
Context Lyubashevsky and Micciancio’s Paper Conclusion

Asymptotically Efficient Lattice-Based Digital
Signatures [TCC 2008]

Vladimir Lyubashevsky Daniele Micciancio

M. Tibouchi, Lattice-Based Crypto Mini-Group, 2009-10-14



Context Lyubashevsky and Micciancio’s Paper Conclusion

Outline

Context
Efficiency Gap of Digital Signatures
Lamport Signatures and Merkle Trees

Lyubashevsky and Micciancio’s Paper
Overview
Details



Context Lyubashevsky and Micciancio’s Paper Conclusion

Outline

Context
Efficiency Gap of Digital Signatures
Lamport Signatures and Merkle Trees

Lyubashevsky and Micciancio’s Paper
Overview
Details



Context Lyubashevsky and Micciancio’s Paper Conclusion

Efficiency Gap of Digital Signatures

• As has been long known, secure digital signatures exist based on
one-way functions, just like MACs and secret-key encryption
schemes.

• However, while symmetric cryptographic constructs are expected to
run in time linear in the security parameter k , usual signature
schemes have complexity at least Ω(k2).
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Lamport-Diffie One-time Signatures

• Let f : Y → Z be a one-way function. Lamport proposed the
following signature scheme.

• KeyGen(1k): for 1 ≤ i ≤ k, j = 0, 1, choose yi,j ∈ Y randomly, and
let zi,j = f (yi,j). Then sk = (yi,j), pk = (zi,j).

• Sign(m ∈ {0, 1}k): if m = (m1, . . . , mk), the signature is
s = (y1,m1 , . . . , yk,mk ).

• Verify(m ∈ {0, 1}k , s ∈ Y k): if s = (s1, . . . , sk), accept if and only if
f (si ) = zi,mi for all i .

• This is a one-time secure signature scheme: an adversary who
obtains a signature on any one message of his choice cannot forge a
signature on another message. Each key pair can be used only once.

• Verification requires k applications of function fk : complexity at
least Ω(k2).
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Merkle Trees

• Merkle proposed a way to turn a one-time secure signature scheme
into a secure (stateful) 2h-time signature scheme.

• Idea: use 2h different key pairs. The secret key used to sign the i-th
message can be chosen as ski = PRNGK (i), where PRNG is a
pseudo-random number generator.

• The signer constructs a hash tree from the public keys pki and
publishes the root. When signing a message, she gives the verifier
the path to the root and the adjacent nodes to authenticate the
corresponding public key.

• The resulting scheme is 2h-time secure, provided that the hash
function used in constructing the tree is collision resistant.

• Variants of this construction can be used to build secure signature
schemes for messages of arbitrary length based on any one-time
signature scheme.
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Main result

There exists a signature scheme such that the signature of an n-bit
message is of length Õ(k), and both signature and verification take time
Õ(k) + Õ(n).
The scheme is strongly unforgeable under chosen-message attack
assuming that approximating SVP in ideal lattices of dimension k up to a
factor Õ(k2) is hard in the worst case.
Remarks:

• Asymptotically, the scheme is optimally efficient up to polylogaritmic
factors.

• It is not secure for practical parameter sizes.

• Lyubashevsky and Micciancio actually construct an efficient
one-time signature scheme. The existence of a signature scheme
follows, using efficient implementations of Merkle trees.
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Main elements of the construction

• Messages are small elements z in a ring R = Zp[x ]/〈f 〉, where f is a
unitary polynomial of degree n, irreducible over Z (and p ∼ C · n3 is
not necessarily prime).

• The secret key is a pair of short vectors (k̂, l̂) in Rm (m ∼ log2 n),
chosen according to an appropriate distribution.

• The public key is (h, h(k̂), h(̂l)) where h is a random hash function
of the form:

h(x1, . . . , xm) = a1x1 + · · ·+ amxm

For a random choice of the hash key â = (a1, . . . , am) (among all
vectors in Rm), the collision resistance of h is equivalent to the
approximate SVP for ideal lattices.
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The one-time signature scheme

• KeyGen(1n): sk = (k̂, l̂), picked randomly according to a distribution
that gives smaller vectors more weight; pk = (h, h(k̂), h(̂l)), with the
key of h chosen at random.

• Sign(z): ŝ = k̂z + l̂.

• Verify(z, ŝ): accept if ŝ is small enough and h(̂s) = h(k̂)z + h(̂l).

Lyubashevsky and Micciancio show that this scheme (when made precise)
is a (strongly) unforgeable one-time signature scheme, assuming the
hardness of the stated approximate SVP problem.
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Main points of the proof

• If some adversary, given a signature on a message z of his choice,
can forge a signature ŝ′ on z′ 6= z, one can break the collision
resistance of h, and hence solve approximate SVP.

• Indeed, we then have h(̂s′) = h(k̂z′ + l̂). This is a collision, unless
ŝ′ = k̂z′ + l̂.

• However, if the adversary can produce z′ and k̂z′ + l̂, she can
recover the signing key (k̂, l̂) from the result of the oracle query.

• But doing so is information theoretically impossible, because the
information available to the adversary, namely (h(k̂), h(̂l), k̂z + l̂)
corresponds to exponentially many signing keys (k̂, l̂).

• If an adversary obtains a second signature on the message she
queried, she also gets a collision on h, hence strong unforgeability.
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Vector length

To define small elements in R = Zp[x ]/〈f 〉 and short vectors in Rm, one
introduces the infinity “norm”:

• for z ∈ R, ‖z‖∞ is the supremum of the absolute values of the
coefficients of z considered as a polynomial in Z[x ] of degree < n
with coefficients in (−p/2, p/2];

• for vectors in Rm, we set ‖(z1, . . . , zm)‖∞ = supj ‖zj‖∞;

• ‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞;

• ‖αa‖∞ ≤ |α| · ‖a‖∞ for α ∈ Z;

• ‖ab‖∞ ≤ φn‖a‖∞‖b‖∞ for some constant φ depending only on f .
Some polynomials f of arbitrarily large degree can ensure a small
value for φ (say φ ≤ 2).
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Collision problem

Let HR,m be the set of hash functions h : Rm → R of the form
hâ(x̂) = a1x1 + · · ·+ amxm.

The collision problem Cold takes as input a random h ∈ HR,m and asks
to find ŝ 6= ŝ′ such that h(̂s) = h(̂s′).

For p = (φn)3, m = dlog ne and d = 10φp1/m log2 n, Cold is as hard as
approximating the shortest vector in every lattice corresponding to an
ideal of Z[x ]/〈f 〉 within a factor of Õ(φ5n2).
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Precise form of the OTSS

• KeyGen(1n, f ): let p = (φn)3, m = dlog ne, R = Zp[x ]/〈f 〉.
Moreover, define:

DKi = {ŷ ∈ Rm | ‖ŷ‖∞ ≤ 5ip1/m}
DLi = {ŷ ∈ Rm | ‖ŷ‖∞ ≤ 5inφp1/m}

Choose h ∈ HR,m uniformly at random. Pick k̂ and l̂ uniformly at
random in DKj and DLj , where j is the position of the first 1 in a

random string r ∈ {0, 1}blog2 nc. Then sk = (k̂, l̂),
pk = (h, h(k̂), h(̂l)).

• Sign(z ∈ R, ‖z‖∞ ≤ 1): ŝ = k̂z + l̂.

• Verify(z, ŝ): accept if ‖ŝ‖∞ ≤ 10φp1/mn log2 n and
h(̂s) = h(k̂)z + h(̂l).
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Recovering the signing key from a forgery

Suppose the attacker obtains a signature ŝ′ on z′ after getting ŝ on z. If
it doesn’t yield a collision, we get ŝ′ = k̂z′ + l̂, hence:

ŝ′ − ŝ = k̂(z′ − z)

This actually holds in Z[x ]/〈f 〉, since the polynomials on the right have
coefficients too small to be reduced modp when multiplied:

‖z′ − z‖∞ ≤ 2 and ‖k̂‖∞ ≤ 5p1/m log2 n

so the product is of norm o(n2), whereas p = Ω(n3).

Now, R is an integral domain, since f is irreducible. Therefore:

k̂ =
ŝ′ − ŝ

z′ − z

Thus, the adversary recovers k̂, and then l̂.
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ŝ′ − ŝ
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Recovering the signing key is impossible

To complete the proof, it remains to show that the adversary cannot
possibly recover the signing key from the information available to her,
namely (K,L, ŝ) = (h(k̂), h(̂l), k̂z + l̂).

Since it happens with negligible probability that k̂, l̂ are picked from
DKj ,DLj with j = blog2 nc, we can assume that they belong to
DKj−1,DLj−1.

Suppose then that we fix a verification key (h,K,L) and a signature ŝ on
a message z. The authors prove using a counting argument that, for any
given signing key (k̂, l̂) ∈ DKj−1 × DLj−1 such that h(k̂) = K, h(̂l) = L

and ŝ = k̂z + l̂, the probability that this was the actual signing key
generated by the key generation algorithm is negligibly small (tight
reduction).
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Sketch of the counting argument

Consider Y = {ŷ ∈ Rm | ‖y‖∞ ≤ 5p1/m and h(ŷ) = 0}. A pigeonhole
argument shows that |Y | ≥ 5mn.

Now if we let k̂′ = k̂ + ŷ, l̂′ = l̂− ŷz, we have h(k̂′) = K, h(̂l′) = L and
k̂′z + l̂′ = ŝ. Moreover:

‖k̂′‖∞ ≤ ‖k̂‖∞ + 5p1/m ≤ 5p1/mblog2 nc
‖̂l′‖∞ ≤ ‖l‖∞ + 5p1/m · φn ≤ 5φnp1/mblog2 nc

Thus, (k̂′, l̂′) is always a possible signing key corresponding to (h,K,L)
and ŝ.

The probability of the actual signing key being (k̂, l̂) conditional to
(h,K,L) and ŝ is thus bounded by (k̂, l̂) being picked among keys of the
form (k̂′, l̂′), which is shown to be exponentially small.
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Summary

• One-time secure signature scheme for n-bit messages, with key
generation, signature and verification almost linear in the security
parameter k = n.

• Hence, a stateful signature scheme with efficient signature and
verification (but costly key generation).

• Strong unforgeability under chosen-message attack if some
approximate SVP in ideal lattices is hard in the worst case.
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Thank you!
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