Langlands) of
the following wonderful:

Theorem 1.15. (Grothendieck) If A0/S0 is an abelian scheme, then there exists an
abelian scheme A/S whose base-change to S0 is A0.

So, take an abelian scheme X/S such that X0 ' A0. This yields an isomorphism
(which abusively will also be called) i0 : (X[p∞])0 ' G0. Let iN : X[p∞] → G be the
canonical lifting of pNki0 and let jN : G → X[p∞] be the canonical lifting of pNki−1

0 .
Then, by rigidity, we must have iN ◦ jN = p2Nk and jN ◦ iN = p2Nk. Hence iN is an
isogeny and its kernel K is a finite subgroup of X[p2Nk]. We claim that K is flat over R
(hence a finite locally free subgroup of X). By base-change, it suffices to prove that iN
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is flat. This follows from the fibre-by-fibre criterion of flatness, the fact that S0 → S has
nilpotent ideal of definition and the fact that the base-change to S0 of iN is pNki0 (hence
flat). This proves the claim. Now, standard results about quotients of group schemes
(SGA3) show that A = X/K is an abelian scheme over S. By contruction, it satisfies
all desired properties. Uniqueness follows from rigidity.

2 Grothendieck’s theorem on abelian schemes
I will make some extra-assumptions, which will be sufficient for our purposes. Actually,
I think that with very mild extra-work we can get rid of them, but I’m lazy to do that...

Hence, we assume in this section that R is a local artinian ring with maximal ideal m
and residue field k = R/m. Let R0 = R/I, where I is an ideal killed by m (in particular
I2 = 0). It is easy to see that if R is artin local, then any surjection R→ R0 (for some
other artin local ring R0) is a composite of finitely many extensions of the previous form
(also called small extensions, following Schlessinger). The purpose of this section is to
prove the following beautiful theorem:

Theorem 2.1. (Grothendieck) Under the previous assumptions, any abelian scheme
over R0 lifts to an abelian scheme over R.

Here are the main steps:
1) Deformation theory of smooth schemes combined with basic facts about coho-

mology of abelian schemes (most importantly the fact that the relative tangent sheaf
is trivial) will show that any abelian scheme A0/R0 lifts to a smooth scheme A/R.
Moreover, the identity section of A0 lifts to a section of A.

2) One proves that ANY such smooth scheme A/R endowed with a section lifting
the identity section of A0 must be an abelian scheme. This is actually the nicest part of
the proof.

All this needs some preliminaries...

2.2 Obstructions to lifting smooth schemes

Here we let S0 → S be any closed immersion of schemes, whose ideal I satisfies I2 = 0
(of course, we will then specialize to S0 = Spec(R0), etc). Let X0/S0 be a smooth
scheme. A deformation of X0 to S will be a pair consisting of a flat scheme X/S and
an isomorphism i : XS0 → X0 (subscript S0 means base change). There is an obvious
notion of isomorphism of deformations. Note that any such deformation X/S has to be
smooth (exercise: use fibre criterion). Let

TX0/S0 = Hom(Ω1
X0/S0

, OX0)

be the relative tangent sheaf of X0. Since X0/S0 is smooth, Ω1
X0/S0

is a locally free
OX0-module, hence so is TX0/S0 . We will see I as an OX0-module by pullback via the
structure morphism X0 → S0.
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Theorem 2.3. a) There is an obstruction o(X0) ∈ H2(X0, I ⊗ TX0/S0), which vanishes
if and only if there is at least one deformation of X0 to S.

b) If o(X0) = 0, then the set of isomorphism classes of deformations of X0 to S is a
principal homogenous space under H1(X0, I ⊗ TX0/S0).

This theorem is actually "easy", but the proof is rather painful to write down. The
reader should see Illusie’s lecture notes on FGA, or chapter IV in SGA1 (suitably adapted
to this more general setup).

Corollary 2.4. If X0/S0 is etale, then there is a unique (up to unique isomorphism)
deformation of X0 to S and this deformation is etale over S.

Proof. In this case TX0/S0 = 0, so everything is clear.

The previous theorem will not be enough to show that abelian schemes over S0 lift
to smooth schemes over S. A key role will be played by the functorial properties of the
obstruction:

Proposition 2.5. 1) Suppose that f0 : X0 → Y0 is an S0-morphism of smooth S0-
schemes. Then f0 induces two natural maps H2(X0, I⊗TX0/S0)→ H2(X0, I⊗f∗0TY0/S0)
and H2(Y0, I ⊗ TY0/S0) → H2(X0, I ⊗ f∗0TY0/S0). The images of o(X0) and o(Y0) in
H2(X0, I ⊗ f∗0TY0/S0) (via these maps) are the same.

2) Let Y0 be a smooth S0 scheme and let pr1 be the natural projection X0×S0Y0 → X0.
Then pr1 induces a map

H2(X0, I ⊗ TX0/S0)→ H2(X0 ×S0 Y0, I ⊗ pr∗1TX0/S0)→ H2(X0 ×S0 Y0, I ⊗ TX0×S0 Y0/S0)

and we have an equality

o(X0 ×S0 Y0) = pr∗1(o(X0)) + pr∗2(o(Y0)).

Proof. Easy, once you understood the proof of the previous theorem...

2.6 Lifting abelian schemes to smooth schemes

Keep the initial assumptions (so R0 is artin local, I is killed by m).

Proposition 2.7. Let A0 be an abelian scheme over R0. Then A0 lifts to a smooth
scheme A over R.

Proof. We need to prove that o(A0) = 0. Let B0 = A0 ×S0 A0, an abelian scheme over
S0 = Spec(R0). The two projections B0 → A0 induce maps pr∗j : H2(A0, I ⊗ TA0/S0)→
H2(B0, I ⊗ TB0/S0) and o(B0) = pr∗1(o(A0)) + pr∗2(o(A0)). A first key point is that pr∗j
are injective. This follows from the fact that the tangent sheaf of an abelian scheme is
trivial (ie TA0/S0 = OA0 ⊗ H0(A0, TA0/S0), from Kunneth’s formula and the fact that
LieB0/S0 = LieA0/S0 ⊕ LieA0/S0 . This allows us to see H2(A0, I ⊗ TA0/S0) as a direct
factor of H2(B0, I ⊗ TB0/S0) and the inclusions of this direct factor turn out to be the
maps pr∗j (by abstract nonsense...).
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Next, consider the automorphism α(x, y) = (x + y, y) of B0/S0. This induces an
automorphism α∗ of H2(B0, I ⊗ TB0/S0) and by functoriality of obstructions we can
write

o(B0) = α∗(o(B0)) = α∗(pr∗1(o(A0)) + pr∗2(o(A0))) = pr∗1(o(A0)) + 2pr∗2(o(A0)).

Hence pr∗2(o(A0)) = 0. The previous paragraph shows that o(A0) = 0, hence we are
done.

2.8 Lifting the identity section of A0

Since A/S is smooth, the identity section e0 of A0/S0 lifts to a section e of A/S. Also,
note that A/S is proper.

2.9 Any such A is an abelian scheme

Proposition 2.10. Let A/S be a proper deformation of A0, having a section e which
lifts e0. Then A/S is an abelian scheme.

Proof. Let B0 = A0 ×S0 A0 and let d0 : B0 → A0 be the morphism (x, y) → x− y. We
will prove that d0 lifts uniquely to an S-morphism d such that d(e, e) = e. This will
endow A/S with addition and inversion and we will finally check that these operations
satisfy the necessary compatibilities to ensure that A/S is an abelian scheme.
• With the same arguments as those used to lift schemes, one checks that the ob-

struction to lifting d0 to a morphism of S-schemes B → A (here B = A ×S A) lives in
H1(B0, I ⊗ d∗0TA0/S0). Note that I is a finite dimensional k-vector space and that d0
induces the identity on the first factor A0 of B0. Hence

H1(B0, I ⊗ d∗0TA0/S0) ' H1(B0, OB0)⊗k LieA0/S0 ⊗k I '

(pr∗1H1(A0, OA0)⊗ LieA0/S0 ⊗ I)⊕ (pr∗2H1(A0, OA0)⊗ LieA0/S0 ⊗ I),

the last isomorphism coming from Kunneth’s formula. We will prove that the projections
of o(d0) on these two direct factors are zero, which will show that o(d0) = 0 and so that
d0 lifts. Let i1 : A0 → B0 be the map x → (x, e0) and let i2 : A0 → B0 be the map
x → (x, x). Note that both maps d0 ◦ i1 and d0 ◦ i2 lift to A (simply take the identity,
respectively e). Hence i∗1(o(d0)) = 0 and i∗2(o(d0)) = 0. But since pr1 ◦ i1 = id and
pr2 ◦ i2 = id, it is easy to see that this implies pr∗1(o(d0)) = 0 and pr∗2(o(d0)) = 0, hence
o(d0) = 0.
• We claim that there is a unique lifting d : B → A of d0 such that d(e, e) = e.

The set of isomorphism classes of liftings of d0 is a principal homogeneous space under
H0(B0, d

∗
0TA0/S0)⊗k I ' LieA0/S0⊗k I. The restrictions of the liftings of d0 to (e, e) form

a principal homogeneous space under H0(S0, (d0|(e0,e0))∗TA0/S0) ⊗k I ' LieA0/S0 ⊗k I,
hence the result.
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• This special lift d of d0 allows us to define addition and inverse on A, via the usual
formulae. It remains to check that A/S becomes an abelian scheme when endowed with
these operations. This comes down to checking a whole series of identities, all of which
have the following form: we are given a morphism of S-schemes f : A×SA×S×...×SA→
A such that f(e, e, ..., e) = e and which is trivial modulo I (since we know that A0/S0
is an abelian scheme). We need to prove that f is trivial. The following rigidity lemma
of Mumford shows that one can find a section s : S → A such that f is the composite
A×S A×S A× ...×S A → S → A (the first map being the structural morphism). The
condition f(e, e, ..., e) = e implies that s = e and the result follows.

Theorem 2.11. (Mumford’s rigidity lemma) Suppose that f : X → Y is a morphism
of S schemes with S connected, π : X → S being flat, closed and such that OS ' π∗OX .
Suppose that π : X → S has a section and that there is s ∈ S such that f(Xs) has one
element. Then one can find a section s of the structural morphism Y → S such that
f = s ◦ π.
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