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Abstract. In this paper, we study the asymptotic behavior of the volume of spheres in met-
ric measure spaces. We first introduce a general setting adapted to the study of asymptotic

isoperimetry in a general class of metric measure spaces. Let A be a family of subsets of a metric

measure space (X, d, µ), with finite, unbounded volume. For t > 0, we define

I↓A(t) = inf
A∈A,µ(A)≥t

µ(∂A).

We say that A is asymptotically isoperimetric if ∀t > 0

I↓A(t) ≤ CI(Ct),

where I is the profile of X. We show that there exist graphs with uniform polynomial growth

whose balls are not asymptotically isoperimetric and we discuss the stability of related prop-

erties under quasi-isometries. Finally, we study the asymptotically isoperimetric properties of
connected subsets in a metric measure space. In particular, we build graphs with uniform poly-

nomial growth whose connected subsets are not asymptotically isoperimetric.
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1. Introduction

The study of large scale isoperimetry on metric measure spaces has proven to be a fundamental
tool in various fields ranging from geometric group theory [6, 10] to analysis and probabilities on
graphs and manifolds [1, 2]. One of the targets of this paper is to find a simple setting adapted to
the large scale study of isoperimetric properties. This includes some general assumptions on metric
measure spaces, a convenient notion of “large scale” boundary of a subset, and a family of maps
preserving the large scale isoperimetric properties. There are two kinds of questions concerning
isoperimetry [11]: what is the isoperimetric profile? What are the subsets that optimize the
isoperimetric profile? Here, we will formulate similar questions in a large scale setting: we will
not be interested in the exact values of the isoperimetric profile but in its asymptotic behavior
and we will consider sequences of subsets that optimize “asymptotically” the isoperimetric profile.
Dealing with general metric measure spaces, the family of balls seems to be a natural candidate
for optimizing asymptotically the isoperimetric profile. Nevertheless, we will see that even under
apparently strong assumptions on the space X, this is not always the case.

1.1. Asymptotic isoperimetry in metric measure spaces.

1.1.1. Boundary of a subset and isoperimetric profile.
Let (X, d, µ) be a metric measure space. Let us denote by B(x, r) the open ball of center x and

radius r. We suppose that the measure µ is Borel and σ-finite. For any measurable subset A of
X, any h > 0, write

Ah = {x ∈ X, d(x,A) ≤ h},
and

∂hA = Ah ∩ (Ac)h.

Let us call ∂hA the h-boundary of A, and ∂hB(x, r) the h-sphere of center x and radius r.

Definition 1.1. Let us call the h-profile the nondecreasing function defined on R+ by

Ih(t) = inf
µ(A)≥t

µ(∂hA),

where A ranges over all µ-measurable subsets of X with finite measure.
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This definition of large-scale boundary has the following advantage: under some weak properties
on the metric measure space X, we will see in Section 2.1 that in some sense, the boundary of a
subset A ⊂ X has a thickness that is “uniformly comparable to h”. This will be play a crucial role in
the proof of the invariance of “asymptotic isoperimetric properties” under large-scale equivalence.

We could also define the boundary of a subset A by ∂hA = Ah rA. But with this definition, the
thickness of the boundary may have uncontrollable “fluctuations”. Indeed, consider a Riemannian
manifold X with boundary and take a subset A which is at distance ε > 0 from the boundary
of X. Assume that ε � h. With the latter definition, the thickness of ∂hA may vary between h
and ε and its volume may strongly depend on ε, even if X has bounded geometry. Note that this
problem disappears with our definition since every point of the boundary of A is close to a ball of
radius h/2 included in ∂hA (see Section 2.1 for precise statements).

1.1.2. Lower/upper profile restricted to a family of subsets.
Let (X, d, µ) be a metric measure space. In order to study isoperimetric properties of a family of

subsets of X with finite, unbounded volume, it is useful to introduce the following notions

Definition 1.2. Let A be a family of subsets of X with finite, unbounded volume. We call lower
(resp. upper) h-profile restricted to A the nondecreasing function I↓h,A defined by

I↓h,A(t) = inf
µ(A)≥t,A∈A

µ(∂hA)

(resp. I↑h,A(t) = supµ(A)≤t,A∈A µ(∂hA)).

Definition 1.3. Consider two monotone functions f and g: R+ → R+. Say that f ≈ g if there
exist some constants Ci such that C1f(C2t) ≤ g(t) ≤ C3f(C4t) for all t ∈ R+.

The asymptotic behavior of a monotone function R+ → R+ may be defined as its equivalence
class modulo ≈.

We get a natural order relation on the set of equivalence classes modulo ≈ of monotone functions
defined on R+ by setting

(f � g) ⇔ (∃C1, C2 > 0,∀t > 0, f(t) ≤ C1g(C2t)).

We say that the family A is asymptotically isoperimetric (resp. strongly asymptotically
isoperimetric) if for all A ∈ A

I↓h,A � Ih

(resp. I↑h,A � Ih).

Remark 1.4. Note that asymptotically isoperimetric means that for any t we can always choose
an optimal set among those of A whose measure is larger than t whereas strongly asymptotically
isoperimetric means that every set of A is optimal (but the family (µ(A))A∈A may be lacunar). In
almost all cases we will consider, the family (µ(A))A∈A will not be lacunar, and strong asymptotic
isoperimetry will imply asymptotic isoperimetry.

1.1.3. Large scale study.
Let us recall the definition of a quasi-isometry (which is also sometimes called rough isometry).

Definition 1.5. Let (X, d) and (X ′, d′) two metric spaces. One says that X and X ′ are quasi-
isometric if there is a function f from X to X ′ with the following properties.

(a) there exists C1 > 0 such that [f(X)]C1
= X ′.

(b) there exists C2 ≥ 1 such that, for all x, y ∈ X,

C−1
2 d(x, y)− C2 ≤ d′(f(x), f(y)) ≤ C2d(x, y) + C2.

Example 1.6. Let G be a finitely generated group and let S1 and S2 two finite symmetric generating
sets of G. Then it is very simple to see that the identity map G → G induces a quasi-isometry
between the Cayley graphs (G, S1) and (G, S2). At the beginning of the 80’s, M. Gromov (see [6])
initiated the study of finitely generated groups up to quasi-isometry.

Example 1.7. The universal cover of a compact Riemannian manifold is quasi-isometric to every
Cayley graph of the covering group (see [6] and [12]).
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Note that the notion of quasi-isometry is purely metric. So, when we look for quasi-isometry
invariant properties of metric measure spaces, we are led to assume some uniformity properties on
the volume of balls. This is the reason why, for instance, this notion is well adapted to geometric
group theory. But since we want to deal with more general spaces, we will define a more restrictive
class of maps. Those maps will be asked to preserve locally the volume of balls.

On the other hand, as we will often use covering lemmas, we will need the following very weak
“bounded geometry” property (see [1].

Definition 1.8. Let us say that (X, d, µ) is doubling at fixed radius, or has property (DV )loc

if for all r > 0, there exists Cr > 0 such that, for all x ∈ X

µ(B(x, 2r)) ≤ Crµ(B(x, r)).

Remark 1.9. Note that Property (DV )loc is local in r but uniform in x.

Example 1.10. Bounded degree graphs or Riemannian manifolds with Ricci curvature bounded
from below satisfy (DV )loc.

The following notion was introduced by Kanai [8] (see also [1]).

Definition 1.11. Let (X, d, µ) and (X ′, d′, µ′) two metric measure spaces with property (DV )loc.
Let us say that X and X ′ are large scale equivalent (we can easily check that it is an equivalence
relation) if there is a function f from X to X ′ with the following properties: there exist some
constants C1 > 0, C2 ≥ 1, C3 ≥ 1 such that

(a) f is a quasi-isometry of constants C1 and C2;
(b) for all x ∈ X

C−1
3 µ(B(x, 1)) ≤ µ′(B(f(x), 1)) ≤ C3µ(B(x, 1)).

Focusing our attention on balls of radius 1 may not seem very natural. Nevertheless, this is not
a serious issue since property (DV )loc allows to make no distinction between balls of radius 1 and
balls of radius C for any constant C > 0.

Remark 1.12. Note that for graphs with bounded degree (equipped with the counting measure),
or Riemannian manifolds with bounded Ricci curvature (equipped with the Riemannian measure),
quasi-isometries are automatically large-scale equivalences.

1.2. Volume of balls and growth function.
Let (X, d, µ) be a metric measure space. The equivalence class modulo ≈ of µ(B(x, r)) does not

depend on x. We call it the volume growth of X and we write it V (r). One can easily show the
next result (see [1]).

Proposition 1.13. The volume growth is invariant under large-scale equivalence (among (DV )loc

spaces).

Definition 1.14. Let X be a metric measure space. We say that X is doubling if there exists a
constant C > 0 such that, ∀x ∈ X and ∀r ≥ 0

(1.1) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

We will call this property (DV ).

Remark 1.15. It is easy to see that (DV ) is invariant under large scale equivalence between (DV )loc

spaces. To be more general, we could define an asymptotic doubling condition (DV )∞, restricting
(1.1) to balls of radius more than a constant (depending on the space). Property (DV )∞ is also
stable under large-scale equivalence between (DV )loc spaces and has the advantage to focus on
large scale properties only. Actually, in every situation met in this paper, the assumption (DV )
can be replaced by (DV )∞ + (DV )loc (note that they are equivalent for graphs). Nevertheless, for
the sake of simplicity, we will leave this generalization aside.

Example 1.16. A crucial class of doubling spaces is the class of spaces with polynomial growth:
we say that a metric measure space has (strict) polynomial growth of degree d if there exists a
constant C ≥ 1 such that, ∀x ∈ X and ∀r ≥ 1

C−1rd ≤ µ(B(x, r)) ≤ Crd.

Note that Gromov (see [4]) proved that every doubling finitely generated group is actually of
polynomial growth of integer degree (since it is virtually nilpotent).
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1.3. Organization of the paper.
In the next section, we present a setting adapted to the study of asymptotic isoperimetry in general

metric measure spaces. The main interest of this setting is that the “asymptotic isoperimetric
properties” are invariant under large-scale equivalence. In particular, it will imply that if X is
a (DV )loc and uniformly connected (see next section) space, then the class modulo ≈ of Ih will
not depend any more on h provided h is large enough. For that reason, we will simply denote I
instead of Ih. Then, we introduce a notion of weak geodesicity which is invariant under Hausdorff
equivalence (see § 2.2) but not under quasi-isometry. We call it property (M) since it can be
formulated in terms of existence of some “monotone” geodesic chains between any pair of points.
This property plays a crucial role when we want to obtain upper bounds for the volume of spheres
(see [14]). It will also appear as a natural condition for some properties discussed in this paper.

Here are the two main problems concerning isoperimetry in metric measure spaces: first, deter-
mining the asymptotic behavior of the profile; second, finding families of subsets that optimize the
profile. The asymptotic behavior of I is more or less related to volume growth (see [2] and [9] for
the case of finitely generated groups). In the setting of groups, the two problems have been solved
for Lie groups (and for polycyclic groups) in [10] and [2] and for a wide class of groups constructed
by wreath products in [3]. It seems very difficult (and probably desperate) to get general state-
ments for graphs with bounded degree without any regularity assumption (like doubling property
or homogeneity). On the other hand, let us emphasize the fact that doubling condition appears
as a crucial assumption in many fields of analysis. So in this article, we will deal essentially with
doubling metric measure spaces.

Without any specific assumption on the space, balls seem to be natural candidates for being
isoperimetric subsets, especially when the space is doubling (see Corollary 3.4).

One could naively think that thanks to Theorem 2.10, a property like asymptotic isoperimetry
of balls is stable under large-scale equivalence. Unfortunately, it is not the case: this is essentially
due to the fact that the image of a ball under a quasi-isometry is quite far from being a ball.
Namely, in order to apply Theorem 2.10, one would need the existence of some C > 0 such that

(1.2) B(f(x), r − C) ⊂ [f(B(x, r))]C ⊂ B(f(x), r + C) ∀x ∈ X,∀r > 0.

This condition is satisfied if f is a Hausdorff1 equivalence. But if f is only a quasi-isometry, one
cannot expect better than the following inclusions

(1.3) B(f(x), C−1r − C) ⊂ [f(B(x, r))]C ⊂ B(f(x), Cr + C) ∀x ∈ X,∀r > 0.

Let us introduce some terminology. First, let us write B for the family of all balls of X.

Definition 1.17. Let X be a metric measure space.
• We say that X is (IB) if balls are asymptotically isoperimetric, i.e. if

I↓B � I.

Otherwise, we will say that X is (NIB).
• We say that X is strongly-(IB) if balls are strongly asymptotically isoperimetric, i.e. if

I↑B � I.

• Finally, we say that a metric measure space is stably-(IB) (resp. stably-(NIB)) if every
space with2 Property (M), large scale equivalent to X is (IB) (resp. (NIB)).

Definition 1.18. We say that a space (X, d, µ) satisfies a strong (isoperimetric) inequality—or
that X has a strong profile—if I � id/φ where φ is the equivalence class modulo ≈ of the function

t → inf{r, µ(B(x, r)) ≥ t}.

We will show that every doubling space satisfying a strong isoperimetric inequality satisfies
(IB). This actually implies that such a space satisfies stably-(IB). In particular, any compactly
generated, locally compact group of polynomial growth satisfies (IB). In contrast, apart from the
Abelian case [14], it is still unknown whether such a group G satisfies strongly-(IB) or not, or, in

1See § 2.2 for a definition.
2Property (M) is an abreviation for “monotone geodesic property” which is slightly weaker than being geodesic,

see Definition 2.15.
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other words, if we have µ(Kn+1 r Kn) ≈ nd−1 where K is a compact generating set of G and µ is
a Haar measure on G.

Conversely, we will show that every strongly-(IB) doubling space satisfies a strong isoperimetric
inequality. On the other hand, we will see that the strong isoperimetric inequality does not imply
strongly-(IB), even if the volume growth is linear (V (r) ≈ r).

To see that strongly-(IB) is not stable under large scale equivalence, even among graphs with
polynomial growth, we shall construct a graph quasi-isometric to Z2 whose volume of spheres is
not dominated by rlog 3/ log 2 (where r is the radius). Note that this can be compared with the
following result (see [14], theorem 1)

Theorem 1.19. [14] Let X be a metric measure space with properties (M) and (DV ) (for instance,
a graph or a complete Riemannian manifold with the doubling property). There exists δ > 0 and a
constant C > 0 such that, ∀x ∈ X and ∀r > 0

µ (B(x, r + 1) r B(x, r)) ≤ Cr−δµ(B(x, r)).

In particular, the ratio µ(∂Bx,r(x))/µ(B(x, r)) tends to 0 uniformly in x when r goes to infinity.

When the profile is not strong, we will see that a many situations can happen. All the coun-
terexamples built in the corresponding section will be graphs of polynomial growth.

The case of a bounded profile is quite specific.3 Indeed, in that case, and under some hypothesis
on X (including graphs and manifolds with bounded geometry), we will prove that if (Pn)n∈N is
an asymptotically isoperimetric sequence of connected subsets of X, one can find a constant C ≥ 1
and ∀n ∈ N, some xn ∈ X, rn > 0 such that

B(xn, rn) ⊂ Pn ⊂ B(xn, Crn).

Note that here, we don’t ask X to be doubling.
Nevertheless, we will see that there exist graphs with polynomial growth (with unbounded

profile) such that no asymptotically isoperimetric family has this property. In particular, those
graphs are stably-(NIB).

To be complete, we also build graphs with polynomial growth, bounded profile and satisfying
stably-(NIB).

Concerning the stability under large-scale equivalence, we will see that even among graphs
with polynomial growth, with bounded or unbounded profile, property (IB) is not stable under
large-scale equivalence (in the case of graphs equipped with the counting measure, a large-scale
equivalence is simply a quasi-isometry).

Finally, we shall examine isoperimetric properties of connected subsets (say that A is (metrically)
connected if for any partition A = A1tA2, with d(A1, A2) ≥ 10, either A1 or A2 is empty). Clearly,
since balls of a (M)-space are connected, the strong isoperimetric inequality implies that connected
sets are asymptotically isoperimetric. On the other hand, we will show that there exist graphs
with polynomial growth whose connected subsets are not asymptotically isoperimetric.

2. Isoperimetry at infinity: a general setting

2.1. Isoperimetry at a given scale.
The purpose of this section is to find some minimal conditions under which “isoperimetric prop-

erties at infinity” become invariant under large-scale equivalence. In the introduction, namely in
Section 1.1.1, we justified our definition of the boundary by the fact that we want it to have a
uniform thickness. Nevertheless, it is not suffisant to our purpose: we will also need a discrete
connectivity property. Indeed, if X is a graph and if h < 1, then every subset of X has a trivial
h-boundary, so that all the isoperimetric properties of X are trivial.

Definition 2.1. Let X be a metric space and fix b > 0. Let us call a b-chain of length n from x
to y, a finite sequence x0 = x, . . . , xn = y such that d(xi, xi+1) ≤ b.

The following definition can be used to study the isoperimetry at a given scale, although we will
only use it “large-scale version” in this paper.

3Note that there exist infinite self-similar graphs such as the unbounded Serpinsky gasket [13], with polynomial
growth and with bounded asymptotic isoperimetric profile.
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Definition 2.2.
Scaled version: Let b > 0 and E1 � b. Let us say that X is uniformly b-connected at scale ≤ E1 if
there exists a constant E2 ≥ E1 such that for every couple x, y ∈ X such that d(x, y) ≤ E1, there
exists a b-chain from x to y totally included in B(x, E2).
Large-scale version: If, for all E1 � b, X is uniformly b-connected at scale ≤ E1, then we say that
X is uniformly b-connected (or merely uniformly connected).

Remark 2.3. Note that in the scaled version, the space X is allowed to have a proper nonempty
subset A such that d(A,Ac) > E1: in this case X is not b-connected.

Invariance under quasi-isometry: Note that if X is uniformly b-connected at scale ≤ E1

and if f : X → X ′ is a quasi-isometry of constants C1 and C2 smaller enough than E, then X ′ is
uniformly C2b+C1-connected at scale ≤ E1/C2−C1. In particular, if X is uniformly b-connected,
then X ′ is uniformly (C2b + C1)-connected.

Remark 2.4. Let us write db(x, y) for the b-distance from x to y, that is, the minimal length of a
b-chain between x and y (note that if every couple of points of X can be joined by a b-chain, then
db is a pseudo-metric on X).

If there4 exists C > 0 such that, for all x, y ∈ X, one has db(x, y) ≤ Cd(x, y) + C, then in
particular, X is uniformly b-connected.

Example 2.5. A graph and a Riemannian manifold are respectively uniformly 1-connected and
uniformly b-connected for all b > 0.

Proposition 2.6. Let X be a uniformly b-connected space at scale ≤ E1. Let h be such that
h ≥ 2b.

(i) For every subset A of X and every x ∈ Ac such that d(x, A) < E1 (resp. x ∈ A such that
d(x, Ac) < E1), there exists a point z ∈ ∂hA at distance ≤ E2 of x such that

B(z, b) ⊂ ∂hA.

(ii) If, moreover, X is (DV )loc and h � E1, then there exists a constant C ′ ≥ 1 such that, for
every subset A, there exists a family (B(yi, b))i included in ∂hA, such that, for all i 6= j,
d(yi, yj) ≥ E2 and such that∑

i

µ(B(yi, b)) ≤ µ(∂hA) ≤ C ′
∑

i

µ(B(yi, b)).

(iii) The h-boundary measure of a subset of a (DV )loc, uniformly b-connected space does not
depend on h up to a multiplicative constant, provided E1 � h ≥ 2b.

Proof : Let x ∈ Ac such that d(x,A) < E1 and let y ∈ A be such that d(x, y) ≤ E1. We know
from the hypothesis that there exists a finite chain x0 = x, x1, . . . , xn = y satisfying

• xn ∈ A,
• d(x, xi) ≤ E2 for all i,
• for all 1 ≤ i ≤ n, d(xi−1, xi) ≤ b.

Since x ∈ Ac and y ∈ A, there exists j ≤ n such that xj−1 ∈ Ac and xj ∈ A. Clearly, xj ∈
Ab ∩ [Ac]b = ∂bA. But since [∂bA]b ⊂ ∂2bA ⊂ ∂hA, the ball B(xj , b) is included in ∂hA, which
proves the first assertion.

Let us show the second assertion. Consider a maximal family of disjoint balls (B(xi, 2E2))i∈I

with centers xi ∈ ∂hA. Then (B(xi, 5E2))i∈I forms a covering of ∂hA.
Using the first assertion and the fact that h � E1, one sees that each B(xi, 2E2) contains a ball

B(yi, b) included in ∂hA. It is clear that the balls B(yi, 10E2) form a covering of ∂hA and that the
balls (B(yi, b) are disjoint. But, by property (DV )loc, there exists C ′ ≥ 1, depending on b and E2,
such that, for all i ∈ I

µ(B(yi, 10E2)) ≤ C ′µ(B(yi, b)).
We deduce ∑

i

µ(B(yi, b)) ≤ µ(∂hA) ≤ C ′
∑

i

µ(B(yi, b))

4Such a space is often called b-quasi-geodesic.
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which proves (ii). The assertion (iii) now follows from (ii). �

Remark 2.7. This proposition gives conditions to study isoperimetry at scale between b and E1,
i.e. choosing h far from those two bounds. Thus, we will always assume that this condition holds
and we will simply write ∂A instead of ∂hA. Otherwise, problems may happen. We talked about
what can occur if h < b at the beginning of this section. Now, let us give an idea of what can
happen if h > E1. Consider a metric measure space X such that X = ∪i∈IXi where the Xi are
subsets such that d(Xi, Xj) ≥ E1 whenever i 6= j and such that µ(Xi) is finite for every i ∈ I but
not bounded. Note that for h < E1 the boundary of every Xi is empty so that the family (Xi)i∈I

is trivially asymptotically isoperimetric. But this can change dramatically if h > E1 because the
boundary of Xi can meet many Xj ’s for j 6= i.

Remark 2.8. If we replace uniformly b-connected at scale ≤ E1 by uniformly b-connected, then the
proposition gives a setting adapted to the study of large scale isoperimetry. Namely, it says that
for a uniformly b-connected, (DV )loc space, the choice of h does not matter, provided h ≥ 2b.

Corollary 2.9. Let X be a (DV )loc, uniformly b-connected space. If h, h′ ≥ 2b, we have

Ih ≈ Ih′ .

So, from now on, we will simply call “profile” (instead of h-profile) the equivalence class modulo
≈ of Ih. Note that the same holds for restricted profiles I↓h,A, and I↑h,A that we will simply denote
I↓A and I↑A (where A is a family of subsets of X).

The following theorem shows that a large-scale equivalence f with controlled constants essen-
tially preserves all isoperimetric properties.

Theorem 2.10. Let f (X, d, µ) → (X ′, d′, µ′) be a large-scale equivalence (with constants C1, C2

and C3) where X (resp. X ′) is (DV )loc and uniformly b-connected at scale ≤ E1 (resp. uniformly
b′-connected at scale ≤ E′

1). We suppose also that E1 and E′
1 are far larger than C1, C2, C2b and

C2(b′ + C1). Then, there exists a constant K ≥ 1 such that, for any subset A of finite measure

µ′(∂[f(A)]C1) ≤ Kµ(∂A).

Proof : Let us start with a lemma.

Lemma 2.11. Let X be a (DV )loc space and fix some α > 0. Then there exists a constant c > 0
such that, for all family (B(xi, α))i∈I of disjoint balls of X, there is a subset J of I such that
∀j ∈ J , the balls B(xj , 2α) are still disjoint, and such that∑

j∈J

µ(B(xj , 2α)) ≥ c
∑
i∈I

µ(B(xi, α)).

Proof : Let us consider a maximal subset J of I such that (B(xj , 2α))j∈J forms a family of disjoint
balls. Then, by maximality, we get⋃

i∈I

B(xi, α) ⊂
⋃
j∈J

B(xj , 4α).

We conclude thanks to property (DV )loc. �

To fix ideas, take h = 2b and h′ = 2b′. Assertion (ii) of Proposition 2.6 implies that there exists
a family of balls (B(yi, b

′))i included in ∂[f(A)]C1 such that, for all i 6= j, d(yi, yj) ≥ E′
2 and such

that ∑
i

µ(B(yi, b
′)) ≤ µ(∂h[f(A)]C1) ≤ C ′

∑
i

µ(B(yi, b
′)).

By the lemma, and up to changing the constant C ′, one can even suppose that d(yi, yj) � C2E2

for i 6= j.
For all i, let xi be a element of X such that d(f(xi), yi) ≤ C1. The points xi are then at distance

� E2 to one another. Moreover, since yi is both at distance ≤ 2b + C1 of f(A) and of f(Ac), xi

is both at distance � E1 of A and of Ac. So, by the assertion (i) of the proposition, there exists
a ball B(zi, b) included in ∂A ∩ B(xi, E2). Since balls B(xi, E2) are disjoint, so are the B(zi, b).
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The theorem then follows from property (DV )loc and from property of “almost-conservation” of
the volume (property (b)) of large-scale equivalence. �

Remark 2.12. Note that in the case of graphs, the condition h ≥ 2 can be relaxed to h ≥ 1 (the
proposition and the theorem stay true and their proofs are unchanged).

Corollary 2.13. Under the hypotheses of the theorem, we have
(i) if the family (Ai)i∈I is asymptotically isoperimetric, then so is (f(Ai)b)i∈I ;
(ii) if I and I ′ are the profiles of X and X ′ respectively, we get I ≈ I ′.

The corollary results immediately from the theorem and the following proposition. �

Proposition 2.14. Let f be a large-scale equivalence between two (DV )loc spaces X and X ′. Then
for every subset A of X, there exists C ≥ 1 such that

µ(A) ≤ Cµ′([f(A)]C1).

Proof : Consider a maximal family of disjoint balls (B(yi, C1))i∈I whose centers belong to f(A).
These balls are clearly included in [f(A)]C1 . By property (DV )loc, the total volume of these
balls, and therefore µ′([f(A)]C1), are comparable to the sum of the volumes of balls B(xi, 3C1)i∈I

that form a covering of [f(A)]C1 . The preimages of these balls thus cover A. But, for each i,
f−1(B(yi, 3C1)) is contained in a ball of radius 3C1C2 +C2 and of center xi where xi ∈ f−1({yi}).
By property (DV )loc and property of almost-conservation of the measure of small balls (property
(b)) of f , the measure of this ball is comparable to that of B(yi, 3C1). So we are done. �

Finally, let us mention that if we suppose that X and X ′ are uniformly connected and satisfy
the (DV )loc condition, then Theorem 2.10 and its corollary hold for any large-scale equivalence f .

2.2. Property (M): monotone geodesicity.
Let us introduce a natural (but quite strong) property of geodesicity.

Definition 2.15. Let us say that (X, d) has property (M) if there exists C ≥ 1 such that, ∀x ∈ X,
∀r > 0 and ∀y ∈ B(x, r + 1), we have d(y, B(x, r)) ≤ C.

Remark 2.16. Let (X, d) be a (M) metric space. Then X has “monotone geodesics” (this is why
we call this property (M)): i.e. there exists C ≥ 1 such that, for all x, y ∈ X, there exists a finite
chain x0 = x, x1, . . . , xn = y such that ∀0 ≤ i < n,

d(xi, xi+1) ≤ C;

and
d(xi, x) ≤ d(xi+1, x)− 1.

Consequently, ∀r, k > 0, ∀y ∈ B(x, r + k), we have

d(y, B(x, r)) ≤ Ck.

These two properties are actually trivially equivalent to property (M).

Recall (see [7], p 2) that two metric spaces X and Y are said Hausdorff equivalent

X ∼Hau Y

if there exists a (larger) metric space Z such that X and Y are contained in Z and such that

sup
x∈X

d(x, Y ) < ∞

and
sup
y∈Y

d(y, X) < ∞.

Remark 2.17. It is easy to see that property (M) is invariant under Hausdorff equivalence. But on
the other hand, property (M) is unstable under quasi-isometry. To construct a counterexample,
one can quasi-isometrically embed R+ into R2 such that the image, equipped with the induced
metric does not have property (M): consider a curve starting from 0 and containing for every k ∈ N
a half-circle of radius 2k. So it is strictly stronger than quasi-geodesic property ([7], p 7), which is
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invariant under quasi-isometry: X is quasi-geodesic if there exist two constants d > 0 and λ > 0
such that for all (x, y) ∈ X2 there exists a finite chain of points of X

x = x0, . . . , xn = y,

such that
d(xi−1, xi) ≤ d, i = 1 . . . n,

and
n∑

i=1

d(xi−1, xi) ≤ λd(x, y).

Example 2.18. A geodesic space has property (M), in particular graphs and complete Riemannian
manifolds have property (M). A discretisation (i.e. a discrete net) of a Riemannian manifold X
has property (M) for the induced distance.

Remark 2.19. Note that in general, if X is a metric measure space, we have

∂1/2B(x, r + 1/2) ⊂ B(r + 1) \B(x, r).

Moreover, if X has property (M), then, we have

B(x, r + 1) \B(x, r) ⊂ ∂CB(x, r + 1).

Note that this is not true in general, even for quasi-geodesic spaces.

3. Link between isoperimetry of balls and strong isoperimetric inequality

3.1. Strong isoperimetric inequality implies (IB).
To fix ideas, spaces we will consider from now on will be (DV )loc and uniformly 1-connected.

Let us write ∂A = ∂2A for any subset A of a metric space X.

Let X be a metric measure space. Let V be a nondecreasing function belonging to the volume
growth class (for instance V (r) = µ(B(x, r)) for a x ∈ X). Write φ(t) = inf{r, V (r) ≥ t} for the
“right inverse” function of V . Remark that if f and g are nondecreasing functions R+ → R+, then
f ≈ g if and only if their right inverses are equivalent. In particular, the equivalence class of φ is
invariant under large-scale equivalence.

Definition 3.1. Let us call a strong isoperimetric inequality the following kind of isoperimetric
inequality

∀A ⊂ X, |∂A| ≥ C−1|A|/φ(C|A|).
Remark that this is equivalent to

I � id/φ,

Therefore, if X satisfies a strong isoperimetric inequality, we will say that it has a strong profile.

Example 3.2. If X has polynomial growth of degree d, we have φ(t) ≈ t1/d. So X has a strong
profile if and only if

I � (id)
d−1

d .

Write, for all x ∈ X and for all 0 < r < r′

Cr,r′(x) = B(x, r′) \B(x, r).

Proposition 3.3. Let X be a doubling space (here, no other hypothesis is required). There exists
a constant C ≥ 1 such that

∀x ∈ X,∀r ≥ 1, inf
r≤r′≤2r

µ(Cr′−1,r′) ≤ Cµ(B(x, r))/r.

Proof : Clearly, it suffices to prove the proposition when r = n is a positive integer. First, note
that

∪2n
k=n(B(x, k) r B(x, k − 1)) ⊂ B(x, 2n).

So, we have
µ(B(x, 2n)) ≥ n inf

n≤k≤2n
µ(B(x, k) \B(x, k − 1)).

We conclude by Doubling property. �
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Corollary 3.4. Let X be a uniformly connected doubling space. Then we have

I↓B � id/φ.

Namely, there exists a constant C ≥ 1 such that

∀x ∈ X,∀r > 0, inf
r′≥r

µ (∂B(x, r′)) ≤ Cµ(B(x, r))/r.

Proof. This follows from Remark 2.19. �

Corollary 3.5. Let X be a uniformly connected doubling space satisfying a strong isoperimetric
inequality. Then, X is stably-(IB).

Proof : It follows from Corollary 3.4 and from Corollary 2.13. �

Remark 3.6. Varopoulos [15] showed that the strong isoperimetric inequality is satisfied by any
group of polynomial growth. Coulhon and Saloff-Coste [2] then proved it for any unimodular
compactly generated locally compact group with a simple and elegant demonstration. We have the
following corollary.

Corollary 3.7. A Cayley graph of a group of polynomial growth is stably-(IB).

3.2. The strong isoperimetric inequality does not imply strongly-(IB).
Note that this will result from the example shown in section 3.3. Let us present here a coun-

terexample with linear growth.
For every integer n, we consider the following finite rooted tree Gn: first take the standard binary

tree of depth n. Then stretch it as follows: replace each edge connecting a k − 1’th generation
vertex to a k’th generation vertex by a (graph) interval of length 22n−k

. Then consider the graph
G′

n obtained by taking two copies of Gn and identifying the vertices of last generation of the first
copy with those of the second copy. Write rn and r′n for the two vertices of G′

n corresponding to
the respective roots of the two copies of Gn. Finally, glue “linearly” the G′

n together identifying
r′n with rn+1, for all n: it defines a graph X.

Let us show that X has linear growth (i.e. polynomial growth of degree 1). Thus I ≈ 1, and
since the boundary volume of balls is clearly not bounded, we do not have I↑B � I. In particular,
X is not strongly-(IB).

Since X is infinite, it is enough to show that there exists a constant C > 0 such that

(3.1) |B(x, r)| ≤ Cr

for every vertex x of X. But it is clear that among the balls of radius r, those which are centered
in points of n’th generation of a Gn for n large enough are of maximal volume. Let us take such
an x. Remark that for

∑k
j=0 22j ≤ r ≤

∑k+1
j=0 22j

, we have

|B(x, r)| ≤ 2 | B(x,
k∑

j=0

22j

) | +2

r −
k∑

j=0

22j


So it is enough to show (3.1) for r =

∑k
j=0 22j

. We have

µ(B(x,
k∑

j=0

22j

)) =
k∑

j=0

2.2j .22k−j

≤ 4.22k

.

Which proves (3.1) with C = 8. �

Remark 3.8. This example and that of section 3.3 show in particular that the strong isoperimetric
inequality does not imply (even in linear growth case) strongly-(IB).
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3.3. Instability of strongly-(IB) under quasi-isometry.

Theorem 3.9. We can find a graph, quasi-isometric to Z2 (resp. a Riemannian manifold M
bi-Lipschitz equivalent to R2) whose volume of spheres is not dominated by rlog 3/ log 2 (where r is
the radius).

Remark 3.10. The restriction to dimension 2 is not essential, but was made to simplify the expo-
sition (actually, we merely need the dimension to be greater or equal to 2).

Proof : The general idea of the construction is to get a sequence of spheres which look like finitely
iterated Von Koch curves. First, we will build a graph with weighted edges. Actually, this graph
will be simply the standard Cayley graph of Z2, and the edges will have lengths equal to 1 except
for some selected edges which will have length equal to a small, but fixed positive number.
First step of the construction: Let us define a sequence (Ak) of disjoint subtrees of Z2 (which
is identified to its usual Cayley graph). Let (e1, e2) be the canonical basis of Z2 and denote
S = {±e1,±e2}. For every k ≥ 1, let ak = (22k, 0) be the root of the tree Ak and define Ak by

(3.2) x ∈ Ak ⇔ x = ak + 2kε0(x) + 2k−1ε1(x) + . . . + 2k−i(x)εi(x)(x) + r(x)εi(x)+1(x)

where
— 0 ≤ i(x) ≤ k − 1,
— εj(x) belongs to S for every 0 ≤ j ≤ i(x) + 1 and is such that εj+1(x) 6= −εj(x) (for j ≤ i(x)),
— r(x) ≤ 2k−i(x)−1 − 1.

It is easy to see that Ak is a subtree of Z2 and that the above decomposition of x is unique. In
particular, we can consider its intrinsic graph metric dAk

: let Sk be the sphere of center ak and of
radius 2k+1 − 1 for this metric. Clearly, |Sk| ≥ 3k−1.
Second step of the construction: We define a graph Y with weighted edges as follows: Y is the
usual Cayley graph of Z2; all edges of Y have length 1 but those belonging to A = ∪kAk which
have length equal to 1/100. The measure on Y is the countable measure and the distance between
two vertices v and w is the minimal length of a chain joining v to w, the length of a chain being
the sum of the weights of its edges. Clearly, as a metric measure space, Y is large-scale equivalent
to Z2.

For every k ≥ 2, consider the sphere S(ak, rk) = B(ak, rk + 1) r B(ak, rk) of Y , where rk =
(2k+1 − 1)/100.

Claim 3.11. We have Sk ⊂ S(ak, rk), so that

µ(S(ak, rk)) ≥ 3k−1 ≥ r
log 3/ log 2
k .

Proof : Note that the claim looks almost obvious on a drawing. Nevertheless, for the sake of
completeness, we give a combinatorial proof. Let us show that a geodesic chain in the tree Ak

is also a minimizing geodesic chain in Y . Applying this to a geodesic chain between ak and any
element of Sk (which is of length rk in Y ), we have that Sk ⊂ S(ak, rk), so we are done.

So let x be a vertex of Ak. By (3.2), we have

x = ak + 2kε0(x) + 2k−1ε1(x) + . . . + 2k−i(x)εi(x)(x) + r(x)εi(x)+1(x)

Let us show by recurrence on dY (ak, x) (which takes discrete values) that

dY (ak, x) = dAk
(ak, x)/100 = (2k + . . . + 2k−i(x) + r(x))/100 =

2k+1(1− 2−i(x)−1 + r(x))
100

If x = ak, there is nothing to prove. Consider c = (c(0) = x, c(2), . . . , c(m) = ak) a minimal
geodesic chain in Y between ak and x. Clearly, it suffices to prove that c ⊂ Ak. Suppose the
contrary. Let t be the largest positive integer such that c(t) belongs to Ak and c(t + 1) does not.
Let l be the smallest positive integer such that c(t + l) ∈ Ak, so that (c(t + 1), . . . , c(t + l − 1)) is
entirely outside of Ak. By recurrence, the chain (c(t + l), . . . , c(m)) is in Ak. Thus we have

dY (x, ak) = dAk
(x, c(t))/10 + |c(t)− c(t + l)|Z2 + dAk

(c(t + l), ak)/100.

Since c is a minimal chain, we also have

dY (c(t), ak) = |c(t)− c(t + l)|Z2 + dAk
(c(t + l), ak)/100.

The following lemma applied to u = c(t) and v = c(t + l) implies that t = t + l which is absurd
since it means that c is included in Ak. �
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Lemma 3.12. let u and v be in Ak. We have

|u− v|Z2 ≥ (dAk
(u, ak)− dAk

(v, ak))/50.

Proof : We can of course assume that dAk
(u, ak) ≥ dAk

(v, ak). Let u = u1 + u2 and v = v1 + v2

with
u1 = 2kε0(u) + . . . 2k−i(v)εi(v)(u)

and
v1 = 2kε0(v) + . . . 2k−i(v)εi(v)(v).

Note that by construction,
dAk

(u1, ak) = dAk
(v1, ak)

and since Ak is a tree,

(3.3) dAk
(u, ak)− dAk

(v, ak) = dAk
(u2, ak)− dAk

(v2, ak) ≤ 2k−i(v)+2.

On the other hand, we have

|u− v|Z2 ≥ ||u1 − v|Z2 − |u2 − v|Z2 |

First, assume that u1 6= v1. Then, by (3.2), the projection of u1 − v1 along e1 or e2 is not zero
and belongs to 2k−i(v)N. Moreover, using the fact that εj+1(u) 6= −εj(u)) for every j, the same
projection of u2 − v2 is (in Z2-norm) less than

2.(2k−i(v)−2 + 2k−i(v)−4 + . . . = 2k−i(v)−1(1 + 1/4 + 1/42 + . . .) ≤ 2/3.2k−i(v)

Thus,
|u− v|Z2 ≥ 2k−i(v)/3.

So we are done.
Now, assume that u1 = v1. If i(u) = i(v) or if i(u) ≤ i(v)+1 and εi(v)+1(u) = ±εi(v)+1(v), then

we have trivially
|u− v|Z2 = (dAk

(u, ak)− dAk
(v, ak)).

Otherwise, we have

u− v = u2 − v2 = (2k−i(v)−1 − r(v))εi(v)+1(u) + 2k−i(v)−2εi(v)+2(u) + . . . + r(u)εi(u)+1.

So, projecting this in the direction of εi(v)+2(u), and since εi(v)+3(u) 6= −εi(v)+2(u), we obtain

|u−v|Z2 = |u2−v2|Z2 ≥ 2k−i(v)−2−(2k−i(v)−4+. . .+2k−i(u)+r(u)) ≥ 2k−i(v)−2−2k−i(v)−3 = 2k−i(v)−3.

Together with 3.3, we get

|u− v|Z2 ≥ 32(dAk
(u, ak)− dAk

(v, ak))

which proves the lemma. �

Clearly, Y is quasi-isometric to Z2. It is not difficult (and left to the reader) to see that we can
adapt the construction to obtain a graph.

Now, let us explain briefly how we can adapt the construction to obtain a Riemannian manifold
bi-Lipschitz equivalent to R2. First, we embed Z2 into R2 in the standard way, so that Ak is now
a subtree of R2. Let Ã be the 1/100-neighborhood of A in R2. Let f be a nonnegative function
defined on R2 such that 1− f is supported by Ã, f ≥ a and f(x) = a for all x ∈ A. Finally, define
a new metric on R2 multiplying the Euclidean one by f . �

3.4. Strongly-(IB) implies the strong isoperimetric inequality.
The converse to Proposition 3.5 is clearly false (see the examples of the next section). However,

one has

Proposition 3.13. Let X be a doubling (M)-space. Suppose moreover that there exists x ∈ X
such that the family of balls of center x is strongly asymptotically isoperimetric. Then we have

I↓B � id/φ.

In particular, X satisfies a strong isoperimetric inequality.
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Proof. Since (B(x, r))r forms an asymptotically isoperimetric family, it is enough to show that
there exists c > 0 such that

µ(∂B(x, r)) ≥ c
µ(B(x, r))

r
.

But, let us recall that property (M) implies that there exists C > 0 such that, for all r > 0

µ(Cr,r+1(x)) ≤ Cµ(∂1B(x, r)).

Since (B(x, r))r forms an asymptotically isoperimetric family, there exists C ′ ≥ 1, such that, for
all r′ < r

µ(∂B(x, r′)) ≤ C ′µ(∂B(x, r)).

Using these two remarks, we get

µ(B(x, r)) ≤ CC ′rµ(∂B(x, r)).

So we are done. �

4. What can happen if the profile is not strong

All the metric measure spaces built in this section will be graphs with polynomial growth. For
simplicity, we write |A| for the cardinal of a finite subset A of a graph.

4.1. Bounded profile: connected isoperimetric sets are “controlled” by balls.
We will say that a subset A of a metric space is metrically connected (we will merely say “con-

nected” from now on) if there does not exist any nontrivial partition of A = A1 t A2 with
d(A1, A2) ≥ 10.

Let X be a uniformly 1/2-connected space, with bounded profile, and such that the measures
of balls of radius 1/2 is more than a constant a > 0. Actually, we can ignore nonconnected
sets. Indeed if (An) is an isoperimetric family, then the An have a bounded number of connected
components: otherwise, by Proposition 1.13, the boundary of An would not be bounded (because
the distinct connected components have disjoint 1-boundaries each one containing a ball of radius
1/2). It is enough to replace An by its connected component of maximal volume.

Claim 4.1. Let (X, d, µ) be a (DV )loc, uniformly 1/2-connected space such that the measures
of balls of radius 1/2 is more than a > 0 and whose profile I is bounded. Then, if (An) is an
isoperimetric sequence of connected subsets of X, there exist a constant C > 0, some xn ∈ X and
some rn > 0 such that

∀n, B(xn, rn) ⊂ An ⊂ B(xn, Crn).

Proof : To fix ideas, let us assume that ∂A = ∂1A (for all A ⊂ X). Let yn be a point of An

and write dn = supy∈∂An
d(yn, y). Let r ≤ dn be such that Cr,r+1(yn) intersects nontrivially

∂An (recall that Cr,r′(x) = B(x, r′) \ B(x, r)). Then, by Proposition 2.6, there exists a constant
C ≥ 1 such that Cr−C,r+C(yn)∩ ∂An contains a ball of radius 1/2 and therefore has measure ≥ a.
Consequently, if δn = sup{r′ − r;Cr,r′(yn) ∩ ∂An = ∅}, then

(4.1) µ(∂An) ≥ dn

2Cδn
a.

Since the boundary of An has bounded measure, there exists a constant c > 0 and, for all n,
two positive reals r′n and r”n such that r”n − r′n ≥ cdn and Cr′n,r”n

∩ ∂A = ∅.
Write sn = (r′n + r”n)/2. Since An is connected, Csn−10,sn+10(x) ∩ An is nonempty. But then,

if xn ∈ Csn−10,sn+10(x) ∩An, we get

B

(
xn,

r”n − r′n
2

− 10
)
⊂ An.

On the other hand

(4.2) An ⊂ B(xn, 2dn).

Write rn = cdn/2− 10. The claim follows from (4.1) and from (4.2). �
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4.2. Stably-(NIB) graphs with unbounded profile and where isoperimetric families can
never be “controlled” by families of balls.

Theorem 4.2. For every integer d ≥ 2, there exists a graph X of polynomial growth of degree d,
with unbounded profile, satisfying stably-(NIB) and such that, for all isoperimetric sequences (An),
it is impossible to find sequences of balls Bn = B(xn, rn) and B′

n = B(x′n, r′n) of comparable radii
(i.e. such that r′n/rn is bounded) such that

Bn ⊂ An ⊂ B′
n, ∀n.

Consider the graph X obtained from Zd deleting some edges. Consider, along the axis Z.e1, the
intervals (In) of length [

√
n] and at distance 2n from one another. Consider the sequence (An) of

full parallelepiped defined by the equations x1 ∈ In and |xi| ≤ n/2 for i ≥ 2.
Then consider a partition of the boundary (in Zd) of An in (d− 1)-dimensional cubes ak

n whose
edges have length approximatively

√
n. Remove all the edges that connect An to its complement

but those connected to the “center” of ak
n (here, the center of ak

n is a point of Zd we choose at
distance ≤ 2 from the “true center” in Rn of the convex hull of ak

n). We thus obtain a connected
graph X. Note that the An are such that

|An| ≈ nd−1
√

n

and

|∂XAn| ≈
|∂ZdAn|
|a0

n|
≈ nd−1/(

√
n)d−1 = (

√
n)d−1.

Write A for the union of Ai and Ac for its complement in X.

Claim 4.3. The growth in X is polynomial of degree d.

Proof : It will follow from the strong profile of balls. �

Claim 4.4. The profile of X is not strong.

Proof : Let us consider the An. If the profile was strong, the sequence un = |An|

|∂An|
d

d−1
would be

bounded. But there exists a constant c > 0 such that

un ≥ cnd−1
√

n/(
√

n)d = cn
d−1
2 →∞.

�

Claim 4.5. Let R be a unbounded subset of R+ and let (Pr)r∈R be a family of subsets such that
there exist two constants C ≥ 1 and a > 0 such that

∀r > 0,∃xr ∈ X, B(xr, r/C) ⊂ [Pr]a ⊂ B(xr, Cr).

Then there exists a constant c′ such that

∀r > 0, µ(∂Pr) ≥ c′µ(Pr)
d−1

d .

The following lemma and its proof will be useful in all examples that we will expose in the
following sections. Write Ac for the complement of A (in X or, which is actually the same in Zd).

Lemma 4.6. The profile of Ac (or of A′c) is strong. That means I(t) ≈ t
d−1

d .

Proof of the lemma.
First of all, it is enough to consider only connected subsets P of Ac. Indeed, if P has many

connected components P1 . . . Pk, then, by subadditivity of the function φ : t → t
d−1

d , if the Pi verify
|∂Pi| ≥ cφ(|Pi|), then so do P .

Note that Ac embeds into X and into Zd. The idea consists in comparing the profile of Ac to
that of Zd. First of all, let us assume that a connected subset P of Ac—seen in X—intersects the
boundary of many An. Then, as |An| is negligible compared to the distance between the An when
n goes to infinity, the set of points of ∂ZdP at distance 1 of A has negligible volume compared to
|∂P |. Thus, if |P | et n are large enough, we get

|∂AcP | ≥ 1
2
|∂ZdP |.
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So it is enough to consider subsets meeting only one An. But the complement of a convex
polyhedron of Zd has trivially the same profile (up to a constant) as Zd. So we are done. �

Proof of the claim 4.5. Let (Pr) be a family of subsets of X satisfying the condition of
the proposition. We have to show that ∀r, |∂Pr| ≥ c′|Pr|

d−1
d . If P ⊂ Ac, the claim is a direct

consequence of the lemma.
Suppose that P meets some An and that r ≥ 100C

√
n. Then we have already seen (in the proof

of Lemma 4.2) that if many An intersect Pr, the cardinal of the intersection of this Pr with A are
negligible compared to its boundary provided n and |Pr| are large enough. We can thus suppose
that Pr meets only one An. Furthermore, since r ≥ 100

√
(n), there is some x′ in B(xr, r/C) such

that

B(x′, r/10C) ∈ B(xr, r/C) ∩Ac.

Then, observe that since B(x′, r/10C) ⊂ [Pr]a, there is a B(x′, r/10C) ⊂ [Pr]a, there is a constant
c > 0 such that

(4.3) |Pr ∩B(x′, r/C)| ≥ c|B(x′, r/C)|.

It follows that the intersection of Pr with Ac has volume ≥ c′|Pr| where c̄ is a constant depending
only on C and a. So by Lemma 4.2, we have

|∂XPr| ≥ |∂Ac(Pr ∩Ac)| ≥ c|Pr|
d−1

d .

We then have to study the case r ≤ 100C
√

n. We can assume that xr ∈ An (otherwise, we
conclude with Lemma 4.2). Let π be the orthogonal projection on the hyperplane x2 = 0. Then
for n large enough, Cr is smaller than n/2. Consequently, since Pr ∈ B(xr, Cr), every point of
π(Pr) has at least one antecedent in the boundary of Pr. So, we have

|∂XPr| ≥ |π(Pr)|.

Moreover, note that π(B(xr, r/C)) = B(π(xr), r/C) (note that this ball lies in Zd−1). On the
other hand, since the projection is 1-Lipschitz, we get

π([Pr]a) ⊂ [π(Pr)]a,

so

B(π(xr), r/C) ⊂ [π(Pr)]a.

Similarly to (4.3), we have

|π(Pr) ∩B(π(xr), r/C| ≥ c|B(π(xr), r/C)|

So, finally, we have

|∂XPr| ≥ c′rd−1

so we are done. �

Corollary 4.7. In every space isometric at infinity to X, the volume of spheres ≈ rd−1. In
particular, they are not asymptotically isoperimetric.

Proof of the corollary. Let f : X ′ → X a large-scale equivalence between two metric measure
spaces X ′ and X and take y ∈ X ′. It comes

B

(
f(y),

r

C2
− C1

)
⊂ B([f(B(y, r))]C1) ⊂ B(f(y), C2r + C1).

The corollary follows from Claim 4.5 and from Theorem 2.10. �
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4.3. Graphs stably-(NIB) with bounded profile.

Theorem 4.8. For any integer d ≥ 2, one can find a graph of polynomial growth of degree d, with
bounded profile, and which is stably-(NIB).

The construction follows the same lines as in the previous section. Consider in Zd, a sequence
(Cn) of subsets defined by

Cn = B(xn, n) ∪B(x′n, n)

where xn = (2n+1, n− log n, 0, . . . , 0) and x′n = (2n+1, log n− n, 0, . . . , 0).
We disconnect Cn from the rest everywhere but along the axis Z.e1. Let Y be the corresponding

graph. Cn looks like a ball (of Zd) “constricted” at the equator. Indeed, every point of Cn belonging
to the hyperplane {x2 = 0} is at distance at most log n from the boundary (in Y ) of Cn. This is
the property that will prevent Cn from being “deformed” into a ball. Write C = ∪nCn.

Lemma 4.9. The graph Cc has a strong profile.

Proof : The demonstration is essentially the same as for Lemma 4.2. �

Claim 4.10. The growth in the graph X is polynomial of degree d.

Proof : We have to show that there exists a constant c > 0 such that, ∀x, r, |B(x, r)| ≥ crd (the
converse inequality following from the fact that X embeds in Zd). Thanks to Lemma 4.9, we can
suppose that B is included in a Cn0 so that its radius is ≤ n0.

The conclusion follows then from the next trivial fact: in Zd, if r ≤ n0, the volume of the
intersection of a ball of radius n0 with a ball of radius r ≤ n0 and of center belonging to the first
ball is ≥ 2−d|B(x, r)| ≥ 2−10drd. Indeed, the worst case is when x is in a “corner” of the ball. So
we are done. �

Claim 4.11. If Y ′ is a (M)-space which is isometric at the infinity to Y , then its balls are not
asymptotically isoperimetric.

Proof : The demonstration results from the following lemma and Proposition 1.13.

Lemma 4.12. Let P be an asymptotically isoperimetric family of connected subsets of X. Then
there exists a constant C ≥ 1 such that, for all P ∈ P of measure > C, there exists n such that
|P

a
Cn| ≤ C.

Proof : Since the profile of Cc is strong, it is clear that for |P | large enough, P ∩ Cc must be
bounded. We then have to show that if (Pn) is a sequence of subsets such that for all n, Pn ⊂ Cn

and such that |Pn| and |Cn \ Pn| tends to infinity, then |∂Pn| also tends to infinity. Suppose, for
instance that |Pn| ≤ |Cn \Pn|. But Theorem 2.10 makes clear that this problem in Zd is equivalent
to the similar problem in Rd: that is, replacing Cn with its convex hull C̃n in Rd. Since the C̃n

are homothetic copies of C̃1, by homogeneity, we only have to show that the profile I(t) of C̃1 is
≥ ct

d−1
d for 0 < t < |C̃1|/2, which is a known fact (see [11]). �

Let us finish the demonstration of Claim 4.11. We now have to show that the sets Cn cannot
be—up to a set of bounded measure—inverse images of balls by some large-scale equivalence. So
let (X ′, d, µ) be a (M)-space and let f : X → X ′ be a large-scale equivalence.

Let us consider two points of Cn of respectively maximum and minimum x2. The distance
of each of these points to Cc is ≥ n/2 and yet, every 1-chain joining them must pass through
Cn ∩ {x2 = 0} whose points are at distance ≤ 2 log n from Cc. But this is impossible for a ball
in a (M)-space. Indeed, in a ball B = B(o,R) with R ≥ N , if a point x is at distance cN from
the boundary, then the points belonging to a ball centered in x and of radius cN/2 are at distance
at least cN/2 from the boundary of B. But this ball intersects the ball centered in o and of
radius R − cN/2. Moreover, by property (M), there exists a 1-chain joining x to o and staying in
B(o,R− cN/2), so at a distance of the order of N from boundary of B. �
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4.4. The instability of (IB) under quasi-isometry between graphs of polynomial growth.

Theorem 4.13. Let d be an integer ≥ 2. There exists two graphs X and X ′ quasi-isometric, of
polynomial growth of degree d and with bounded or unbounded profile, such that X satisfies (IB)
but not X ′.

Like in the examples of the two previous sections, we will build a graph X removing some edges
from Zd: for n ∈ N, let An be the ball of radius n whose center belongs to the axis Z.e1 in such a
chain that An+1 is at distance 2n from An. We then remove all the edges of the boundary of An but
those belonging to the line Z.e1. We write A for the union of An. The graph X ′ is obtained from
X by taking its image by the linear map fixing the first coordinate and acting on the orthogonal
as an homothetic transformation of ratio 4 (it is clear that it is a quasi-isometry). More precisely,
we replace each edge of X parallel to the first axis, by a chain of length 2 also parallel to the first
axis. Write A′ for the image of A.

Remark 4.14. In the previous example, the profile is bounded. Nevertheless, one can slightly
modify the construction in order to get an unbounded profile: for instance, removing only edges of
the boundary of An at distance ≥ log n from the axis Z.e1 (instead of those which are outside of
this axis).

Claim 4.15. The graphs X and X ′ have polynomial growth of degree d.

As these graphs are subgraphs of Zd, their volume growths are less than the one of Zd. The
converse inequality will follow from the fact that in X ′, the profile restricted to balls is strong and
from the fact that X and X ′ are quasi-isometric. �

Claim 4.16. In X, the balls are asymptotically isoperimetric.

Proof : It is clear by construction that the An are balls and that their boundaries have bounded
volume. �

Claim 4.17. In X ′, the profile restricted to balls is strong I↓B(t) ≈ t
d−1

d . In particular, X ′ is not
(IB).

Proof : Remark that Lemma 4.2 stays true in this context. Let B = B(x, r) be a ball of the graph
X ′. We have to show that there exists a constant c > 0 such that

|∂B| ≥ c|B|
d−1

d .

According to Lemma 4.2, we can assume that B ⊂ A. Thus, there exists n0 such that B ⊂ An0 .
Let us embed Zd into Rd. Let us replace the discrete polyhedron An and B by their convex

hulls Ãn and B̃ in Rd. Let X̃ be the space obtained removing from Rd (Euclidean) the points of
the Euclidean boundary of Ãn (for all n) but the two ones belonging to the axis R.e1 (resp. those
at distance ≤ log n of the axe) for the case of bounded profile (resp. for the case of unbounded
profile). Let us equip X̃ –seen as a subset of Rd– with Lebesgue measure and with the geodesic
metric d(x, y) = infγ l(γ) with γ taking values in the set of arcs joining x to y in X̃, l(γ) being the
Euclidean length of γ.

The embedding j of X into X̃ we obtain like this is clearly a large-scale equivalence.
For simplicity, we will write |A| for the (Lebesgue) measure of a subset A of X̃. On the other

hand, note that ∂10B̃ contains [j(B(x, r))]1 \ [j(B(x, r − 2))]1, which by Proposition 2.6 has same
measure (up to multiplicative constant) as ∂B. The same holds for B̃ and B. Moreover, since
B̃ and An0 are convex polyhedra, it is clear that the 10-boundary of B̃ has same measure (up to
multiplicative constants) as its Euclidean boundary (whose measure is the limit when h → 0 of
|∂hB̃|/h). Write

|∂euclB̃| = lim
h→0

|∂hB̃|/h

Consequently, it is enough to show that there exists c > 0 such that

|∂euclB̃| ≥ c|B̃|
d−1

d
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Note that by homogeneity, the quantity

Q =
1

rd−1
|∂euclB̃|

only depends on the ratio n/r. Fix n = n0. For r small enough (let us say ≤ rc for some rc > 0),
B̃ never meets two parallel faces: Q stays larger than a constant > 0 (i.e. profile of a 1/2d−1’th of
space of Rd). By compactness, it follows that Q reaches its minimum when x and r vary under
the conditions rc ≤ r ≤ n0/2. On the other hand, as B̃ is strictly included in Ãn0 , this minimum
has to be > 0. The ratio Q is therefore larger than a constant c′ > 0. finally, there is a constant
c > 0 such that

|∂euclB̃| ≥ c′rd−1 ≥ c|B|
d−1

d .

So we are done. �

5. Asymptotic isoperimetry of connected subsets.

Recall that we say that a subset A of a metric space is connected if there does not exist a
nontrivial partition A = A1 tA2 with d(A1, A2) ≥ 10.

Let (X, d, µ) be a metric measure space. Write C for the set of connected subsets of finite
measure of X.

Set ∂A = ∂1A and assume that X is uniformly 1/2-connected (see section 2.1).

Theorem 5.1.
(i) Let X be such that the measures of balls of radius 1/2 are bounded below by a > 0. Suppose

that I(t) = o(t). Then there exists a positive and increasing sequence (tn) tending to infinity such
that I↓C(tn) = I(tn).

(ii) Assume that X is a doubling (M)-space and has a strong profile. Then I↓C ≈ I.
(iii) Let d be an integer ≥ 2. There exists a graph X of polynomial growth of degree d and a

increasing sequence of integers (sn) such that I(sn) = o(I↓C(sn)).

Proof :
Note that (ii) follows from Corollary 3.5 and from the fact that property (M) implies that balls

are connected.
Let us show the first assertion of the theorem. Suppose that there exists T > 0 such that ∀t ≥ T ,

I(t) < I↓C(t). We will show that it implies that

(5.1) I(t) ≥ a
t

T
.

Write tm for the upper bound of the set of t such that ∀s ≤ t, one has I(s) ≥ a s
T . Since I is

nondecreasing, if tm is finite, then it is a maximum.
Remark that tm ≥ T since the boundary of every nonempty subset of X contains a ball of radius

1/2 (see Proposition 2.6) and therefore has measure ≥ a.
Suppose by contradiction that tm is finite. By definition of tm, for all s > tm there exists a

subset A such that
µ(A) ≥ s

and
µ(∂A) < as/T.

Moreover, since tm ≥ T , we can suppose that

µ(∂A) < I↓C(s)

(in particular, A is not connected).
It follows that there exists a smallest positive integer k such that there exist tm ≤ s ≤ tm +T/2

and a subset A of measure ≥ s, with k connected components and whose boundary has measure
< min{I↓C(s), sa/T}. Let A be such a subset. Note that k ≥ 2. Thus, we have

A = A1 tA2

with d(A1, A2) ≥ 10.
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Since k is minimal, one has, for i = 1, 2

µ(Ai) < tm.

Indeed, if for instance, one had µ(A1) ≥ tm, then since the boundary of A2 has measure ≥ a, one
would have

µ(∂A1) ≤ (tm + T/2)
a

T
− a =

tma

T
− a/2 <

tma

T
.

Therefore, as I↓C(tm) ≥ I(tm) ≥ tma/T , one would also have

µ(∂A1) < I↓C(tm).

But then, by minimality of k, A1 should have at least k connected components, which is absurd
since it has strictly less components than A.

But, by definition of tm, this implies that

µ(∂A) = µ(∂A1) + µ(∂A2)

≥ µ(A1)a
T

+
µ(A2)a

T

=
µ(A)a

T

which is absurd. �

In order to show the second assertion of the theorem, we proceed as in the previous sections: we
start from the graph Zd, and then we remove some edges. Let us consider the following family of
cubes (Cm

n )0≤m≤n−1,n∈N∗ of Zd: the Cm
n are Euclidean cubes of edges’ length 22n

whose centers
are disposed along the axis Z.e1 as follows: Cm+1

n is the image of Cm
n by the translation of vector

n22n

.e1 and Cn−1
n and C1

n+1 are at distance (n + 1)22(n+1)
to one another. To build the graph

X, we remove all the edges joining Cm
n to the rest of the graph but those which have a vertex

belonging to the Euclidean cube cm
n of dimension d− 1 of the boundary of Cm

n , of volume 2n2
and

centered in one of the two intersection points of Cm
n with the axis Z.e1. Write C for the union of

cubes Cm
n .

Claim 5.2. The growth in X is polynomial of degree d.

Proof : Let B = B(x, r) be a ball. Let us prove that |B| ≥ 2−100drd. If the center of B doesn’t
belong to any Cm

n , it is clear. Suppose therefore that x ∈ Cm0
n0

for integers n0 and m0 < n0. Write
Dn0 for the diameter of Cm0

n0
. If r ≥ 3Dn0 , then B contains B(y, r/2) with y belonging to no Cm

n .
So we are brought back to the previous case. In the other case, the conclusion follows from the
following trivial fact: in Zd, if r ≤ n, the volume of the intersection of a cube C of edges’ length
equal to n with a ball of radius r ≤ n and of center x ∈ C is ≥ 2−d|B(x, r)| ≥ 2−10drd. Indeed,
the worst case is when x is a corner of the cube. �

Claim 5.3. Take sn = n22n

. Then I(sn) = o(I↓C(sn)).

Proof : Let us consider the set Cn = ∪mCm
n . Its volume is equal to sn and its boundary has volume

equal n2n2
. On the other hand, let n1 be an integer and let P be a connected subset of volume

≥ sn1 . We want to show that |∂P | ≥ c2(n1+1)2 , for a constant c > 0, which is clearly enough to
conclude.

Thanks to the following lemma, the only remaining case to consider is when P meets a cube
Cm

n . But, because of the large distance between two such cubes, we can assume that P meets only
one of these cubes, say Cm0

n0
.

Lemma 5.4. The profile of the graph Cc is strong (i.e. ≈ t
d−1

d ).

(same demonstration as for Lemma 4.2)

If |P ∩Cc| ≥ |P |/2, then the lemma applied to P ∩Cc allows to conclude. Suppose therefore that
|P ∩C| ≥ |P |/2. This implies in particular that n0 ≥ n1 +1. We then remark that |∂(P ∩Cm0

n0
)| ≤

|∂P |. Indeed, let π be the orthogonal projection onto the hyperplane containing cm0
n0

, then every
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point of cm0
n0
∩ P admits un antecedent by π belonging to the boundary of P . So we can assume

that P ⊂ Cm0
n0

. If |P | ≤ 3/2|Cm0
n0
|, then there exists c > 0 such that

(5.2) |∂P | ≥ c|P |
d−1

d

(isoperimetry in the full Euclidean cube: see [11]). Otherwise, assume that |P | ≥ 3/2|Cm0
n0
| and

write Q = Cm0
n0

\ P .
• If the volume of Q is ≥ Dn0/2 where Dn0 is the diameter of Cm0

n0
, then 5.2 applied to Q

implies that

|∂Q| ≥ c2(d−1)2n0/d ≥ c22n0−1
≥ c2n2

0 = c2(n1+1)2 .

But, the boundary of Q is—up to points belonging to cm0
n0

(whose cardinal is negligible
compared to c22n0−1

)—equal to the boundary volume of P . So we are done.
• If |Q| ≤ Dn0/2, then every point of cm0

n0
has preimages in ∂P by the projector π. But

|cm0
n0
| = 2n2

0 = 2(n1+1)2 , which ends the demonstration. �
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