TD: feuille n°7

CW-complexes et théorème des coefficients universels.

Les exercices marqués du symbole bont des exercices à faire en priorité.

Exercice 1. Quelques calculs pratiques avec l'homologie cellulaire

Calculer l'homologie à coefficients $\mathbb Z$ des espaces suivants en utilisant une décomposition cellulaire.

- 1. $\mathbb{C}\mathrm{P}^n$, $n \geq 1$.
- 2. L'espace $\mathbb{C}P^{\infty} = \bigcup_{n \geq 0} \mathbb{C}P^n$, muni de la topologie où \mathcal{U} ouvert de $\mathbb{C}P^{\infty}$ si et seulement si pour tout $n \geq 1$, $\mathcal{U} \cap \mathbb{C}P^n$ est un ouvert de $\mathbb{C}P^n$.
- 3. $\mathbb{R}P^n$.
- 4. le quotient de S^2 obtenu en identifiant les points antipodaux de son équateur.
- 5. Le parachute obtenu à partir du triangle plein Δ^2 en identifiant ses trois sommets.
- 6. Le tore à g trous S_q .

Exercice 2. Homologie cellulaire d'un produit

Calculez l'homologie à coefficients dans \mathbb{Z} de $S^k \times S^\ell$ et de $\mathbb{R}P^2 \times \mathbb{R}P^2$ en utilisant une décomposition cellulaire.

Exercice 3. Homologie cellulaire vs homologie simpliciale.

Donnez une triangulation de la sphère S^n et calculez l'homologie simpliciale associée. Comparez avec le complexe cellulaire donné par la décomposition de la sphère en deux cellules (une en dimension 0, une en dimension n).

▶Exercice 4. Influence des coefficients sur l'homologie

Trouvez deux espaces qui ont même homologie à coefficients dans \mathbb{Q} mais pas à coefficients dans \mathbb{Z} . De même trouvez deux espaces qui ont même homologie à coefficients dans \mathbb{F}_2 mais pas à coefficients dans \mathbb{Z} .

Exercice 5. Coefficients universels

1. Soit X un espace tel que

$$H_i(X, \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{si } i = 0 \text{ ou } i = 3\\ \mathbb{Z}/n\mathbb{Z} & \text{si } i = 1\\ 0 & \text{sinon} \end{cases}$$

Calculez l'homologie de X à coefficients dans \mathbb{Q} et dans $\mathbb{Z}/p\mathbb{Z}$ pour tout nombre premier p.

2. Soit X un CW-complexe fini tel que $H_i(X, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$ pour tout $0 \le i \le n$. Donnez les possibilités pour l'homologie de X à coefficients entiers.

Exercice 6. Espaces à homologie prescrite

Soients $(A_i)_{i\geq 1}$ des groupes abéliens. Construisez un espace topologique connexe par arcs X tel que $H_i(X,\mathbb{Z})=A_i$ pour tout i.

▶Exercice 7. Caractéristique d'Euler et application aux triangulations

La caractéristique d'Euler $\chi(X)$ d'un CW-complexe fini X est la somme alternée $\sum (-1)^i n_i$ où n_i est le nombre de cellules de dimension i.

- 1. Montrez que si \mathbb{k} est un corps, $\chi(X) = \sum (-1)^i \dim H_i(X; \mathbb{k})$.
- 2. Peut-on trianguler le tore avec une triangulation comportant 3678 faces, 5987 arêtes, et 2015 sommets?
- 3. Soit $P \subset \mathbb{R}^3$ un polyèdre régulier possédant s sommets, a arêtes, f faces, et dont toutes les faces ont p cotés et chaque sommet appartient à q faces. Montrez les égalités : s + f a = 2, qs = 2a, pf = 2a. En déduire que 1/p + 1/q > 1/2, puis faire la liste des couples p, q possibles.

Exercice 8. Structures cellulaires et revêtements

Soit X un CW-complexe fini, et $p: E \to X$ un revêtement à n feuillets. Montrez que E possède une structure de CW complexe dont on donnera le nombre de cellules de chaque dimension. Comparez $\chi(X)$ et $\chi(E)$.

Exercice 9. Fonctorialité du complexe cellulaire

Une application cellulaire entre deux CW-complexes X et Y est une application continue $f: X \to Y$ qui préserve les squelettes : $f(X_n) \subset Y_n$ pour tout $n \ge 0$. Montrez qu'une application cellulaire induit un morphisme $f_*^{\text{cell}}: C_*^{\text{cell}}(X) \to C_*^{\text{cell}}(Y)$ entre les complexes cellulaires, et montrez que l'application induite en homologie par f_*^{cell} s'identifie à l'application induite en homologie singulière par f.

Exercice 10. Attachement d'une cellule à un espace quelconque

Soit X un espace et $Y := X \cup_f D^n$ l'espace obtenu en rattachant une cellule de dimension n à X au moyen de $f: S^{n-1} \to X$. Montrez que l'inclusion $X \hookrightarrow Y$ induit un isomorphisme $H_i(X) \simeq H_i(Y)$ si $i \neq n, n-1$, et qu'on a une suite exacte longue :

$$0 \to H_n(X) \to H_n(Y) \to H_{n-1}(S^{n-1}) \xrightarrow{H_{n-1}(f)} H_{n-1}(X) \to H_{n-1}(Y) \to 0.$$

Exercice 11. Homologie simpliciale versus homologie singulière

Soit K un complexe simplicial géométrique de \mathbb{R}^n . On note K_ℓ son ℓ squelette, c'est à dire le sous-complexe simplicial géométrique formé des simplexes de K de dimension inférieure ou égale à ℓ .

1. Montrez qu'on peut réaliser le complexe $C_*^{\text{simpl}}(K)$ comme un sous-complexe du complexe $C_*(|K|)$ des chaines singulières de |K|:

$$C_*^{\text{simpl}}(K) \hookrightarrow C_*(|K|) \quad (*) .$$

- 2. Soit $\Delta^m \subset \mathbb{R}^m$ le simplexe standard. Montrez par récurrence sur m que l'application identité $\mathrm{Id}: \Delta^m \to \Delta^m$ fournit un générateur de l'homologie singulière $H_m(\Delta_m, \partial \Delta^m)$.
- 3. Montrez que l'inclusion $K_{\ell} \subset K_{\ell+1}$ induit pour tout ℓ des isomorphismes $H_i(C_*^{\text{simpl}}(K_{\ell+1})/C_*^{\text{simpl}}(K_{\ell})) \xrightarrow{\simeq} H_i(|K_{\ell+1}|, |K_{\ell}|)$.
- 4. En déduire que l'inclusion $C_*^{\text{simpl}}(K) \hookrightarrow C_*(|K|)$ induit un isomorphisme en homologie.

Exercice 12. une caractérisation des CW-complexes contractiles

Soit X un CW-complexe connexe par arcs. On suppose que les groupes d'homotopie de X sont tous triviaux. Montrez que X est contractile. Remarque : en particulier, d'après le théorème de Hurewicz, si X est un CW-complexe simplement connexe, alors X est contractile si et seulement si tous ses groupes d'homologie réduite sont nuls.