Dimension, localisation (TD11)

FIMFA Algèbre 2 (Tony Ly), Mai 2014

Exercice 1

Soient X un espace topologique et Y un sous-ensemble de X.

- a) Montrer l'inégalité dim $Y \leq \dim X$.
- b) Supposons que X admet un recouvrement par des ouverts U_i , $i \in I$. Montrer que l'on a dim $X = \sup_{i \in I} \dim U_i$.
- c) Donner l'exemple d'un espace X et d'un ouvert dense U de X avec dim $U < \dim X$.
- d) Supposons Y fermé et X irréductible de dimension finie, égale à dim Y. Montrer que l'on a X=Y.

Exercice 2

Soient A un anneau commutatif unitaire et S une partie multiplicative de A.

- a) Si A est noethérien, montrer que le localisé A_S est noethérien.
- b) Si A est principal et que S ne contient pas 0, montrer que le localisé A_S est principal.
- c) Si A est factoriel et que S ne contient pas 0, montrer que le localisé A_S est factoriel.

Exercice 3

Soient A un anneau commutatif unitaire et \mathfrak{P} un idéal premier de A.

a) Montrer que $A_{\mathfrak{P}}$ est local, d'idéal maximal $\mathfrak{P}A_{\mathfrak{P}}$.

Notons $k(\mathfrak{P})$ le corps résiduel $A_{\mathfrak{P}}/\mathfrak{P}A_{\mathfrak{P}}$.

- b) Montrer que $A \to k(\mathfrak{P})$ induit une injection $\varphi_{\mathfrak{P}} : A/\mathfrak{P} \hookrightarrow k(\mathfrak{P})$ qui fait de $k(\mathfrak{P})$ le corps des fractions de A/\mathfrak{P} .
- c) Montrer que $\varphi_{\mathfrak{P}}$ est un isomorphisme si et seulement si \mathfrak{P} est un idéal maximal de A.
- d) Soit $f \in A \setminus \mathfrak{P}$. Montrer que $k(\mathfrak{P})$ et $k(\mathfrak{P}A[f^{-1}])$ sont canoniquement isomorphes.

Exercice 4 (Un exemple de Nagata)

Soient k un corps et $A = k[X_1, \ldots, X_n, \ldots]$ l'anneau de polynômes en une infinité de variables. Soit (u_n) une suite croissante de \mathbb{N} tendant vers l'infini, avec $u_1 = 0$. On note \mathfrak{P}_n l'idéal premier $(X_{u_n+1}, \ldots, X_{u_{n+1}})$. Soient S le complémentaire de la réunion des \mathfrak{P}_n et A_S le localisé de A en S.

- a) Déterminer les idéaux maximaux de A_S .
- b) Exhiber une condition suffisante sur (u_n) pour que la dimension de Krull de A_S soit infinie. On suppose désormais que (u_n) vérifie la condition exhibée à la question (b).

Soit R un anneau dont les localisés en tout idéal maximal sont noethériens et tel que tout élément $x \in R \setminus \{0\}$ soit contenu dans un nombre fini d'idéaux maximaux.

- c) Montrer que R est noethérien.
- d) En déduire que A_S est noethérien.

Exercice 5 (Un autre exemple de Nagata)

Soient k un corps et k[[x]] son anneau des séries formelles. Soit $z = \sum_{i \geq 0} a_i x^i \in k[[x]]$ un élément transcendant sur k(x). On note alors, pour $j \geq 1$, $z_j = x^{1-j} \left(z - \sum_{i < j} a_i x^i\right) \in xk[[x]]$. Soit $R_1 = k[x, z_1, \ldots, z_n, \ldots]$.

- a) Montrer que xR_1 est un idéal maximal de R_1 .
- b) En déduire que les idéaux de l'anneau local $(R_1)_{xR_1}$ sont tous de la forme x^nR_1 pour $n \in \mathbb{N} \cup \{+\infty\}$.

Soient $y \in k[[x]]$ un élément transcendant sur k(x,z) et $R_2 = R_1[y]$. Soit \mathfrak{M} l'idéal de R_2 engendré par x et y.

- c) Montrer que \mathfrak{M} est un idéal maximal de R_2 .
- d) Montrer que $(R_2)_{\mathfrak{M}}$ est un anneau local de dimension 2.

Soit \mathfrak{N} l'idéal de R_2 engendré par x-1, y et z.

- e) Montrer que \mathfrak{N} est un idéal maximal de R_2 .
- f) Montrer que $(R_2)_{\mathfrak{N}}$ est un anneau local de dimension 3.

Soit R le localisé de R_2 en la partie multiplicative $R_2 \setminus (\mathfrak{M} \cup \mathfrak{N})$.

g) Montrer que l'anneau R est noethérien.

Soit $A = k + \operatorname{Rad} R$.

- h) Montrer que A est un anneau local.
- i) Montrer que R est une extension entière finie de A et que A est de dimension 3.
- j) En utilisant le $going\ up$, en déduire que A est noethérien.

Soit

$$0 \subsetneq \mathfrak{P}_1 = xR \cap A \subsetneq \mathfrak{P}_2 \subsetneq \cdots \subsetneq \mathfrak{P}_m$$

une chaîne maximale d'idéaux premiers de A.

- k) Montrer que l'on a m=2.
- 1) En déduire que A est non caténaire 1 .

Exercice 6

Soient A un anneau commutatif unitaire et M un A-module de type fini. Soient $X = \operatorname{Spec} A$ et

$$d: X \to \mathbb{N}$$

$$\mathfrak{P} \mapsto \dim_{k(\mathfrak{P})} M_{\mathfrak{P}}/\mathfrak{P} M_{\mathfrak{P}}.$$

Soient $\mathfrak{P} \in X$ et $n = d(\mathfrak{P})$. Soit $\alpha : k(\mathfrak{P})^n \to M_{\mathfrak{P}}/\mathfrak{P}M_{\mathfrak{P}}$ un isomorphisme de $k(\mathfrak{P})$ -espaces vectoriels. On commence par établir l'existence du diagramme commutatif suivant (pour un certain $f \in A \setminus \mathfrak{P}$).

$$A[f^{-1}]^n \longrightarrow A_{\mathfrak{P}}^n \longrightarrow k(\mathfrak{P})^n$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\alpha}$$

$$M[f^{-1}] \longrightarrow M_{\mathfrak{P}} \longrightarrow M_{\mathfrak{P}}/\mathfrak{P}M_{\mathfrak{P}}$$

- a) Montrer que α se relève en une surjection $\beta:A^n_{\mathfrak{P}}\to M_{\mathfrak{P}}$ de $A_{\mathfrak{P}}$ -modules.
- b) Montrer qu'il existe $f \notin \mathfrak{P}$ tel que β se relève en une surjection $\gamma: A[f^{-1}]^n \to M[f^{-1}]$ de $A[f^{-1}]$ -modules.
- c) En déduire que d est semi-continue supérieurement, c'est-à-dire que $\{\mathfrak{P} \in X \mid d(\mathfrak{P}) \geq n\}$ est fermé pour tout $n \geq 0$.

^{1.} on rappelle qu'un anneau de dimension finie A est dit caténaire si entre deux idéaux premiers \mathfrak{P} et \mathfrak{P}' de A, toutes les chaînes maximales d'idéaux premiers entre \mathfrak{P} et \mathfrak{P}' ont même longueur