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Abstract. We study the Dehn function of connected Lie groups. We show
that this function is always exponential or polynomially bounded, according to
the geometry of weights and of the 2-cohomology of these groups. Our work,
which also addresses algebraic groups over local fields, uses and extends Abels’
theory of multiamalgams of graded Lie algebras, in order to provide workable
presentations of these groups.
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1. Introduction

1.1. Dehn function of Lie groups. The object of study in this paper is the
Dehn function of connected Lie groups. For a simply connected Lie group G
endowed with a left-invariant Riemannian metric, this can be defined as follows:
the area of a loop γ is the infimum of areas of filling discs, and the Dehn function
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δG(r) is the supremum of areas of loops of length at most r. The asymptotic
behaviour of δG (when r → +∞) actually does not depend on the choice of a
left-invariant Riemannian metric. If G is an arbitrary connected Lie group and
K a compact subgroup such that G/K is simply connected (e.g. K is a maximal
compact subgroup, in which case G/K is diffeomorphic to a Euclidean space),
we can endow G/K with a G-invariant Riemannian metric and thus define the
Dehn function δG/K(r) in the same way; its asymptotic behaviour depends only
on G, neither on K nor on the choice of the invariant Riemannian metric, and
is called the Dehn function of G. For instance, if for some maximal compact
subgroup K, the space G/K has a negatively curved G-invariant Riemannian
metric, then the Dehn function of G has exactly linear growth. Otherwise, G is
not Gromov-hyperbolic, and by a very general argument due to Bowditch (not
specific to Lie groups), the Dehn function is known to be at least quadratic. On
the other hand, the Dehn function is at most quadratic whenever G/K can be
endowed with a non-positively curved invariant Riemannian metric, notably when
G is reductive. It is worth emphasizing that many simply connected Lie groups
G fail to have a non-positively curved homogeneous space G/K and nevertheless
have a quadratic Dehn function. Characterizing Lie groups with a quadratic Dehn
function is a very challenging problem, even in the setting of nilpotent Lie groups.
Indeed, although connected nilpotent Lie groups have an at most polynomial
Dehn function, there are examples with Dehn function of polynomial growth with
arbitrary integer degree. In a sense, our results actually show that for connected
Lie groups, polynomial Dehn functions of large polynomial growth are always
related to “large” nilpotent quotients. Finally, let us observe that the Dehn
function of a connected Lie group is at most exponential, the prototypical example
of a Lie group with an exponential Dehn function being the three-dimensional
SOL group.

A main consequence of the results we describe below is the following theorem.

Theorem A. Let G be a connected Lie group. Then the Dehn function of G is
either exponential or polynomially bounded.

Let us mention that “polynomially bounded” cannot be improved to “of poly-
nomial growth”, since S. Wenger [We11] has exhibited some simply connected
nilpotent Lie groups with a Dehn function satisfying n2 � δ(n) � n2 log n.

Our results are more precise than Theorem A: we characterize algebraically
which ones have a polynomially bounded or exponential Dehn function. To do
so, we describe below two “obstructions” implying exponential Dehn function;
the first being related to SOL, and the second to homology in degree 2. We
prove that if none of these obstructions is fulfilled, then the group has an at most
polynomial Dehn function, proving in a large number of cases that the Dehn
function is at most quadratic or cubic.

These results can appear as unexpected. Indeed, it was suggested by Gromov
[Gro93, 5.A9] that the only obstruction should be related to SOL. This has been
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proved in several important cases [Gro93, Dru04, LP04] but turns out to be false
in general.

Using the well-known fact that polycyclic groups are virtually cocompact lat-
tices in connected Lie groups, we deduce

Corollary B. The Dehn function of a polycyclic group is either exponential or
polynomially bounded.

The remainder of this introduction is organized as follows: in §1.2, we define
a combinatorial Dehn function for compactly presented locally compact groups,
and use it to state a version of Theorem A for algebraic p-adic groups. Then §1.3
is dedicated to our main results. The most difficult part of the main theorem
is the fact that in the absence of the two obstructions, the Dehn function is
polynomially bounded. We sketch the main ideas behind its proof in Section
1.6. In §1.4, we provide a useful characterization of these obstructions in terms
of graded Lie algebras. We also introduce a sufficient condition for the Dehn
function to be quadratic. Finally we apply these results to various concrete
examples in §1.5.

1.2. Riemannian versus Combinatorial Dehn function of Lie groups.
The previous approaches consisted in either working with groups admitting a
cocompact lattice and use combinatorial methods, or use the Riemannian def-
inition. Our method, initiated in [CT10] is largely inspired by Abel’s work on
p-adic algebraic groups [Ab87]. It consists in extending the combinatorial meth-
ods to general locally compact compactly generated groups. In particular, Lie
groups are treated as combinatorial objects, i.e. groups endowed with a compact
generating set and the corresponding Cayley graph. The object of study is the
combinatorial Dehn function, usually defined for discrete groups, which turns out
to be asymptotically equivalent to its Riemannian counterpart. The power of this
approach relies on the dynamical structure arising from the action of G on itself
by conjugation. A crucial role is played by some naturally defined subgroups that
are contracted by suitable elements. The presence of these subgroups is obviously
a non-discrete feature, which is invisible in any cocompact lattice (when such lat-
tices exist). In addition, this unifying approach allows to treat p-adic algebraic
groups and connected Lie groups on the same footing.

We now give the combinatorial definition of Dehn function (rechristening the
above definition of Dehn function as Riemannian Dehn function). Let G
be a locally compact group, generated by a compact subset S. Let FS be the
free group over the (abstract) set S and FS → G the natural epimorphism, and
K its kernel (its elements are called relations). We say that G is compactly
presented if for some `, K is generated, as a normal subgroup of FS, by the
set K` of elements with length at most ` with respect to S, or equivalently if K
is generated, as a group, by the union C(K`) of conjugates of K`; this does not
depend on the choice of S; the subset K` is called a set of relators. Assuming
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this, if x ∈ K, the area of x is by definition the number area(x) defined as its
length with respect to C(K`). Finally, the Dehn function of G is defined as

δ(n) = sup{area(x) : x ∈ K, |x| ≤ n}.

In the discrete setting (S finite), this function takes finite values, and this remains
true in the locally compact setting. If G is not compactly presented, a good
convention is to set δ(n) = +∞ for all n. The Dehn function of a compactly
presented group G depends on the choices of S and `, but its asymptotic behavior
does not.

With this definition at hand, we can now state a version of Theorem A in a
non-Archimedean setting.

Theorem C. Let G be an algebraic group over some p-adic field. Then the Dehn
function of G is at most cubic, or G is not compactly presented.

Before providing more detailed statements, let us compare Theorems A and
C. It is helpful to have in mind a certain analogy between Archimedean and
non-Archimedean groups, where exponential Dehn function corresponds to not
compactly presented. On the other hand, a striking difference between these two
theorems is the absence for p-adic groups of polynomial Dehn functions of arbi-
trary degree. The explanation of this fact can be summarized as follows. In the
connected Lie group setting, Dehn functions of “high polynomial degree” witness
to the presence of simply connected non-abelian nilpotent quotients, see Theorem
4.M.1 for a precise statement. By way of contrast, any totally disconnected, com-
pactly generated locally compact nilpotent group is compact-by-discrete and the
group of Qp-points of any p-adic algebraic nilpotent group is compact-by-abelian.

1.3. Main results. We now turn to more comprehensive statements. Let us first
introduce the two main classes of groups we will be considering in the sequel.

Definition 1.1. A real triangulable group is a Lie group isomorphic to a
closed connected group of real triangular matrices. Equivalently, it is a simply
connected solvable group in which for every g, the adjoint operator Ad(g) has
only real eigenvalues.

It can be shown that every connected Lie group G is quasi-isometric to a real
triangulable Lie group. Namely, there exists a sequence of maps

G← G1 → G2 ← G3,

where each arrow is a proper continuous homomorphism with cocompact image
and thus is a quasi-isometry, see Lemma 3.A.1.

Let A be an abelian group and consider a representation of A on a K-vector
space V , where K is a finite product of complete normed fields. Let V0 be the
largest A-equivariant quotient of V on which A acts with only eigenvalues of
modulus one.
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Definition 1.2. A locally compact group is a standard solvable group if it is
topologically isomorphic to a semidirect product U o A so that

(1) A is a compactly generated locally compact abelian group
(2) U decomposes as a finite direct product

∏
Ui, where each Ui is normalized

by the action of A and can be written as Ui = Ui(Ki), where Ui is a unipo-
tent group over some nondiscrete locally compact field of characteristic
zero Ki;

(3) (U/[U,U ])0 = {0}.

For a group G satisfying (1) and (2), condition (3) implies that G is compactly
generated, and conversely if U is totally disconnected, the failure of condition (3)
implies that G is not compactly generated. If G is a compactly generated p-adic
group as in Theorem C, then it has a Zariski closed cocompact subgroup which is
a standard solvable group (with a single i and Ki = Qp). Many real Lie groups
have a closed cocompact standard solvable group; however, for instance, a simply
connected nilpotent Lie group is not standard solvable unless it is abelian. We
now introduce a very special but important class of standard solvable groups.

Definition 1.3. A group of SOL type is group U o A, where U = K1 ×K2,
where K1, K2 are nondiscrete locally compact fields of characteristic zero, and
A ⊂ K∗1 × K∗2 is a closed subgroup of K∗1 × K∗2 containing, as a cocompact
subgroup, the cyclic group generated by some element (t1, t2) with |t1| > 1 > |t2|.
Note that this is a standard solvable group. We call it a non-Archimedean
group of SOL type if both K1 and K2 are non-Archimedean.

Example 1.4. If K1 = K2 = K and A is the set of pairs (t, t−1), then G is the
usual group SOL(K). More generally, A is the set of pairs (tk, t−`) where (k, `)
is a fixed pair of positive integers, then this provides another group, which is
unimodular if and only k = `. Another example is (R ×Qp) o Z, where Z acts
as the cyclic subgroup generated by (p, p) (note that |p|R > 1 > |p|Qp); the latter
contains the Baumslag-Solitar group Z[1/p] o Z as a cocompact lattice.

Also, define, for λ > 0, the group SOLλ as the semidirect product R2 o R
where R is identified with the subgroup {(t, tλ) : t > 0} of (R∗)2. Note that
SOL1 has index 2 in SOL(R); there are obvious isomorphisms SOLλ ' SOLλ−1 ,
and the SOLλ, for λ ≥ 1, are pairwise non-isomorphic. These are the only real
triangulable groups of SOL type.

Definition 1.5. (SOL obstruction) A locally compact group has the SOL ob-
struction (resp. non-Archimedean SOL obstruction) if it admits a homomorphism
with dense image to a group of SOL type (resp. non-Archimedean SOL type).

Let us now define the 2-homological obstruction. For this, we need to recall
a fundamental notion introduced and studied by Guivarc’h [Gui80] and later
rediscovered by Osin [Os02]. Let G be a real triangulable group. Its exponential
radical G∞ is defined as the intersection of its descending central series and



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 7

actually consists of the exponentially distorted elements in G. Let g∞ be its Lie
algebra. In the case of a standard solvable group, the role of exponential radical
is played by U itself (it can be checked to be equal to the derived subgroup of G,
so is a characteristic subgroup).

Definition 1.6. (2-homological obstruction)

• The real triangulable group G is said to satisfy the 2-homological obstruc-
tion if H2(g∞)0 6= {0}, or equivalently if the A action on H2(g∞) has no
nonzero invariant vector.
• The standard solvable group G = UoA is said to satisfy the 2-homological

obstruction if H2(u)0 6= {0}, that is to say, H2(uj)0 6= {0} for some j. If
moreover j can be chosen so that Kj is non-Archimedean, we call it the
non-Archimedean 2-homological obstruction.

In most cases, including standard solvable groups, the 2-homological obstruc-
tions can be characterized by the existence of suitable central extensions. For
instance, if a real triangulable group G has a central extension G̃, also real tri-
angulable, with nontrivial kernel Z such that Z ⊂ (G̃)∞ then it satisfies the
2-homological obstruction.

The converse is true when G admits a semidirect decomposition G∞ oN , but
nevertheless does not in general, see §7.E.

We are now able to state our main theorem, which immediately entails Theo-
rems A and C.

Theorem D. Let G be a real triangulable group, or a standard solvable group.

• if G satisfies one of the two non-Archimedean (SOL or 2-homological)
obstructions, then G is not compactly presented;
• otherwise G is compactly presented and has an at most exponential Dehn

function. Moreover, in this case
– if G satisfies one of the two (SOL or 2-homological) obstructions,

then G has an exponential Dehn function;
– if G satisfies none of the obstructions, then it has a polynomially

bounded Dehn function; in the case of a standard solvable group, the
Dehn function is at most cubic.

This result can be seen as both a generalization and a strengthening of the
following seminal result of Abels [Ab87].

Theorem (Abels). Let G be a standard solvable group over a p-adic field. Then
G is compactly presented if and only if it satisfies none of the non-Archimedean
obstructions.

Let us split Theorem D into several independent statements. The first two pro-
vide lower bounds and the last two provide upper bounds on the Dehn function.
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Theorem D.1. Let G be a standard solvable or real triangulable group. If G
satisfies the SOL (resp. non-Archimedean SOL) obstruction, then G has an at
least exponential Dehn function (resp. is not compactly presented).

We provide a unified proof of these two statements in Section 8. Note that
the non-Archimedean case is essentially contained in the “only if” (easier) part of
Abels’ theorem above, itself inspired by previous work of Bieri-Strebel, notably
[BiS78, Theorem A]. Part of the proof consists in estimating the size of loops in
the groups of SOL type, where our proof is inspired by the original case of the
real SOL, due to Thurston [ECHLPT92], which uses integration of a well-chosen
differential form. Our method in Section 8 is based on a discretization of this
argument, leading to both a simplification and a generalization of the argument.

Theorem D.2. Let G be a standard solvable or real triangulable group. If G sat-
isfies the 2-homological (resp. non-Archimedean 2-homological) obstruction, then
G has an at least exponential Dehn function (resp. is not compactly presented).

The case of standard solvable groups reduces, after a minor reduction, to a
simple and classical central extension argument, see §7.B. The case of real tri-
angulable groups is considerably more difficult; in the absence of splitting of
the exponential radical, we construct an “exponentially distorted hypercentral
extension”. This is done in Section 7.

Theorem D.3. Let G be a real triangulable group. Then G has an at most
exponential Dehn function.

Let G = U o A be a standard solvable group and U◦ the identity component
in U . If G/U◦ is compactly presented, then G is compactly presented with an at
most exponential Dehn function.

Since compact presentability is stable under taking extensions [Ab72], for an
arbitrary locally compact group G with a closed connected normal subgroup C,
it is true that G is compactly presented if and only G/C is compactly presented.
We do not know if this can be generalized to the statement that if G/C has Dehn
function 4 f(n), then G has Dehn function 4 max(f(n), exp(n)). Theorem
D.3, which follows from see Theorem 3.B.1 and Corollary 3.B.5, contains two
particular instances where the latter assertion holds. The first instance, namely
that every connected Lie group has an at most exponential Dehn function, was
asserted by Gromov, with a sketch of proof [Gro93, Corollary 3.F′5]. The method
uses an “exponentially Lipschitz” retraction and has similar consequences for
higher-dimensional isoperimetry problems.

Example 1.7. Fix n ∈ Z with |n| ≥ 2. Consider the group Gn = (R×Qn)onZ,
where Qn is the product of Qp where p ranges over distinct primes divisors of n.
Here C ' R and H ' Qn on Z, which, as a hyperbolic group (it is an HNN
ascending extension of the compact group Zn), has a linear Dehn function. So,
by Theorem D.3, Gn has an at most exponential Dehn function. Since |n| ≥ 2,
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it admits a prime factor p, so Gn admits the group of SOL type (R×Qp) on Z
as a quotient, and therefore Gn satisfies the SOL obstruction and thus has an
at least exponential Dehn function by Theorem D.1. We conclude that Gn has
an exponential Dehn function. This provides a new proof that its lattice, the
Baumslag-Solitar group

BS(1, n) = 〈t, x | txt−1 = xn〉,
has an exponential Dehn function. This is actually true for arbitrary Baumslag-
Solitar groups BS(m,n), |m| 6= |n|, for which the exponential upper bound was
first established in [ECHLPT92, Theorem 7.3.4 and Example 7.4.1] and indepen-
dently in [BGSS92], and the exponential lower bound, attributed to Thurston,
was obtained in [ECHLPT92, Example 7.4.1].

Let us provide a useful corollary of Theorems D.1 and D.3.

Corollary D.3.a. Let G = U o A be a standard solvable group in which A has
rank 1 (i.e., has a closed infinite cyclic cocompact subgroup). Then exactly one
of the following occurs

• G satisfies the non-Archimedean SOL obstruction and thus is not com-
pactly presented;
• G satisfies the SOL obstruction but not the non-Archimedean one; it is

compactly presented with an exponential Dehn function;
• G does not satisfy the SOL obstruction; it has a linear Dehn function and

is Gromov-hyperbolic.

It is indeed an observation that if A has rank 1 and G does not satisfy the SOL
obstruction, then some element of A acts on G as a “compacting automorphism”
and it follows from [CCMT12] that G is Gromov-hyperbolic, or equivalently has
a linear Dehn function. In this special case, the 2-homological obstruction, which
may hold or not hold, implies the SOL obstruction and is accordingly unnecessary
to consider; see also Theorem F.

Turning back to Theorem D, the fourth and most involved of all the steps is
the following.

Theorem D.4. Let G be a standard solvable (resp. real triangulable) group not
satisfying neither the SOL nor the 2-homological obstructions. Then G has an at
most cubic (resp. at most polynomial) Dehn function.

The proof of Theorem D.4 for standard solvable groups is done in Section
4, relying on algebraic preliminaries, occupying Sections 5 and 6. We actually
obtain, with relatively little additional work, a similar statement for “generalized
standard solvable groups”, where A is replaced by some nilpotent compactly
generated group N (see Theorem 4.M.1). The case of real triangulable groups
requires an additional step, namely a reduction to the case where the exponential
radical is split, in which case the group is generalized standard solvable. This
reduction is performed in §3.C, and relies on results from [C11].
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Finally let us mention that Theorem D.4 for standard solvable groups follows
from the more precise Theorem 4.L.1, which provides, in many cases, a quadratic
Dehn function.

1.4. The obstructions as “computable” invariants of the Lie algebra.
The obstructions were introduced above in a convenient way for expository rea-
sons, but the natural framework to deal with them uses the language of graded
Lie algebras, which we now describe.

Let G be either a standard solvable group U o A or a real triangulable group
with exponential radical also denoted, for convenience, by U . Let u be the Lie
algebra of U ; it is a Lie algebra (over a finite product of nondiscrete locally
compact fields of characteristic zero). It is, in a natural way, a graded Lie algebra.
In both cases, the grading takes values into a finite-dimensional real vector space,
namely Hom(G/U,R). It is introduced in §4.B.2, based on Proposition 2.E.2
(see §1.5 for a representative particular case.) In this setting, there are useful
restatements (see Propositions 2.E.11 and 2.F.7) of the obstructions. We say that
α is a weight of G (or of U , when u is endowed with the grading) if uα 6= 0 and
is a principal weight of G is α is a weight of U/[U,U ]. The definitions imply
that 0 is not a principal weight (although it can be a weight). We say that two
nonzero weights α, β are quasi-opposite if 0 ∈ [α, β], i.e., β = −tα for some t > 0.
We write U = Ua×Una as the product of its Archimedean and non-Archimedean
parts. Then we have the following restatements:

• G satisfies the SOL obstruction⇔ U admits two quasi-opposite principal
weights (Propositions 2.E.11 and 2.F.7);
• G satisfies the non-Archimedean SOL obstruction ⇔ Una admits two

quasi-opposite principal weights (Proposition 2.E.11 applied to G/G0);
• G satisfies the 2-homological obstruction ⇔ H2(u)0 6= {0};
• G satisfies the non-Archimedean 2-homological obstruction⇔ H2(una)0 6=
{0}.

Here, H2(u) denotes the homology of the Lie algebra u; the grading on u in
the real vector space Hom(G/U,R) canonically induces a grading of H2(u) in the
same space (see §5.A), and H2(u)0 is its component in degree zero.

Another important module associated to u is Kill(u), the quotient of the second
symmetric power u } u by the submodule generated by elements of the form
[x, y]} z− x} [y, z] (thus, in case of a single field, the invariant quadratic forms
on u are elements in the dual of Kill(u)).

Theorem E. Let G = UoA be a standard solvable group not satisfying any of the
SOL or 2-homological Dehn function. Suppose in addition that Kill(u)0 = {0}.
Then G has an at most quadratic Dehn function (thus exactly quadratic if A has
dimension at least two).

Theorem E is proved along with Theorem D.4 and involves the same difficulty,
except the study of welding relations. The condition Kill(u)0 6= {0} corresponds
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to the existence of certain central extensions of G as a discrete group. Using
asymptotic cones, it will be shown in a subsequent paper that it implies, in many
cases, that the Dehn function grows strictly faster than a quadratic function.

1.5. Examples. Let us give a few examples. All are standard solvable connected
Lie groups G = U o A so that the action of A on the Lie algebra u of U is
R-diagonalizable). In this context, we call Hom(A,R) the weight space. The
grading of the Lie algebra u in Hom(A,R) is given by

uα = {u ∈ u | ∀v ∈ A, v−1uv = eα(v)u}.

When we write the set of weights, we use boldface for the set of principal
weights. We underline the zero weight (or just denote � to mark zero if zero is
not a weight).

1.5.1. Groups of SOL type. For a group of SOL type, the weight space is a line
and the weights lie on both sides apart zero

1 � 2

By definition it satisfies the SOL obstruction. On the other hand, it satisfies the
2-homological obstruction only in a few special cases. For instance, (R×Qp)opZ
does not satisfy the 2-homological obstruction, and the real group SOLα satisfies
the 2-homological obstruction only for α = 1.

1.5.2. Gromov’s higher SOL groups. For the group R3oR2 where R2 acts on R3

as the group of diagonal matrices with positive diagonal entries and determinant
one (often called higher-dimensional SOL group, but not of SOL type nor even
satisfying the SOL obstruction according to our conventions), the weight space
is a plane in which the weights form a triangle whose center of gravity is zero

2

�
1 3

Since there are no opposite weights, we have (u⊗u)0 = 0 and therefore H2(u)0

and Kill(u)0 (which are subquotients of (u⊗u)0) are also zero. It was stated with a
sketch of proof by Gromov that this group has a quadratic Dehn function [Gro93,
5.A9]. Drutu obtained in [Dru98, Corollary 4.18] that it has a Dehn function
� n3+ε, and then obtained a quadratic upper bound in [Dru04, Theorem 1.1],
a result also obtained by Leuzinger and Pittet in [LP04]. The quadratic upper
bound can also be viewed as an illustration of Theorem F. (The assumption that
0 is the center of gravity is unessential: the important fact is that 0 belongs to
the convex hull of the three weights but does not lie in the segment joining any
two weights.)
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1.5.3. Abels’ first group. The group G = A4(K) consists of matrices of the form
1 u12 u13 u14

0 s2 u23 u24

0 0 s3 u34

0 0 0 1

 ; si ∈ K×, uij ∈ K.

Its weight configuration is given by

23
13 24

14
12 34

This example is interesting because it does not satisfy the SOL obstruction but
admits opposite weights. A computation shows that H2(u)0 = 0 and Kill(u)0 = 0
(see Abels [Ab87, Example 5.7.1]).

If Ḡ = Ū o A is the quotient of G by its one-dimensional center, then G
does not satisfy the SOL obstruction but satisfies H2(ū)0 6= 0, i.e. satisfies the
2-homological obstruction.

This example was studied specifically by the authors in the paper [CT12],
where it is proved that it has a quadratic Dehn function, which also follows from
Theorem E.

1.5.4. Abels’ second group. This group was introduced in [Ab87, Example 5.7.4].
Consider the group U o A, where A ' R2 and U is the group corresponding to
the quotient of the free 3-nilpotent Lie algebra generated by the 3-dimensional
K-vector space of basis (X1, X2, X3) by the ideal generated by [Xi, [Xi, Yj]] for
all i, j ∈ {1, 2, 3}. Its weight structure is as follows

2
12 23

∗∗
1 3

31

(The sign ∗∗ indicates that the degree 0 subspace u0 is 2-dimensional.) A com-
putation (see Remark 5.D.3) shows that H2(u)0 = 0 and Kill(u)0 is 1-dimensional.

This example was introduced by Abels as typically difficult because although
H2(u)0 vanishes, U is not the multiamalgam of its tame subgroups (as we show
here, this is reflected in the fact that Kill(u)0 is nonzero). This results in a
significant additional difficulty in order to estimate the Dehn function, which is
at most cubic by Theorem D.4.

1.5.5. Semidirect products with SL3. Here we consider the groups V (K)oSL3(K),
where V are the following three irreducible modules: V = V10, the standard 3-
dimensional module; V20 = Sym2(V10), the 6-dimensional second power of V10 and
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V11, the 8-dimensional adjoint representation. (The notation is borrowed from
[FuH, Lecture 13], writing Vij instead of Γij.) These groups are not solvable but
have a cocompact K-triangulable subgroup, namely V (K)oT3(K), where T3(K)
is the group of lower triangular matrices. It is a simple verification that for an
arbitrary nontrivial irreducible representation, the group V (K) o T3(K) admits
exactly three principal weights, namely the two principal negative roots r21, r32

of SL3 itself, and the highest weight of the representation Vab, which is of the
form aL1 − bL3, where

−L3

L2 L1

r21 �
−L1 −L2

L3

r31 r32

The three principal weights always form a triangle with zero contained in its
interior. In particular, V (K) o T3(K) does not satisfy the SOL obstruction. Let
us write the weight diagram for each of the three examples (we mark some other
points in the weight lattice as · for the sake of readability).

More specifically, for V10, the weights configuration looks like

L2 L1

r21 �
. .

. L3

r31 r32

We see that there are no quasi-opposite weights at all. This is accordingly a case
for which Theorem F below applies directly. Thus K3 o SL3(K) has a quadratic
Dehn function (it can be checked to also hold for Kd o SLd(K) for d ≥ 3).

For V20, the weights are as follows

2L2 . 2L1

. .
r21 � .

. .
. . .

r31 r32
. 2L3 .

Thus there are quasi-opposite weights but no opposite weights. Theorem 4.L.1
implies that V20(K) o SL3(K) has a quadratic Dehn function.

For V11, writing Lij = Li − Lj, the weights are as follows
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L23 L13

. . .
. .

r21, L21 ∗∗ L12

. .
. . .

r31, L31 r32, L32

In this case, there are opposite weights, there is an invariant quadratic form in
degree zero (akin to the Killing form), defined by φ(rji, Lij) = 1 for all i < j and
all other products being zero, so Kill(u)0 6= 0. However, a simple computation
shows that H2(u)0 = 0. So Theorem D.4 implies that sl3(K)o SL3(K) has an at
most cubic Dehn function.

1.6. Comparison to previous results and outline of the proof. Here we
discuss the most substantial part of Theorem D, namely the polynomial upper
bound on the Dehn function (Theorem D.4). An essential and now classical
feature we use is Gromov’s trick. Let X be a simply connected geodesic space,
and let F be a family of quasi-geodesic paths joining all pairs of points in X. To
show a (superlinear) upper bound on the Dehn function, Gromov’s observation
is that it is enough to consider special loops obtained by concatenating a large
but a priori bounded number of paths in F .

In our (combinatorial) setting, we can summarize Gromov’s trick by saying
that in order to prove upper bounds on the Dehn function of a standard solvable
group G = U oA, it is enough to estimate, for some fixed c, the area of words of
the form

c∏
i=1

gisig
−1
i ,

where si are bounded elements of U and gi are words inside A. In [CT10] we use
it for metabelian groups. The following result generalizes [Gro93, 5.A9], [Dru04,
Theorem 1.1 (2)], [LP04] and [CT10].

Theorem F. Let G = U o A be a standard solvable group. Suppose that every
closed subgroup of G containing A (thus of the form V o A with V a closed A-
invariant subgroup of U) does not satisfy the SOL obstruction. Then G has an
at most quadratic Dehn function.

The main result of [CT10] is essentially the case when U is abelian (but on the
other hand works in arbitrary characteristic). Theorem F is a particular instance
of the much more general Theorem E, but is considerably easier: the material is
the length estimates of the beginning of Section 4 and Gromov’s trick. A direct
proof of Theorem F is given in §4.D.
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In [Gro93, 5.B′4], quoth Gromov, “We conclude our discussion on lower and
upper bounds for filling area by a somewhat pessimistic note. The present meth-
ods lead to satisfactory results only in a few special cases even in the friendly
geometric surroundings of solvable and nilpotent groups.”

Indeed, for standard solvable groups without the SOL obstruction, it seems
that Theorem F is the best result that can be gotten without bringing forward
new ideas. The first example of a standard solvable group without the SOL
obstruction but not covered by Theorem F is Abels’s group A4(K) (see the pre-
vious subsection). In this particular example, the authors obtain a quadratic
upper bound for the Dehn function in [CT12]. In this case, the group is tractable
enough to work with explicit matrices, but such a pedestrian approach becomes
hopelessly intricate in an arbitrary group as in Theorem D.4.

Let us now describe the main ideas that underly the proof of Theorem D.4.
General picture: the multiamalgam. A central idea is to use non-positively
curved subgroups (called tame subgroups in the sequel). This vaguely stated, it
is also essential in Gromov’s approach. It was previously used in Abels’ work
on compact presentability of p-adic groups [Ab87]. Abels considers a certain
abstract group, obtained by amalgamating the tame subgroups over their inter-
sections. Our combinatorial approach of the Dehn function allows us to take
advantage of the consideration of this “multiamalgam” Ĝ. One similarly defines
a multiamalgam of the tame Lie algebras, denoted by ĝ.
The strategy. To simplify the discussion, let us assume that G is standard
solvable over a single nondiscrete locally compact field of characteristic zero K.
Roughly speaking, the strategy is as follows. First, one would like to prove that
when none of the obstructions are fulfilled, we have Ĝ = G (unfortunately, this is
not exactly true as we will see below). Second, we need to be able to decompose
any combinatorial loop into boundedly many loops corresponding to relations in
the tame subgroups. It turns out that both steps are quite challenging. While
Abels’ work provides substantial material to tackle the first step, we had to
introduce completely new ideas to solve the second one.
The first step: giving a compact presentation for G. Under the assumption
that the group G does not satisfy the SOL obstruction, it follows from a theorem
of Abels that the multiamalgam is a central extension of G. More precisely, in
the standard solvable case, we have Ĝ = Û o A, where Û is a central extension
in degree 0 of U . At first sight, it seems that the condition H2(u)0 = 0 should be

enough to ensure that Ĝ = G. However, it turns out that in general, Û is a “wild”
central extension, in the sense that it does not carry any locally compact topology
such that the projection onto U is continuous. This strange phenomenon is easier
to describe at the level of the Lie algebras. There, we have that ĝ = ûo a, where
û is a central extension in degree 0 of u, seen as Lie algebras over Q. Now, if
in the last statement, we could replace Lie algebras over Q by Lie algebras over
K, then clearly H2(u)0 = 0 would imply that û = u. In Section 5, we prove
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that this happens if and only if the natural morphism HQ
2 (u)0 → H2(u)0 is an

isomorphism, if and only if the module Kill(u)0 (see Subsection 1.4) vanishes. In
fact, there are relatively simple examples, already pointed out by Abels where
Kill(u)0 does not vanish (see the previous subsection). As a consequence, even
when none of the obstructions hold, we need to complete the presentation of
G with a family of so-called welding relations. At the Lie algebra level, these
relations encodes K-bilinearity of the Lie bracket.
The second step: reduction to special relations. The second main step
is to reduce the estimation of area of arbitrary relations to that of relations of
a special form (e.g., relations inside a tame subgroup). This idea amounts to
Gromov and is instrumental in Young’s approach for nilpotent groups [Y06] and
for SLd≥5(Z) [Y13]; it is also used in [CT10, CT12]. The main difference in this
paper is that we have to perform such an approach without going into explicit
calculations (which would be extremely complicated for an arbitrary standard
solvable group, since the unipotent group U is essentially arbitrary). Our trick to
avoid calculations is to use a presentation of U that is stable under “extensions of
scalars”. Let us be more explicit, and write U = U(K), so that U(A) makes sense
for any commutative K-algebra A. We actually provide a presentation, based on
Abels’ multiamalgam and welding relations, of U(A) for any K-algebra A. When
applying it to a suitable algebra A of functions of at most polynomial growth, we
obtain area estimates. This is the core of our argument; it is performed in §4.I
(in a particular but representative case) and in §4.K. The presentation itself is
established in Sections 5 and 6.
Last step: computation of the area of special relations. For a standard
solvable group not satisfying the SOL and 2-homological obstructions, these re-
lations are of two types: those that are contained (as loops) in a tame subgroup
and thus have an at most quadratic area; and the more mysterious welding re-
lations. We show that welding relations have an at most cubic area. When the
welding relations are superfluous, namely when Kill(u)0 vanishes, Theorem 4.L.1
asserts that G then has an at most quadratic Dehn function. A study based on
the asymptotic cone, in a paper in preparation by the authors, will show that
conversely, in some cases where Kill(u)0 does not vanish, the Dehn function of G
grows strictly faster than quadratic. We mention this to enhance the important
role played by the welding relations in the geometry of these groups. We suspect
that they might be relevant as well in the study of the Dehn function of nilpotent
Lie groups.

1.7. Introduction to the Lie algebra chapters. Although Sections 5 and 6
can be viewed as technical sections when primarily interested in the results about
Dehn functions, they should also be considered as self-contained contributions to
the theory of graded Lie algebras. Recall that graded Lie algebras form a very rich
theory of its own interest, see for instance [Fu, Kac]. Let us therefore introduce
these chapters independently. In this context, the Lie algebras are over a given
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commutative ring A, with no finiteness assumption. This generality is essential
in our applications, since we have to consider (finite-dimensional) Lie algebras
over an infinite product of fields. We actually consider Lie algebras graded in a
given abelian group W , written additively.

1.7.1. Universal central extensions. Recall that a Lie algebra is perfect if g =
[g, g]. It is classical that every perfect Lie algebra admits a universal central
extension. We provide a graded version of this fact. Say that a graded Lie algebra
is relatively perfect in degree zero if g0 ⊂ [g, g] (in other words, H1(g)0 = {0}).
In §5.B, to any graded Lie algebra g, we canonically associate another graded
Lie algebra g̃ along with a graded Lie algebra homomorphism τ : g̃ → g, which
has a central kernel, naturally isomorphic to the 0-component of the 2-homology
module H2(g)0.

Theorem G. (Theorem 5.B.4) Let g be a graded Lie algebra. If g is relatively

perfect in degree zero, then the morphism g̃
τ→ g is a graded central extension

with kernel in degree zero, and is universal among such central extensions.

An important feature of this result is that it applies to graded Lie algebras
that are far from perfect: indeed, in our case, the Lie algebras are even nilpotent.

1.7.2. Restriction of scalars. In §5.C, we study the behavior of H2(g)0 under
restriction of scalars. We therefore consider a homomorphism A → B of com-
mutative rings. If g is a Lie algebra over B, then it is also a Lie algebra over A
and therefore to avoid ambiguity we denote its 2-homology by HA

2 (g) and HB
2 (g)

according to the choice of the ground ring. There is a canonical surjective A-
module homomorphism HA

2 (g)→ HB
2 (g); we call its kernel the welding module

and denote it by WA,B
2 (g). It is a graded A-module, and WA,B

2 (g)0 is also the
kernel of the induced map HA

2 (g)0 → HB
2 (g)0.

These considerations led us to introduce the Killing module. Let g be a Lie
algebra over the commutative ring B. Consider the homomorphism T from g⊗3

to the symmetric square g} g, defined by

T (u⊗ v ⊗ w) = u} [v, w]− [u,w]} v

(all tensor products are over B here). The Killing module is by definition the
cokernel of T . The terminology is motivated by the observation that for every B-
module m, HomB(KillB(g),m) is in natural bijection with the module of invariant
B-bilinear forms g× g→ m. If g is graded, then Kill(g) is canonically graded as
well.

Theorem H. Let Q ⊂ K be fields of characteristic zero, such that K has infinite
transcendence degree over Q. Let g be a finite-dimensional graded Lie algebra
over K, relatively perfect in degree zero (i.e., H1(g)0 = {0}). Then the following
are equivalent:

(i) WQ,K
2 (g)0 = {0};
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(ii) WQ,R
2 (g⊗K R)0 = {0} for every commutative K-algebra R;

(iii) KillK(g)0 = {0}.
In particular, assuming moreover that H2(g)0 = {0}, these are also equivalent

to:

(iv) HQ
2 (g)0 = {0};

(v) HQ
2 (g⊗K R)0 = {0} for every commutative K-algebra R.

The interest of such a result is that (iii) appears as a checkable criterion for the
vanishing of complicated and typically infinite-dimensional object (the welding
module). Let us point out that this result follows, in case g is defined over Q,
from the results of Neeb and Wagemann [NW08]. In our application to Dehn
functions (specifically, in the proof of Theorem 4.L.1), we make an essential use
of the implication (iii)⇒(v), where Q = Q, K is a nondiscrete locally compact
field, and R is a certain algebra of functions on K. That (iii) implies the other
properties actually does not rely on the specific hypotheses (restriction to fields,
finite dimension), see Corollary 5.C.8. The converse, namely that the negation of
(iii) implies the negation of the other properties, follows from Theorem 5.C.13.

1.7.3. Abels’ multiamalgam. Section 6 is devoted to the study of Abels’s mul-
tiamalgam ĝ and to its connexion with the universal central extension g̃ → g.
Here, we again consider arbitrary Lie algebras over a commutative ring R, but
we now assume that the abelian group W is a real vector space. Given a graded
Lie algebra, a Lie subalgebra is called tame if 0 does not belong to the convex
hull of its weights. Abels’ multiamalgam ĝ is the (graded) Lie algebra obtained
by amalgamating all tame subalgebras of g along their intersections (see 6.C for
details); it comes with a natural graded Lie algebra homomorphism ĝ→ g. Abels
defines a 2-tame nilpotent graded Lie algebra to be such that 0 does not belong
to the convex hull of any pair of principal weights (this condition is related to the
condition that the SOL-obstruction is not satisfied). A more general notion of
2-tameness, for arbitrary W-graded Lie algebras, is introduced in 6.A. Although
Abels works in a specific framework (p-adic fields, finite-dimensional nilpotent
Lie algebras), his methods imply with minor changes the following result.

Theorem (essentially due to Abels, see Theorem 6.C.2). If g is 2-tame, then ĝ→
g is the universal central extension in degree 0. In other words, ĝ is canonically
isomorphic to g̃.

This means that in this case, ĝ is an excellent approximation of g, the discrep-
ancy being encoded by the central kernel H2(g)0.

We actually need the translation of this result in the group-theoretic setting,
which involves significant difficulties. Assume now that the ground ring R is
a commutative algebra over the field Q of rationals. Recall that the Baker-
Campbell-Hausdorff formula defines an equivalence of categories between nilpo-
tent Lie algebras over Q and uniquely divisible nilpotent groups. Then g is the
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Lie algebra of a certain uniquely divisible nilpotent group G, and we can define
the multiamalgam Ĝ of its tame subgroups, i.e. those subgroups corresponding to
tame subalgebras of g. Note that it does not follow from abstract nonsense that
Ĝ is controlled in any way by g, because Ĝ is defined in the category of groups
and not of uniquely divisible nilpotent groups. In a technical tour de force, Abels
[Ab87, §4.4] managed to prove that Ĝ is nilpotent and asked whether the exten-

sion Ĝ → G is central. The following theorem, which we need for our estimates
of Dehn function, answers the latter question positively.

Theorem I (Theorem 6.D.2). Let g be a 2-tame nilpotent graded Lie algebra

over a commutative Q-algebra R. If g is 2-tame, then Ĝ is nilpotent and uniquely
divisible, and Ĝ→ G corresponds to ĝ→ g under the equivalence of categories. In
particular, the kernel of Ĝ→ G is central and canonically isomorphic to HQ

2 (g)0.

1.8. Guidelines. The sections can be read independently, at the following ex-
ceptions

• The preliminary Section 2 is used at many places. More specifically, §2.A
and §2.B are used throughout the paper (except in the algebraic Sections
5 and 4.E); the grading in a standard solvable group (§2.E) is used in §4
and the Cartan grading (§2.F) is used in §7.
• In Section 6, we use at many times notation introduced in Section 5.

Also, here are the logical connections between the sections:

• All sections possibly refer to Section 2;
• Section 4 makes use of the results of Section 6, which itself makes use of

the results of Section 5. However, it is possible to read Section 4 taking
for granted the results of the algebraic Sections 5, 6, so we chose to leave
it before.
• More locally: in §7.D and §7.E, the proofs make use of facts established

in 5.A and 5.B.

1.9. Acknowledgements. We are grateful to Christophe Pittet for several fruit-
ful discussions. We thank Cornelia Drutu for discussions and pointing out useful
references. We thank Pierre de la Harpe for many useful corrections.

2. Preliminaries

2.A. Asymptotic comparison.

Definition 2.A.1. If f, g are real functions defined on any set where ∞ makes
sense (e.g., for a locally compact space, it corresponds to the filter of subsets with
relatively compact complement), we say that f is asymptotically bounded by
g and write f � g if there exists a constant C ≥ 1 such that for all x close enough
to ∞ we have

f(x) ≤ Cg(x) + C;
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if f � g � f we write f ' g and say that f and g have the same asymptotic
behavior, or the same '-asymptotic behavior.

Definition 2.A.2. If f, g are non-decreasing non-negative real functions defined
on R+ or N, we say that f is bi-asymptotically bounded by g and write f 4 g if
there exists a constant C ≥ 1 such that for all x

f(x) ≤ Cg(Cx) + C;

if f 4 g 4 f we write f ≈ g, and say that f and g have the same bi-asymptotic
behavior, or the same ≈-asymptotic behavior.

Besides the setting, the essential difference between '-asymptotic and ≈-
asymptotic behavior is the constant at the level of the source set. For instance,
2n ≈ 3n but 2n '/ 3n.

2.B. Definition of Dehn function. If G is a group and S any subset, we denote
by | · |S the (possibly infinite) word length in G with respect to S; it takes finite
values on the subgroup generated by S.

If H is a group and R ⊂ H, we define the area of an element w ∈ H as the
(possibly infinite) word length of w with respect to the union

⋃
h∈H hRh

−1; we
denote it by areaR(w). It takes finite values on the normal subgroup generated
by R.

Now let S be an abstract set and FS the free group over S, and π : FS → G
a surjective homomorphism, whose kernel K is generated by some subset R as a
normal subgroup. (The elements of K are called null-homotopic words.) We
define the Dehn function

δS,π,R(n) = max(bn/2c, sup{areaR(w) : w ∈ K, |w|S ≤ n}).

(The term n/2 is not serious, and only avoids some pathologies. Intuitively, it
corresponds to the idea that the area of a word sns−n should be at least n.) We
think of this as the Dehn function of G, but in this general setting, this function
as well as its asymptotic behavior can depend on the choice of S, π and R. It
can also take infinite values.

Let now G be a compactly generated LC-group (LC-group means locally com-
pact group), and S a compact generating subset. View S as an abstract set and
consider the surjective homomorphism FS → G which is the identity on S, and
K its kernel. Let R(d) be the intersection of K with the d-ball in (FS, | · |S). We
say that G is compactly presented if for some d, the subset R(d) generates K
as a normal subgroup. This does not depend on the choice of S (but the value
of d can depend). If so, the function δS,R (we omit π in the notation since it
is determined by S) takes finite values, and its ≈-asymptotic behavior does not
depend on the choice of S and R. It is then called the Dehn function of G.
If G is not compactly presented, we say by convention that the Dehn function
is infinite. For instance, when we say that a compactly generated LC-group G
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has a Dehn function < f(n), we allow the possibility that G is not compactly
presented, i.e. its Dehn function is (eventually) infinite.

The ≈-behavior of the Dehn function is a quasi-isometry invariant of the com-
pactly generated locally compact group. This stems from the more general fact
that for arbitrary graphs, the property that the graph can be made simply con-
nected by adding 2-cells of with a bounded number of edges, is a quasi-isometry
invariant. The argument is the same as the usual one showing that the Dehn
function is a quasi-isometry invariant among finitely generated groups, see [Al91]
or [BaMS93, Theorem 26].

2.C. Dehn vs Riemannian Dehn. If X is a Riemannian manifold, define its
filling function F (r) as the supremum of areas of all piecewise smooth disc fillings
of Lipschitz loops of length ≤ r.

Proposition 2.C.1. Let G be a locally compact group with a proper cocompact
isometric action on a simply connected Riemannian manifold X. Then G is
compactly presented and the Dehn function of G satisfies

δ(n) ≈ max(F (n), n).

(The max(·, n) is essentially technical: unless X has dimension ≤ 1 or is com-
pact, it can be shown that F (r) grows at least linearly.)

The proof is given, for G discrete, by Bridson [Bri02, Section 5]. Here we
only repeat the proof of the easier inequality F (n) � δ(n), because the proof in
[Bri02] makes a serious use of the assumption that G is finitely presented. For
the converse inequality δ(n) � max(F (n), n), the (highly technical) proof given
in [Bri02] uses general arguments of filling in Riemannian manifold and a general
cellulation lemma, and the remainder of the proof carries over our more general
context.

Lemma 2.C.2. Let X be a simply connected Riemannian manifold with a cocom-
pact isometric action of a group G. Then Riemannian area of loops of bounded
length is bounded.

Proof. By cocompactness, there exists r0 such that for every x ∈ X, the expo-
nential is (1/2, 1)-bilipschitz from the r0-ball in TxX to X. In particular, given
a loop of length ≤ r0, it passes through some point x; its inverse image by the
exponential at x has length ≤ 2r0 and can be filled by a disc of area ≤ πr2

0 in
TxX, and its image by the exponential is a filling of area ≤ πr2

0 in X.
Now fix a positive integer m0 and ε = 1/m0 with 6ε ≤ r0. Consider a compact

subset Ω such that GΩ = X. Consider a finite set F such that every point in Ω
is ε-close to a point in X, so every point in X is ε-close to a point in Dε = GF .
For all x, y ∈ Dε with d(x, y) ≤ 3ε, fix a geodesic path S(x, y) from x to y. We
can suppose that there are only finitely many such segments up to G-translation.

Consider a 1-Lipschitz loop f : [0, k] → X. Fix ε > 0 with 1/ε ∈ Z. If
0 ≤ n ≤ kε−1. Let xn be a point in Dε that is ε-close to f(nε). Fix geodesic
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paths joining xn and f(nε). So there is a homotopy from f to the concatenation
of the S(f(nε), f((n+1)ε)) by kε−1 squares of perimeter at most 6ε ≤ r0. By the
above, each of these km0 squares can be filled with area ≤ πr2

0. The remaining
loop is a concatenation of k segments of the form S(x, y) with d(x, y) ≤ 3/m0.
For given k, there are only finitely many such loops up to translation. Since X is
simply connected, each of these loops has finite area. So the remaining loop has
area ≤ ak for some ak < ∞. So we found a filling of the original loop of length
≤ ak + km0πr

2
0. �

Partial proof of Proposition 2.C.1. Fix a compact symmetric generating set S
in G and by R a set of relators. Fix x0 ∈ X. Set r = sups∈S d(x0, sx0). If
s ∈ S, fix a r-Lipschitz map js : [0, 1] → X mapping 0 to x0 and 1 to sx0. If
w = s1 . . . sk, define jw : [0, k] → X as follows: if 0 ≤ ` ≤ k − 1 and 0 ≤ t ≤ 1,
jw(`+t) = s1 . . . s`js`+1

(t). It is doubly defined for an integer, but both definitions
coincide. So jw is r-Lipschitz. If w represents 1 in G, then jw(0) = jw(k).

If w is a word in the letters in S and represents the identity, let A(w) be the
area of the loop jw.

By Lemma 2.C.2, A(w) is bounded when w is bounded. Also, it is clear that
A(gwg−1) = A(w) for all group words g. This shows that there exists a constant
C > 0, namely C = supr∈RA(r), such that A(w) ≤ Carea(w) for some constant
C.

For some r0, every point in X is at distance ≤ r0 of a point in Gx0. Consider
a loop of length k in X, given by a 1-Lipschitz function u : [0, k] → X. For
every n (modulo k), let gnx0 be a point in Gx0 with d(gnx0, u(n)) ≤ r0. We have
d(gnx0, gn+1x0) ≤ 2r0 + 1. By properness, there exists N (depending only on r0)
such that g−1

n gn+1 ∈ SN . If σn is a word of length N representing g−1
n gn+1, and

σ = σ0 . . . σk−1, then we pass from u to jσ by a homotopy consisting of k squares
of perimeter ≤ 4r0 +2. By Lemma 2.C.2, there is a bound M0 on the Riemannian
area of such squares. So the Riemannian area of u is bounded by kM0 +A(jσ) ≤
kM0 + Carea(σ) ≤ kM0 + δS,R(Nk). This shows that δr(k) ≤ kM0 + δS,R(Nk).

For the (more involved) converse inequality, we only give the following sketch:
let ρ > 0 be such that each point in X is at distance < ρ/8 to Gx0, and assume in
addition that ρ > ρκ = π

2
√
κ
, where κ is an upper bound on the sectional curvature

of X. Let S be the set of elements in G such that d(gx0, x0) ≤ ρ and R the set
of words in FS, of length at most 12 and representing 1 in G. Then the proof in
[Bri02, §5.2] shows that 〈S | R〉 is a presentation of G with Dehn function δ(n)
bounded above by 4λκ(F (ρn) + ρn+ 1), where λκ = 1/min(4

√
κ/π, α(r, κ)) and

α(r, κ) is the area of a disc of radius κ is the standard plane or sphere of constant
curvature κ. �

2.D. Combinatorial lemmas on the Dehn function. This subsection con-
tains several general lemmas about the Dehn function, which will be used at some
precise parts of the paper. The reader can refer to them when necessary.
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2.D.1. Free products.

Lemma 2.D.1. Let f be a superadditive function. If (Gi) is a finite family of
(abstract) groups, each with a presentation 〈Si | Ri〉, with Dehn function ≤ f
(e.g., f(n) = Cnα for C > 0, α ≥ 1). Then the free product H of the Gi has
Dehn function δ ≤ f with respect to the presentation 〈

⊔
Si |

⊔
Ri〉.

Proof. Let w = s1 . . . sn be a null-homotopic word with n ≥ 1. Because H is a
free product, there exists i and 1 ≤ j ≤ j+k−1 ≤ n such that every letter s` for
j ≤ ` ≤ j + k− 1 is in Si and sj . . . sj+k−1 represents the identity in Gi. So, with
the corresponding cost, which is ≤ f(k), we can simplify w to the null-homotopic
word s1 . . . sj−1sk . . . sn. Thus δ(n) ≤ f(k) + δ(n − k) (with 1 ≤ k ≤ n). Using
the property that f is superadditive, we can thus prove by induction on n that
δ(n) ≤ f(n) for all n. (This argument is used in [GS99] for finitely generated
groups.) �

2.D.2. Conjugating elements.

Lemma 2.D.2. Let 〈S | R〉 be a group presentation, and r a bound on the length
of the words in R. There exists C such that for every null-homotopic w ∈ FS, with
length n and area α, we can write, in FS, w =

∏α
i=1 girig

−1
i with ri ∈ R±1 ∪ {1}

and gi ∈ FS, with the additional condition |gi|S ≤ n+ rα.

Proof. We start with the following claim: consider a connected polygonal planar
complex, with n vertices on the boundary (including multiplicities); suppose that
the number of polygons of at most r edges is α. Fix a base-vertex. Then the
distance in the one-skeleton of the base-vertex to any other vertex is ≤ n + rα.
Indeed, pick an injective path: it meets at most n boundary vertices. Other
vertices belong to some face, but each face can be met at most r times. So the
claim is proved.

Now a van Kampen diagram for a null-homotopic word of size n and area
α with relators of length ≤ r satisfies these assumptions, the distance from the
identity to some vertex corresponds to the length to the conjugating element that
comes into play. Thus the gi can be chosen with |gi|S ≤ n+ rα. �

2.D.3. Gromov’s trick.

Definition 2.D.3. Let FS be the free group over an abstract set S, let G be
an arbitrary group, and let π : FS → G be a surjective homomorphism. We call
(linear) combing of (G, π) (or, informally, of G if π is implicit), a subset F ⊂ FS
such that 1 ∈ F and for some integer k ≥ 1 and some constant C > 0, we have
the property that for every g ∈ G, there exist w1, . . . , wk in F with |wi|S ≤ C|x|
and π(w1, . . . wk) = g. If we need specify k, we call it a k-combing.

Remark 2.D.4. We assume neither that π|F is surjective, nor injective.
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Example 2.D.5. Let T be any generating subset of a finitely generated abelian
group A. Suppose that {t1, . . . , t`} ⊂ T is also a generating subset. Then the set

of words {
∏`

j=1 t
mj

j } where (mj) ranges over Z`, is a 1-combing of FT → A. If
every element of T is equal or inverse to some ti, the incurring constant C can
be taken equal to 1.

The following is established in [CT10, Proposition 4.3]1.

Theorem 2.D.6 (Gromov’s trick). Let S be an abstract set S, let G be an
arbitrary group, and let π : FS → G be a surjective homomorphism. Let R ⊂ FS
be a subset contained in Ker(π). Consider a k-combing F ⊂ FS.

Fix c ≥ 3k. Assume that the area with respect to R of any w ∈ Ker(π) of
the form w = w1 . . . wc of length ≤ n with wi ∈ F is ≤ C1n

α for some α > 1
and C1 > 0. Then 〈S | R〉 is a presentation of G (i.e., R generates Ker(π) as a
normal subgroup) and for some C2 > 0, the Dehn function of G with respect to
R is ≤ C2n

α. �

It will be applied in the more specific form.

Proposition 2.D.7. Consider a group G = U oA, with a symmetric generating
subset S = SU ∪ T , with SU ⊂ U and T ⊂ A. Assume that, for some q, there
is a combing F ⊂ FS, in which every element in F contains at most q letters in
SU . Let R,R′ ⊂ FS be sets of null-homotopic words; assume that R ⊂ FT and
that the projection of R′ in FT is trivial. Assume that, for constants C1, C2 and
α1, α2 > 1 we have

• 〈T,R〉 is a presentation of A with Dehn function ≤ C1n
α1;

• for every c, there exists C2 such that every null-homotopic of the form∏c
i=1 disid

−1
i with si ∈ S, di ∈ FT and |di|T ≤ n has area ≤ C2n

α2 with
respect to R ∪R′.

Then 〈S | R ∪ R′〉 is a presentation of G with Dehn function � nα, where α =
max(α1, α2).

Proof. Consider a null-homotopic word of the form w = w1 . . . wc with wi ∈ F .
So w has at most qc occurrences of letters in SU , so it can be written as a product∏qc+1

j=1 siti, where si is a letter in SU and ti is a word on the letters in T (and we

can assume tqc+1 = 1), so that
∑

i |ti|T ≤ n. Write τi = t1 . . . ti−1 and τ = τqc+2.
Then

w =

(
qc+1∏
i=1

τisiτ
−1
i

)
τ.

1[CT10, Proposition 4.3] is awkwardly stated because it purportedly considers a locally
compact group without specifying a presentation and gives a conclusion on its Dehn function as
a function (and not an asymptotic type of function). Actually the local compactness assumption
is irrelevant and the correct statement is the one given here, the proof given in [CT10] applying
without modification. The setting is just that of a group presentation; it is even not necessary
to assume that the relators have bounded length.
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So both
∏qc+1

i=1 τisiτ
−1
i and τ represent 1 in G. Each τi has length ≤ qcn, so it

follows from the assumptions that w has area at most C1(qcn)α1 + C2(qcn)α2 ≤
Cnα, where C = C1(qc)n1 + C2(qc)α2 . By Theorem 2.D.6, it follows that 〈S |
R ∪R′〉 is a presentation of G with Dehn function � nα. �

2.E. Grading in a normed field.

2.E.1. Grading in a representation.

Lemma 2.E.1. Let H ⊂ G be an inclusion of finite index between nilpotent
groups. Then any homomorphism f : H → R has a unique extension f̃ : G→ R.

Proof. If g ∈ G and gk ∈ H, the element f(gk)/k does not depend on k, we define

it as f̃(g). We need to check that f̃ is multiplicative. Since this only depends
on two elements, we can suppose that G and H are finitely generated. We can
also suppose that they are torsion-free, as the problem is not modified if we mod
out by the finite torsion subgroups. So G and H have the same Malcev closure,
and every homomorphism H → R extends to the Malcev closure. Necessarily,
the extension is equal to f̃ in restriction to G, so f̃ is a homomorphism. (Note
that R could be replaced in the lemma by any torsion-free divisible nilpotent
group.) �

Recall that for every complete normed field K, then the norm on K extends
to every finite extension field in a unique way [DwGS, Theorem 5.1, p. 17].

Proposition 2.E.2. Let K be a non-discrete complete normed field. Let N be a
topological nilpotent group and V a finite-dimensional vector space with a contin-
uous linear N-action ρ : N → GL(V ). Then there is a canonical decomposition

V =
⊕

α∈Hom(N,R)

Vα,

where, for α ∈ Hom(N,R), the subspace Vα is the sum of characteristic subspaces
associated to irreducible polynomials whose roots have modulus eα(ω) for all ω ∈
N ; moreover we have, for α ∈ Hom(N,R)

Vα ={0} ∪
{
v ∈ V r {0} : ∀ω ∈ N, lim

n→+∞
‖ρ(ω)n · v‖1/n = eα(ω)

}
=

{
v ∈ V : ∀ω ∈ N, lim

n→+∞
‖ρ(ω)n · v‖1/n ≤ eα(ω)

}
Note that we do not assume that ρ(N) has a Zariski-connected closure.

Proof. Let us begin with the case when K is algebraically closed. Let N be
the Zariski closure of ρ(N); decompose its identity component N0 = D × U into
diagonalizable and unipotent parts. Consider the corresponding projections d and
u into D and U. Define N0 = ρ−1(N0); it is an open subgroup of finite index in N .
Let D be the (ordinary) closure of the projection d(ρ(N0)). We can decompose,
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with respect to D, the space V into weight subspaces: V =
⊕

γ∈Hom(D,K∗) Vγ,

where Vγ = {v ∈ V : ∀d ∈ D, d · v = γ(d)v}. Write (log |γ|)(v) = log(|γ(v)|),
so log |γ| ∈ Hom(D,R). For δ ∈ Hom(D,R), define Vδ =

⊕
{γ: log |γ|=δ} Vγ, so

that V =
⊕

γ∈Hom(D,R) Vδ. If δ ∈ Hom(D,R), then δ ◦ d ◦ ρ ∈ Hom(N0,R). So

by Lemma 2.E.1, it uniquely extends to a homomorphism δ̂ : N → R, which is
continuous because its restriction δ ◦ d ◦ ρ to N0 is continuous. Note that δ 7→ δ̂
is obviously injective.

If v ∈ Vδ r {0} and ω ∈ N0, write it as a sum v =
∑

γ∈I vγ where 0 6= vγ ∈
Vγ, where I is a non-empty finite subset of Hom(D,K∗), actually consisting of
elements γ for which log |γ| = δ. Then, changing the norm if necessary so that
the norm is the supremum norm with respect to the norms on the Vγ (which does
not affect the limits because of the exponent 1/n), we have

‖ρ(ω)nv‖1/n = sup
γ∈I
‖u(ρ(ω))nd(ρ(ω))nvγ‖1/n

=|γ(d(ρ(ω)))| sup
γ∈I
‖u(ρ(ω))nvγ‖1/n

= exp(δ̂(ω)) sup
γ∈I
‖u(ρ(ω))nvγ‖1/n;

the spectral radii of both u(ρ(ω)) and its inverse being equal to 1 and vγ 6= 0, we

deduce that lim ‖u(ρ(ω))nvγ‖1/n = 1. It follows that lim ‖ρ(ω)nv‖1/n = exp(δ̂(ω))
for all ω ∈ N0 and v ∈ Vδ r {0}. If ω ∈ N , there exists k such that ωk ∈ N0.
Writing fω(n) = ‖ρ(ω)nv‖1/n, we therefore have

lim
n→∞

fω(kn) = lim
n→∞

fωk(n)1/k = exp(δ̂(ωk))1/k = exp(δ̂(ω));

on the other hand a simple verification shows that limn→∞ f(n + 1)/f(n) = 1,

and it follows that limn→∞ fω(n) = exp(δ̂(ω)).

It follows in particular that the spectral radius of ρ(ω)±1 on Vδ is exp(±δ̂(ω))

and since the δ̂ are distinct, it follows that Vδ is the sum of common characteristic
subspaces associated to eigenvalues of modulus exp(δ̂(ω)) for all ω.

Conversely, suppose that v ∈ V and that there exists α ∈ Hom(N,R) such that
for all ω ∈ N we have lim

n→+∞
‖ρ(ω)n ·v‖1/n ≤ eα(ω), and let us check that v ∈

⋃
Vδ.

Observe that lim
n→+∞

(‖ρ(ω)n · v‖ ‖ρ(ω−1)n · v‖)1/n ≤ 1. Write v =
∑

δ∈J vδ with

vδ ∈ Vδ and suppose by contradiction that J contains two distinct elements δ1, δ2.
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So δ̂1 6= δ̂2 and there exist ω0 ∈ N such that δ̂1(ω) > δ̂2(ω). Then

1 ≥ lim
n→+∞

(‖ρ(ω0)n · v‖ ‖ρ(ω−1
0 )n · v‖)1/n

≥ lim
n→+∞

‖ρ(ω0)n · vδ1‖1/n‖ρ(ω−1
0 )n · vδ2‖1/n

= exp(δ̂1(ω0)− δ̂2(ω0)) > 1,

a contradiction; thus v ∈
⋃
Vδ. This concludes the proof in the algebraically

closed case.
Now let K be arbitrary. The above decomposition can be done in an alge-

braically closure of K, and is defined on a finite extension L of K, so V ⊗K L =⊕
α∈Hom(N,R) Wα, where Wα satisfies all the characterizations. Decompose K-

linearly L as K ⊕ M . Let Vα be the projection of Wα on V under this de-
composition; clearly

∑
α Vα = V . The corresponding direct sum decomposition

V ⊗K L = V ⊕ (V ⊗K M) is preserved by the action of ρ(N). It follows that
elements of Vα satisfy the third property, namely for all ω ∈ N and v ∈ Vα we
have lim

n→+∞
‖ρ(ω)n ·v‖1/n ≤ eα(ω). Thus Vα ⊂ Wα and hence V =

⊕
Vα. Elements

not in
⋃
Vα satisfy the required properties since this is already true in V ⊗K L.

So the proof is complete.
Note that the proof, as a byproduct, characterizes the elements v of

⋃
Vα as

those in V for which, for all ω ∈ N , we have lim
n→+∞

(‖ρ(ω)n ·v‖ ‖ρ(ω−1)n ·v‖)1/n ≤ 1

(which is actually a limit, and equal to 1, if v 6= 0). �

2.E.2. Grading in a standard solvable group. Let G = U o A be a standard
solvable group in the sense of Definition 1.2. It will be convenient to define
K =

∏τ
j=1 Kj; it is endowed with the supremum norm, and view U as U(K). We

thus call G a standard solvable group over K. In a first reading, the reader can
assume there is a single field K = K1.

Since K is a finite product of fields, a finite length K-module is the same as
a direct sum V =

⊕
Vj, where Vj is a finite-dimensional Kj-vector space. The

length of V as a K-module, is equal to
∑

j dimKj
Vj.

Let uj be the Lie algebra of Uj. So u =
∏

j uj is a Lie algebra over K and the
exponential map, which is truncated by nilpotency, is a homeomorphism u→ U .
This conjugates the action of D on U to a linear action on u, preserving the Lie
algebra structure; for convenience we denote it as an action by conjugation.

We endow uj with the action of A, and with the grading in Hom(A,R), as
introduced in Proposition 2.E.2. Thus u itself is graded by uα =

⊕
j uj,α. The

finite-dimensional vector space W = Hom(A,R) is called the weight space.
This is a Lie algebra grading:

[uα, uβ] ⊂ uα+β, ∀α, β.
Note that since A is a compactly generated locally compact abelian group, it

is isomorphic to Rd1×Zd2×K for some integers d1, d2, and K a compact abelian
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group. In particular, if d = d1 + d2, then the weight space W = Hom(A,R) is a
d-dimensional real vector space.

If we split u as the direct sum u = ua ⊕ una of its Archimedean and non-
Archimedean parts, the weights of ua and una, respectively, are called Archimedean
weights and non-Archimedean weights.

Example 2.E.3. Assume that the action of A on u is diagonalizable. If Kj = R
and the diagonal entries are positive, we have

(uj)α = {x ∈ uj : ∀v ∈ A, v−1xv = eα(v)x}
and if Kj = Qp and the diagonal entries are powers of p, we have

(uj)α = {x ∈ uj : ∀v ∈ A, v−1xv = p−α(v)/ log(p)x}.

Example 2.E.4 (Weights in groups of SOL type). Let G = (K1×K2)oA be a
group of SOL type as in Definition 1.3, where A contains as a cocompact subgroup
the cyclic subgroup generated by some element (t1, t2) with |t1| > 1 > |t2|. Then
the weight space is a one-dimensional real vector space, and with a suitable
normalization, the weights are α1 = log(|t1|) > 0 and α2 = log(|t2|) < 0, and
Uαi

= Ki. It is useful to think of the weight αi with multiplicity qi, namely the
dimension of Ki over the closure of Q in Ki (which is isomorphic to R or Qp for
some p). In particular, G is unimodular if and only if q1α1 + q2α2 = 0.

For instance, if G = (R × Qp) op Z, then u = R × Qp, ulog(p) = R × {0},
u− log(p) = {0} ×Qp.

For an arbitrary standard solvable group, we define the set of weights

Wu = {α : uα 6= {0}} ⊂ Hom(A,R).

It is finite. Weights of the abelianization u/[u, u] are called principal weights
of u.

Lemma 2.E.5. Every weight of u is a sum of ≥ 1 principal weights; 0 is not a
principal weight.

Proof. The first statement is a generality about nilpotent graded Lie algebras. If
P is the set of principal weights and v =

⊕
α∈P uα, then u = v + [u, u], i.e., v

generates u modulo the derived subalgebra. A general fact about nilpotent Lie
algebras (see Lemma 2.G.13 for a refinement of this) then implies that v generates
u. The first assertion follows.

The condition that 0 is not a principal weight is a restatement of Definition
1.2(3). �

Definition 2.E.6. If U is a locally compact group and v a topological automor-
phism, v is called a compaction if there exists a compact subset Ω ⊂ U that
is a vacuum subset for v, in the sense that for every compact subset K ⊂ U
there exists n ≥ 0 such that vn(K) ⊂ Ω. If every neighborhood of 1 is a vacuum
subset, we say that v is a contraction.
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Proposition 2.E.7. Let U o A be a standard solvable group. Equivalences:

(i) some element of A acts as a compaction of U ;
(ii) some element of A acts as a contraction of U ;

(iii) 0 is not in the convex hull in W of the set of weights;
(iv) 0 is not in the convex hull in W of the set of principal weights.

Proof. Automorphisms of U are conjugate, through the exponential, to linear au-
tomorphisms; in particular, contractions and compactions coincide, being char-
acterized by the condition that all eigenvalues have modulus < 1. Thus (i)⇔(ii).

By Lemma 2.E.5, weights are sums of principal weights, and thus (iii)⇔(iv).
If v ∈ A acts as a contraction of U , then α(v) < 0 for every weight α. Thus

α 7→ α(v) is a linear form onW , which is positive on all weights. Thus (ii)⇒(iii).
Conversely, let L be the set of linear forms ` of W = Hom(A,R) such that

`(α) > 0 for every weight α ∈ Wu. Suppose that 0 is not in the convex hull of
Wu, or equivalently that L 6= ∅. Since L is an open convex cone, it has non-empty
intersection with the image of A in the bidual W∗, since the latter is cocompact.
Thus there exists v ∈ A such that α(v) > 0 for every weight α. So (iii)⇒(ii)
holds. �

Definition 2.E.8. We say that the standard solvable group G = U o A (or the
graded Lie algebra u) is

• tame if 0 is not in the convex hull of the set of weights;
• 2-tame if 0 is not in the segment joining any pair of principal weights;
• stably 2-tame if 0 is not in the segment joining any pair of weights.

The definition of 2-tameness, due to Abels (in the context of p-adic groups)
will be motivated on the one hand by Proposition 2.E.11, and on the other hand
by Theorem 4.G.1.

Remark 2.E.9. Clearly

tame ⇒ stably 2-tame ⇒ 2-tame ;

the converse implication does not hold in general; however they hold when W is
1-dimensional, i.e. when A has a discrete cocompact infinite cyclic subgroup.

Also, when u is abelian, then 2-tame and stably 2-tame are obviously equiva-
lent.

The terminology is justified by the following lemma.

Lemma 2.E.10. The standard solvable group G = U oA is stably 2-tame if and
only if every A-invariant K-subalgebra of u is 2-tame.

Proof. Suppose that G is stably 2-tame. Every D-invariant K-subalgebra of
u is a graded subalgebra and stable 2-tameness is clearly inherited by graded
subalgebras.

Conversely, suppose that G is not stably 2-tame; let α, β be weights with
0 ∈ [α, β]. Let h be the subalgebra generated by gα+gβ; it is a graded subalgebra
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and is not tame; all of whose weights lie on a single line; as observed in Remark
2.E.9, it follows that h is not 2-tame. So u does not satisfy the condition. �

The following characterization of 2-tameness will be needed to show that if G
is not 2-tame then it has an at least exponential Dehn function.

Proposition 2.E.11. Let G = U o A be a standard solvable group. Then G is
not 2-tame if and only if there exists a group V oE of type SOL (see Definition
1.3) and a homomorphism f into V o E whose image contains V and is dense.

Proof. First recall from Example 2.E.4 that for a group of SOL type, the set of
weights consists of a quasi-opposite pair, i.e. a pair of nonzero elements such
that the segment joining them contains zero.

Consider a homomorphism f : U o A → V o E to another standard solvable
group, in which E acts faithfully on V . It follows that the centralizer of any
nontrivial subgroup of V is contained in V . Applying this to f(A) ∩ V , we see
that if f(A) ∩ V 6= 1, then f(A) ⊂ V and thus f(U o A) ⊂ V . So if we assume
that f(U o A) is not contained in V , we deduce that f(A) ∩ V = 1. Since the
derived subgroup of U oA is U and the derived subgroup of V oE is V , we have
U ⊂ f−1(V ), and hence f−1(V ) = U .

Consider a homomorphism f : U o A→ V o E with V abelian. Assume that
the image of f is dense and contains V , and thus contains a dense subgroup of
E . Since f−1(V ) = U , it follows that f(U) = V , f is trivial on [U,U ] and f
induces an homomorphism A → E between quotients, with dense image. This
induces an inclusion of the space of weights Hom(E,R) → Hom(A,R), sending
the weights of V o E to weights of U/[U,U ] o A. In particular, if V o E is a
group of type SOL, then U/[U,U ] oD admits a quasi-opposite pair of weights.

Conversely, suppose that U oA, where U/[U,U ] has two nonzero weights α, β
with β = tα for some t < 0. We say that a nonzero weight γ is discrete if
γ(A) ' Z, or equivalently is not dense in R.

To construct the map f , first mod out by [U,U ]. If α (and hence β) is discrete,
we argue as follows. Write u =

⊕
γ uγ. Modding out if necessary by all other

nonzero weights, we can suppose that u = uα ⊕ uβ. Then write uα =
⊕

j uj,α,
and mod out all uj,α except one, so that uα is a Lie algebra over a single field
Kj; do the same for uβ, which is then a Lie algebra over a single field Kj′ . So by
definition of the grading, the action of A on each of uα and uβ is scalar, therefore
modding out by a hyperplane in each, we can suppose that each of uα and uβ is
one-dimensional. Since α and β are proportional, they have the same kernel. We
can mod out by this kernel; the resulting group has the form (Kj × Kj′) o Z,
which is of type SOL.

If α (and hence β) are non-discrete, observe that by the definition of standard
solvable groups uj,α = {0} for any ultrametric Kj. Therefore, we can argue as in
the case of discrete weights, until we obtain a group of the form R2 o Zk, where
v ∈ Zk acts on R2 by v · (x, y) = (eα(v)x, e−α(v)y), α being an homomorphism
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Zk → R. This admits an obvious homomorphism into the real group SOL, with
dense image containing the normal subgroup R2. �

Remark 2.E.12. The homomorphism to a group of type SOL cannot always be
chosen to have a closed image. For instance, let Z2 acting on R2 by

(m,n) · (x, y, z) = (2−m3−nx, 2m3ny).

Let G = R2 o Z2 be the corresponding standard solvable group. Clearly, it has
two opposite weights and is not 2-tame. On the other hand, since the action of
Z2 on R2 is faithful, every nontrivial normal subgroup of G intersects R2 non-
trivially. So any homomorphism with cocompact image to a group V oE of type
SOL, whose image contains V , is injective, and therefore induces an injective map
Z2 → E; in particular, E ' R and the image of Z2 in R cannot be closed.

2.F. Cartan grading and weights. All Lie algebras in this §2.F are finite-
dimensional over a fixed field K of characteristic zero.

Definition 2.F.1. If g is a Lie algebra, let g∞ =
⋂
k g

k be the intersection of its
descending central series, so that g/g∞ is the largest nilpotent quotient of g.

Definition 2.F.2. If G is a triangulable Lie group with Lie algebra g, define its
exponential radical G∞ as the intersection of its descending central series (so
that its Lie algebra is equal to g∞).

We need to recall the notion of Cartan grading of a Lie algebra, which is used
in §7.D and §7.E. Let n is a nilpotent Lie algebra; denote by n∨ the space of
homomorphisms from n to K (that is, the linear dual of n/[n, n]).

Let v be an n-module (finite-dimensional) with structural map ρ : n → gl(v).
If α ∈ n∨, define the characteristic subspace

vα =
⋃
k≥1

{v ∈ v : ∀g ∈ n, (ρ(g)− α(g))kv = 0}.

The subspaces vα generate their direct sum; we say that v is K-triangulable
if v =

⊕
α∈n∨ vα; this is automatic if K is algebraically closed. If v is a K-

triangulable n-module, the above decomposition is called the natural grading
(in n∨) of v as an n-module. If v = v0, we call v a nilpotent n-module.

Definition 2.F.3 ([Bou]). A Cartan subalgebra of g is a nilpotent subalgebra
which is equal to its normalizer.

We use the following proposition, proved in [Bou, Chap. 7,§1,2,3] (see Definition
2.F.1 for the meaning of g∞).

Proposition 2.F.4. Every Lie algebra admits a Cartan subalgebra. If n is a
Cartan subalgebra, then g = n + g∞ and n contains the hypercenter of g (the
union of the ascending central series).

If g is solvable, any two Cartan subalgebras of g are conjugate by some elemen-
tary automorphism ead(x) with x ∈ g∞ (here ad(x) is a nilpotent endomorphism
so its exponential makes sense). �
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Let g be a Lie algebra and n a Cartan subalgebra. Then for the adjoint
representation, g is an n-module. If g is K-triangulable, as we henceforth assume,
then it is K-triangulable as an n-module. The corresponding natural grading is
then called the Cartan grading of g (relative to the Cartan subalgebra n);
moreover the Cartan grading determines n, namely n = g0. We call weights
the set of α such that gα 6= 0. The Cartan grading is a Lie algebra grading, i.e.
satisfies [gα, gβ] ⊂ gα+β for all α, β ∈ n∨. We have n + g∞ = g, and g∞ ⊂ [g, g],
so the projection n→ g/[g, g] is surjective, inducing an injection (g/[g, g])∨ ⊂ n∨.
Actually, all weights of the Cartan grading lie inside the subspace (g/[g, g])∨ of
n; the advantage is that this space does not depend on n, allowing to refer to a
weight α without reference to a the choice of a Cartan subalgebra (although the
weight space gα still depends on this choice). In view of Proposition 2.F.4, any
two Cartan gradings of g are conjugate. In particular, the set of weights, viewed
as a finite subset of (g/[g, g])∨, does not depend on the Cartan grading. Actually,
the subspace linearly spanned by weights is exactly (g/r)∨, where r ⊃ [g, g] is the
nilpotent radical of g. The principal weights of g are by definition the nonzero
weights of the Lie algebra g/[g∞, g∞]; note that every nonzero weight is a sum of
principal weights, as a consequence of the following lemma.

Lemma 2.F.5. g∞ is generated by gO as a Lie subalgebra.

Proof. It is clear from the definition that [n, gα] = gα for all α 6= 0 and therefore
gO ⊂ g∞. Conversely, since g0 = n is nilpotent, Lemma 5.A.5 implies that g∞ is
contained in the subalgebra generated by gO. �

Lemma 2.F.6. Let g be a K-triangulable Lie algebra with a Cartan grading.
Then H2(g∞)g 6= {0} if and only if H2(g∞)0 6= {0}.

Proof. Obviously,

H2(g∞)g ⊂ H2(g∞)n ⊂ H2(g∞)0;

this provides one implication. Conversely, suppose that H2(g∞)0 6= {0}. Since g∞

is nilpotent, the g∞-module g∞ is nilpotent, and therefore so are the subquotients
of its exterior powers; in particular, H2(g∞)0 is a nilpotent g∞-module. So v =

H2(g∞)0
g∞ 6= {0}. Since g∞ is an ideal, v is a g-submodule of H2(g∞)0. Since it

is a nonzero nilpotent n-module, we have vn 6= {0}. Since the action of both g∞

and n on vn is zero and g = g∞ + n, we have

{0} 6= vn = H2(g∞)0
g ⊂ H2(g∞)g

and the proof is complete. �

Now consider a real triangulable Lie algebra g, or the corresponding real tri-
angulable Lie group. We call weights of g the weights of graded Lie subalgebra
g∞ endowed with the Cartan grading from g (note that since g = g0 + g∞, this
is precisely the set of weights of the graded Lie algebra g, except possibly the 0
weight).
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We define a real triangulable Lie algebra g, or the corresponding real triangu-
lable Lie group G, to be tame, 2-tame, or stably 2-tame exactly in the same
fashion as in Definition 2.E.8. In the case G is also a standard solvable group
UoD, we necessarily have u = g∞ and the its grading is also the Cartan grading;
in particular whether G is tame (resp. 2-tame, stably 2-tame) does not depend
on whether G is viewed as a real triangulable Lie group or a standard solvable
Lie group.

For α > 0, define SOLα as the semidirect product R2 oR, where the action is
given by t · (x, y) = (etx, e−αty). Note that apart from the obvious isomorphisms
SOLα ' SOL1/α, they are pairwise non-isomorphic.

In a way analogous to Proposition 2.E.11, we have

Proposition 2.F.7. Let G be a real triangulable group. Then G is not 2-tame if
and only if it admits SOLα as a quotient for some α > 0.

Proof. The “if” part can be proved in the same lines as the corresponding state-
ment of Proposition 2.E.11 and is left to the reader.

Conversely, assume that G is not 2-tame. Clearly, G/G∞ is not 2-tame, so we
can assume that G∞ is abelian. In the same way as in the proof of Proposition
2.E.11, we can pass to a quotient to assume that G∞ is 2-dimensional. Let n be
a Cartan subalgebra. Since the weights of g∞ (in the Cartan grading of g) are
nonzero, we have g = g∞on; let G∞oN be the corresponding decomposition of
G. Since the action of N on G∞ is given by two proportional weights, its kernel
has codimension 1 in N ; in particular this kernel is normal in G; we see that the
quotient is necessarily isomorphic to SOLα for some α > 0. �

2.G. On nilpotent groups and Lie algebras. We now gather some generali-
ties concerning nilpotent groups and Lie algebras, which will be used in §6.D.

Denote by ((·, ·)) group commutators, namely

((x, y)) = x−1y−1xy,

and iterated group commutators

(2.G.1) ((x1, . . . , xn)) = ((x1, ((x2, . . . , xn)))).

Define similarly iterated Lie algebra brackets.
If G is a group, its central series is defined by G1 = G and Gi+1 = ((G,Gi))

(the group generated by commutators ((x, y)) when (x, y) ranges over G × Gi).
The group G is s-nilpotent if Gs+1 = {1}. In particular, 0-nilpotent means trivial,
1-nilpotent means abelian, and more generally, s-nilpotent means that (s + 1)-
iterated group commutators vanish in G. Similarly, if g is a Lie algebra, its
central series is defined in the same way (and does not depend on the ground
commutative ring), and s-nilpotency has the same meaning.
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Lemma 2.G.2. Let N be an s-nilpotent group, and let i be an integer. Then
there exists m = m(i, s) such that for all x, y ∈ N ,

((x, yi)) = w1 . . . wm

where each wj (1 ≤ j ≤ m) is an iterated commutator (or its inverse) whose
letters are x±1 or y±1, that is, wj = ((tj,1, . . . , tj,kj)) for some kj ≥ 2 and tj,i ∈
{x±1, y±1}.

Example 2.G.3. In a 3-nilpotent group N , we have, for all x, y ∈ N and i ∈ Z

((x, yi)) = ((x, y))i((y, x, y))−i(i−1)/2.

Proof of Lemma 2.G.2. We shall prove the lemma by induction on s. The state-
ment is obvious for s = 0 (i.e. when N is the trivial group), so let us suppose
s ≥ 1. Applying the induction hypothesis modulo the s-th term of the descend-
ing series of N , one can write ((x, yi)) = wz, where w has the form w1 . . . wm′
where m′ = m(i, s − 1), and where z lies in the s-th term of the central series
of the subgroup generated by x and y, which will be denoted by H. Since the
word length according to S = {x±1, y±1} of both ((x, yi)) and w is bounded by
a function of i and s, this is also the case for z. Now H is generated by the set
of iterated commutators T = {((x1, x2 . . . , xs)) | x1, . . . , xs ∈ S}. Therefore, z
can be written as a word in T±1, whose length only depends on s and i. So the
lemma follows. �

Recall that a group G is divisible (resp. uniquely divisible) if for every n ≥ 1,
the power map G→ G mapping x to xn, is surjective (resp. bijective).

Lemma 2.G.4. Every torsion-free divisible nilpotent group is uniquely divisible.

Proof. We have to check that xk = yk ⇒ x = y holds in any torsion-free nilpotent
group. Assume that xk = yk and embed the finitely generated torsion-free nilpo-
tent group Γ = 〈x, y〉 into the group of upper unipotent matrices over the reals.
Since the latter is uniquely divisible (the k-th extraction of root being defined by
some explicit polynomial), we get the result. �

Let NQ be the category of nilpotent Lie algebras over Q with Lie algebras
homomorphisms (with possibly infinite dimension), and N the category of nilpo-
tent groups with group homomorphisms, and NQ its subcategory consisting of
uniquely divisible (i.e. divisible and torsion-free, by Lemma 2.G.4) groups. If
g ∈ NQ, consider the law ~g on g defined by the Campbell-Baker-Hausdorff
formula.

Theorem 2.G.5 (Malcev [Mal49a, St70]). For any nilpotent Lie algebra g over
Q, (g,~g) is a group and if f : g → h is a Lie algebra homomorphism, then f
is also a group homomorphism (g,~g) → (h,~k). In other words, g 7→ (g,~g),
f 7→ f is a functor from NQ to N . Moreover, this functor induces an equivalence
of categories NQ → NQ.
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The contents of the last statement is that

• any group homomorphism (g,~g) → (h,~h) is a Lie algebra homomor-
phism;
• any uniquely divisible nilpotent group (G, •) has a unique Q-Lie algebra

structure g = (G,+, [·, ·]) such that ~g = •.

Lemma 2.G.6 (see Lemma 3 in [Ho77]). In a nilpotent group, divisible elements
form a subgroup.

Lemma 2.G.7 (see Theorem 14.5 in [Ba60]). Let G be nilpotent and uniquely di-
visible, with lower central series (Gn). Then G/Gn is torsion-free (hence uniquely
divisible) for all n. �

Lemma 2.G.8. In the category of s-nilpotent groups, any free product of uniquely
divisible groups is uniquely divisible.

Proof. First, the free groups in this category are torsion-free: to see this, it is
enough to consider the case of a free group of finite rank in this category; such
a group is of the form F/F i with F free group; it is indeed is torsion free for all
i: this is a result about the descending central series of a non-abelian free group
and is due to Magnus [Mag35] (see also [Se, IV.6.2]).

Let G1, G2 be torsion-free uniquely divisible s-nilpotent groups and G1 ∗s G2

their s-nilpotent free product, which is divisible by Lemma 2.G.6. Denote by
(N i) the descending central series of G1 ∗ G2. Let g be a non-trivial element in
G1 ∗s G2 = (G1 ∗ G2)/N s+1 and let us show that g is not torsion in this group.
By [Mal49b], a free product of torsion-free nilpotent groups is residually torsion-
free nilpotent, and therefore there exists t ≥ s + 1 such that the image of g is
not torsion in (G1 ∗ G2)/N t. Applying Lemma 2.G.7 to (G1 ∗ G2)/N t, we see
that (G1 ∗G2)/N s+1 is torsion-free, so since g is non-trivial, it is not torsion. So
G1 ∗s G2 is uniquely divisible by Lemma 2.G.4. �

Lemma 2.G.9. In any uniquely divisible s-nilpotent group, if xi = exp vi

((x1, . . . , xs)) = exp[v1, v2, . . . , vs]

Proof. Use the convenient convention to identify the group and the Lie algebra
through the exponential and with this convention, the lemma simply states that

((x1, . . . , xs)) = [x1, x2, . . . , xs] ∀x1, . . . , xs ∈ G.

By induction, ((x2, . . . , xn)) = [x2, . . . , xs] + O(s), where O(s) means some com-
bination of s-fold Lie algebra brackets.

It follows from the Baker-Campbell-Hausdorff formula that if [x, y] is central
then ((x, y)) = [x, y]. We can apply this to x = x1 and y = ((x2, . . . , xn)). This
yields

((x1, ((x2, . . . , xn)))) = [x1, [x2, . . . , xs] +O(s)] = [x1, . . . , xs]. �
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Let QF be the free product of two copies of Q; we denote the two images of
1 ∈ Q into QF by X and Y , so that every element in QF can be written as
w =

∏m
i=1X

λi
i with Xi ∈ {X, Y } and λi ∈ Q.

Lemma 2.G.10. Let x, y be elements of a uniquely divisible nilpotent group G,
and n an integer. Then (xy−1)1/n is contained in the normal subgroup generated
by {x1/ky−1/k : k ∈ Z}.

Proof. Let G be s-nilpotent. By [BrG11, Lemma 5.1] (see however Remark
2.G.11), there exists a sequence of rational numbers a1, b1, . . . , ak, bk such that
in any s-uniquely divisible s-nilpotent group H and any u, v ∈ H, we have

(uv−1)1/n = u1/nv−1/n

k∏
i=1

uaivbi .

In particular, picking (H, u, v) = (R, 1,
√

2), we see that
∑
ai =

∑
bi = 0.

Therefore, if d is a common denominator to a1, . . . , bk and n,
∏k

i=1 u
aivbi as well as

u1/nv−1/n belong to the normal subgroup generated by u1/dv−1/d, hence (uv−1)1/n

as well. In particular, this applies to (H, u, v) = (G, x, y). �

Remark 2.G.11. In the above proof, we used [BrG11, Lemma 5.1] to make
short. However, this is not very natural, because the latter is proved using the
Hall-Petrescu formula; the problem is that in this formula, exponents are put
outside the commutators. The proof of the Hall-Petrescu formula can easily be
modified to prove by induction on the degree of nilpotency a similar formula with
exponents inside the commutators. In [BrG11], in order to make short (as we
also do), instead of processing this induction, they work with a much simpler
induction based on the Hall-Petrescu formula; this is very unnatural, because if
we do not allow ourselves to use the Hall-Petrescu formula, to go through the
latter is very roundabout; moreover the exponents ak, bk obtained in [BrG11]
depend on s, while in a direct induction, we pass from the s-nilpotent case to
the (s + 1)-nilpotent case by multiplying on the right by some suitable iterated
commutator of powers.

Proposition 2.G.12. Let x, y be elements of a uniquely divisible nilpotent group
G. Let N be the normal subgroup generated by the elements of the form xry−r,
where r ranges over Q. Then N is divisible. Equivalently, G/N is torsion-free.

Proof. By Lemma 2.G.10, N contains elements (xry−r)ρ for any ρ ∈ Q. So N is
generated as a normal subgroup by the divisible subgroups Nr = {(xry−r)ρ : ρ ∈
Q}, and therefore N is divisible by Lemma 2.G.6. �

The following lemma, which, unlike the previous ones, involves some topology,
will be used in the proof of Proposition 4.C.2.
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Lemma 2.G.13. Fix an integer s ≥ 1. Let K =
∏

Kj be a finite product of local
field of characteristic zero (or p > s). Let u be a s-nilpotent finite length Lie alge-
bra over K and fix a norm ‖ · ‖ on u. Let U be the corresponding nilpotent group;
identify U with u through the exponential map. Let (ui)1≤i≤c be K-subalgebras of
u and Ui ⊂ U the corresponding subgroups. If the ui generate u modulo [u, u], then
there exists d and a constant K such that every element x ∈ U can be written
x1 . . . xd with xk ∈

⋃
i ui, and supk ‖xk‖ ≤ K‖x‖.

Proof. We argue by induction on s. If s = 1, the assumption is that u is abelian
and generated by the ui. So there exist subspaces hi ⊂ ui such that u =

⊕
hi, so

if x ∈ u and pi is the projection to hi, then x =
∑c

i=1 pi(x), and if K0 = sup ‖pi‖
(operator norm) then ‖pi(x)‖ ≤ K0‖x‖.

Suppose the result is proved for s − 1. We choose the norm on u/u(i) to be
the quotient norm. We use the induction hypothesis modulo U (s), so that there
exist d′ and K ′ ≥ 1 such that every x ∈ U can be written as y1 . . . ydζ, with
‖yi‖ ≤ K ′‖x‖ and ζ ∈ U (s). By the Baker-Campbell-Hausdorff formula, there
exists a constant C > 0 (depending on s and d′) such that for all x1, . . . xd′+1

in u, we have ‖x1 · · ·xd′+1‖ ≤ C sup ‖xi‖s. So ‖ζ‖ ≤ C sup(K ′‖x‖)s. Consider
the K-multilinear map (u/[u, u])s → u(s) given by the s-fold bracket. Since its
image generates u(s) as a K-submodule and since the ui generate u modulo [u, u],
we can find (independently of the xi) a elements ij and a fixed finite family
(κjk)1≤j≤j0,1≤k≤s with κjk ∈ uij such that, setting ζj = φ(κj1, . . . , κjs) we have

u(s) =
⊕

j Kζj (we can normalize so that ‖ζj‖ = 1). Now identify the Lie algebra
and the group through the exponential map. If K ′′ is the supremum of the norm
of projections onto the submodules Kζj, then we can write ζ =

∏
j λjζj with λj ∈

K′′ of absolute value |λj| ≤ K ′′‖ζ‖ ≤ CK ′′(K ′)s supi ‖xi‖s. We can write, in K,
λj =

∏s
k=1 µjk, with |µjk| ≤ |λj|1/sα0, where α0 = supj inf{|x| : |x| ∈ Kj, |x| > 1}

only depends on K. By Lemma 2.G.9, we have

λjζj = ((µj1κj1, . . . , µjsκjs)).

If C ′ = supj,k ‖κjk‖, we have µj1κj1 ≤ C ′(CK ′′)1/sK ′ supi ‖xi‖. So

x = y1 . . . yd
∏
j

((µj1κj1, . . . , µjsκjs)),

which is a bounded number of terms in
⋃
Ui, each with norm

≤ max(1, C ′(CK ′′)1/s)K ′ sup
i
‖xi‖. �

Lemma 2.G.14. Let g be a Lie algebra over the commutative ring R. Let m be
a generating R-submodule of g. Define g[1] = m, and by induction the submodule
g[i] = [g[1], g[i−1]] for i ≥ 2 (namely, the submodule generated by the brackets of
the given form). Let (gi) be the descending central series of g. Then for all i we
have gi =

∑
m≥i g

[i].
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Proof. Let us check that

(2.G.15)
[
g[i], g[j]

]
⊂ g[i+j] ∀i, j ≥ 1.

Note that (2.G.15) holds when either i = 1 or j = 1. We prove (2.G.15) in
general by induction on k = i + j ≥ 2, the case k = 2 being already settled. So
suppose that k ≥ 3 and that the result is proved for all lesser k. We argue again
by induction, on min(i, j), the case min(i, j) = 1 being settled. Let us suppose
that i, j ≥ 2 and i+ j = k and let us check that (2.G.15) holds. We can suppose
that j ≤ i. By the Jacobi identity and then the induction hypothesis

[g[i], g[j]] =[g[i], [g[1], g[j−1]]]

⊂[g[1], [g[i], g[j−1]]] + [g[j−1], [g[1], g[i]]]

⊂[g[1], g[i+j−1]] + [g[j−1], g[1+i]]

⊂g[i+j] + [g[j−1], g[1+i]]

Since j ≤ i, we have min(j− 1, i+ 1) < min(i, j), the induction hypothesis yields
[g[j−1], g[1+i]] ⊂ g[i+j] and (2.G.15) is proved.

It follows from (2.G.15) that, defining for all i ≥ 1

g{i} =
∑
j≥i

g[j],

the graded submodule g{i} is actually a Lie subalgebra of g. Let us check by
induction on i ≥ 1 that gi = g{i}. Since g[1] generates g, it follows that g{1} =
g = g1. Now, suppose i ≥ 2 and the equality holds for i − 1. Then gi is, in our
notation, the Lie subalgebra generated by

[g, gi−1] = [g, g{i−1}] =

[
g,
∑
j≥i−1

g[j]

]

=
∑
j≥i−1

[
g, g[j]

]
=
∑
j≥i−1

g[j+1] = g{i};

since g{i} is a Lie subalgebra we deduce that gi = g{i}. �

3. Metric reductions

3.A. Reduction to triangulable groups. The following lemma is essentially
borrowed from [C08].

Lemma 3.A.1. For every connected Lie group G, there exists a series of proper
homomorphisms with cocompact images G ← G1 → G2 ← G3, with G3 triangu-
lable. In particular, G3 is quasi-isometric to G.
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Proof. Let N be the nilradical of G. By [C08, Lemma 6.7], there exists a closed
cocompact solvable subgroup G1 of G containing N , and a cocompact embedding
G1 ⊂ H2 with H2 a connected solvable Lie group, such that H2 is generated
by G1 and its center Z(H2). In particular, every normal subgroup of G1 is
normal in H2. Let W be the largest compact normal subgroup of H2 and define
L2 = H2/W , so L2 is a connected solvable Lie group whose derived subgroup has a
simply connected closure. By [C08, Lemma 2.4], there are cocompact embeddings
L2 ⊂ G2 ⊃ G3, with G2 and G3 connected Lie groups, and G3 triangulable. �

3.B. At most exponential Dehn function.

Theorem 3.B.1 (Gromov). Every connected Lie group has an at most exponen-
tial Dehn function.

As usual, Gromov gives a rough sketch of proof [Gro93, Corollary 3.F′5], but
we are not aware of a complete proof.

Lemma 3.B.2. If G is a simply connected solvable Lie group with a left-invariant
Riemannian metric, there is an exponentially Lipschitz strong deformation retrac-
tion of G to the trivial subgroup, i.e. a map F : G× [0, 1]→ G such that for all
g, F (g, 0) = g and F (g, 1) = 1, and such that for some constant C, if B(n) is
the n-ball in G then F is exp(Cn)-Lipschitz in restriction to B(n)× [0, 1].

Proof. We use that every simply connected solvable Lie group can be described
as (Rm ×R`, ∗) with the law of the form

(u1, v1) ∗ (u2, v2) = (u1 + u2, P (u1, u2, v1, v2)); (u, v)−1 = (−u,−v),

where P is a function each component of which, if we denote by (Ui) the 2m
coordinates of (u1, u2) and by (Vj) the 2` coordinates of (v1, v2), can be described
as a real-valued polynomial in the variables Ui, Vj, and eλkUi , for some finite
family of complex numbers (λk). For instance, the law of SOLλ can be described
as

(u1, x1, y1) ∗ (u2, x2, y2) = (u1 + u2, e
u2x1 + x2, e

−λu2y1 + y2)

(here (m, `) = (1, 2)).
Define, for ((u, v), t, τ) ∈ G× [0, 1]2,

s((u, v), t, τ) = (tu, τv).

Let Lg denote the left translation by g. Then(
L−1

(t0u0,τ0v0) ◦ s
) (
L(u0,v0)(u, v), t, τ

)
= (−t0u0 + tu0 + tu, P (−t0u0, t(u0 + u),−τ0v0, τP (u0, u, v0, v)) )

If we view this as a function of (u, v, t, τ), its differential at (0, 0, t, τ) is a number
which is bounded by c1e

c2‖u0‖(1+‖v0‖)c3 for some positive constants c1, c2, c3 only
depending on G and the choice of Riemannian metric. Therefore, the differential
of s at any (u0, v0, t, τ), for the left-invariant Riemannian metric µ, has the same
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bound. If (u0, v0) ∈ B(2n), then ‖u0‖ ≤ n (up to rescaling µ) and ‖v0‖ ≤ ec4n.
So, for every (u0, v0, t, τ) ∈ B(2n) × [0, 1]2, the differential of s at (u0, v0, s, t) is
bounded by eCn, for some constant C only depending on (G, µ). In particular,
since any two points in B(n) can be joined by a geodesic within B(2n), we deduce
that the restriction of s to B(n)× [0, 1]2 is eCn-Lipschitz.

The function (g, t) 7→ s(g, t, t) is the desired retraction. (We used an extra vari-
able τ by anticipation, in order to reuse the argument in the proof of Proposition
3.B.4.) �

Proof of Theorem 3.B.1. By Lemma 3.A.1, we can restrict to the case of a trian-
gulable group G. Given a loop of size n in G based at the unit element, Lemma
3.B.2 provides a homotopy with exponential size to the trivial loop. �

Remark 3.B.3. Using Guivarc’h’s estimates on the word length in simply con-
nected solvable Lie groups [Gui73, Gui80], we see that there exists a constant C ′

such that if B(n) is the n-ball in G, then F (B(n), [0, 1]) is contained in the ball
B(C ′n) (here F is the function constructed in the proof of Lemma 3.B.2). Thus
in particular, F provides a filling of every loop of linear size, with exponential
area and inside a ball of linear size. In particular, any virtually connected Lie
group (and lattice therein) has a linear isodiametric Dehn function.

Let G = (Ua×Una)oZd be a standard solvable group. The group G1 = UaoZd

can be embedded as a closed cocompact subgroup into a virtually connected Lie
group G2 with maximal compact subgroup K. Consider a left-invariant Riemann-
ian metric on the connected manifold G1/K. The composite map G1 → G2/K is
a G-equivariant quasi-isometric injective embedding; endow G1 with the induced
metric. Endow Una with a word metric with respect to a compact generating set,
and endow G with a metric induced by the natural quasi-isometric embedding
G→ G1 ×G2.

Proposition 3.B.4. Let G be a standard solvable group of the form (Ua×Una)o
Zd, with the above metric. Then there is an exponentially Lipschitz homotopy
between the identity map of G and its natural projection π to Una oZd. Namely,
for some constant C, there is a map

σ :
(
(Ua × Una) o Zd

)
× [0, 1]→ (Ua × Una) o Zd,

such that for all g ∈ G, σ(g, 0) = g and σ(g, 1) = π(g), and σ(g, t) = g if
g ∈ Una o Zd, and σ is (eCn, C)-Lipschitz in restriction to B(n)× [0, 1].

Proof. As in the definition of standard solvable group, write G = UoZd and U =
Ua×Una. Since Ua is a simply connected nilpotent Lie group, we can identify it to
its Lie algebra thorough the exponential map. Define, for (v, w, u) ∈ Ua×UnaoZd

and t ∈ [0, 1], σ(v, w, u, t) = (tv, w, u). By the computation in the proof of Lemma
3.B.2, σ is eCn-Lipschitz in restriction to B(n)× [0, 1]; the presence of w does not
affect this computation. �
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Corollary 3.B.5. Under the assumptions of the proposition, if G/U0 ' Una oA
is compactly presented with at most exponential Dehn function, then G has an at
most exponential Dehn function.

Proof. Given a loop γ of size n in G, the retraction of Proposition 3.B.4 interpo-
lates between γ and its projection γ′ to G/G0. The interpolation has an at most
exponential area because the retraction is exponentially Lipschitz; γ′ has linear
length and hence has at most exponential area by the assumption. So γ has an
at most exponential area. �

3.C. Reduction to split triangulable groups. Let G be a triangulable real
group and E = G∞ its exponential radical.

Proposition 3.C.1 ([C11]). There exists a triangulable group Ğ = EoV and a

homeomorphism φ : G → Ğ, so that, denoting by dG and dĞ left-invariant word

distances on G and Ğ

• φ restricts to the identity E → E,
• E is the exponential radical of Ğ
• V is isomorphic to the simply connected nilpotent Lie group G/E,
• the map φ quasi-preserves the length: for some constant C > 0,

C−1|g| ≤ |φ(g)| ≤ C|g|; ∀g ∈ G

and is logarithmically bilipschitz

D(|g|+ |h|)−1dG(g, h) ≤ dĞ(g, h) ≤ D(|g|+ |h|)dG(g, h); ∀g, h ∈ G,

where C ′ > 0 is a constant and where D is an increasing function satis-
fying D(n) ≤ C ′ log(n) for large n.

Corollary 3.C.2. Set {H,L} = {G, Ğ}. Suppose that the Dehn function δL of
L satisfies δB(n) 4 nα.

Then for any ε > 0, the Dehn function δH of H satisfies

δH(n) 4 log(n)α+εδL(n log(n)) 4 log(n)2α+εnα.

Proof. Suppose, more precisely, that every loop of length n in L can be filled with
area δ(n) in a ball of radius s(n); note that s can be chosen to be asymptotically
equal to δ (by Lemma 2.D.2).

Start with a combinatorial loop γ of length n in H. It maps (by φ or φ−1 to
a “loop” in L, in the Cn-ball, in which every pair of consecutive vertices are at
distance ≤ C log(n). Join those pairs by geodesic segments and fill the resulting
loop γ′ of length ≤ Cn log(n) by a disc consisting of δ(Cn log(n)) triangles of
bounded radius (say, ≤ C), inside the s(Cn log(n))-ball. Map this filling back to
H. We obtain a “loop” γ′′ consisting of Cn log(n) points, each two consecutive
being at distance ≤ C log(s(Cn log(n))), with a filling by δ(Cn log(n)) triangles
of diameter at mostC log(s(Cn log(n))). Interpolate γ′′ by geodesic segments, so



42 CORNULIER AND TESSERA

as to obtain a genuine loop γ1. So γ′′ is filled by γ and Cn log(n) “small” loops
of size

≤ C log(s(Cn log(n))) + 1 ≤ C log(C ′(Cn log(n))α) + 1 ≤ C1 log(n).

The loop γ′′ itself is filled by δ(Cn log(n)) triangles of diameter at most
C log(s(Cn log(n))) and thus of size ≤ 3C1 log(n).

We know that H has its Dehn function bounded above by C2e
cn. So each of

these small loops has area ≤ C2 exp(3c(C1 log(n))) = C ′nc
′
. We deduce that γ

can be filled by

(Cn log(n) + δ(Cn log(n)))C ′nc
′ � n1+c′+max(1,α)

triangles of bounded diameter.
We deduce that H has a Dehn function of polynomial growth, albeit with an

outrageous degree, the constants c′ being out of control. Anyway, this provides
a proof that H has a Dehn function ≤ C3n

q for some q, and we now repeat the
above argument with this additional information.

The small loops of size C1 log(n) therefore have area ≤ C3(C1 log(n))q and the
δ(Cn log(n)) triangles filling γ′′ can now be filled by ≤ C3(3C log(s(Cn log(n))))q

triangles of bounded diameter. We deduce this time that γ can be filled by at
most

Cn log(n)C3(C1 log(n))q + 3CC3 log(s(Cn log(n)))qδ(Cn log(n))

≈ log(s(n log(n)))qδ(n log(n))

triangles of bounded diameter.
We have

log(s(n log n)) ≤ log(s(n2)) � log(n2α) � log(n),

so we deduce that the Dehn function of γ is

4 log(n)qδ(n log(n)).

Since δ(n) 4 nα, the previous reasoning can be held with q of the form α + ε
for any ε > 0. This proves the desired result. �

Remark 3.C.3. A variant of the proof of Corollary 3.C.2 shows that if the Dehn
function of Ğ is exponential, then the Dehn function of G is < exp(n/ log(n)2),
but is not strong enough to show that the Dehn function of G is exponential, nor
even < exp(n/ log(n)α) for small α ≥ 0.

4. Geometric presentations

4.A. Tame groups. We introduce the following definition.

Definition 4.A.1. We call a tame group any locally compact group with a
semidirect product decomposition G = U oA, where A is a compactly generated
abelian group, such that some element of A acts as a compaction of U (in the
sense of Definition 2.E.6), in which case we call U oA a tame decomposition.
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Remark 4.A.2. If G = U oA is a tame decomposition, and if W is the largest
compact subgroup in A, then W admits a direct factor A′ in A (isomorphic to
Rk ×Z` for some k, ` ≥ 0), so that G = UW oA′; if x ∈ A acts as a compaction
on U then it also acts as a compaction on UW , and so does the projection of x
on A′ (because the set of compactions of a given locally compact group is stable
by multiplication by inner automorphisms [CCMT12, Lemma 6.16].

We need to prove that tame groups have an at most quadratic Dehn function.
This is a consequence of the following very general theorem.

Theorem 4.A.3. Let G be a tame group with a tame decomposition UoA. Then
there exists a large-scale Lipschitz homotopy from the identity of G to a map
G→ A. Namely, let π be the projection to A and let v ∈ A be an element acting
(by conjugation on the right) as a compaction of U and define γ : G×N→ G by
γ(g, n) = gvn. Then for some constant C, γ is C-Lipschitz in each variable and
d(γ(g, n), vnπ(g)) ≤ C if n ≥ C|g|.

Remark 4.A.4. This theorem has some similarity with a theorem of Varopoulos
[Var00, Main theorem, p. 57] concerning connected Lie groups. Namely, for
a simply connected Lie group of the form U o N with U,N simply connected
nilpotent Lie groups such that N contains an element acting as a contraction on
N , he proves that there exists a “polynomially Lipschitz” homotopy from the
identity of G to its projection on N .

Proof of Theorem 4.A.3. Let S be a compact symmetric generating set; we can
suppose that S = SU ∪ T with SU ⊂ U , T ⊂ A. Let us assume that, in addition,
v−1SUv ⊂ SU (so v−1Sv ⊂ S). So, for n ≥ 0, the automorphism g 7→ v−ngvn

is 1-Lipschitz, and since the left multiplication by vn is an isometry, we deduce
that γ(·, n) is 1-Lipschitz. Also, assuming that v ∈ T , it is immediate that γ(g, ·)
is 1-Lipschitz.

It remains to prove the last statement. Let us assume that v ∈ T . There exists
` such that for every w ∈ T , (vw`)−1SU(vw`) ⊂ SU . Consider an element in U ,
of size at most n. We can write it as

w =
n∏
i=1

siui

with si ∈ T and ui ∈ SU . Defining ti = si . . . sn, we deduce

w = tn

(
n∏
i=1

tiuit
−1
i

)
.

So tn = π(w) and

v−`nwv`n = π(w)

(
n∏
i=1

v−`ntiuit
−1
i v`n

)
.
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By definition of `, the element vi = v−`ntiuit
−1
i v`n belongs to SU . So

v−`nwv`n = π(w)

(
n∏
i=1

vi

)
.

We can suppose from the beginning that SU is a vacuum subset for the right con-
jugation u 7→ v−1uv by v, and therefore there exists k ≥ 2 such that v−k(S2

U)vk ⊂
SU . So if j = dlog2(n)e, then v−kj(SnU)vkj ⊂ SU . Thus we obtain

v−`n−kdlog2(n)ewv`n+kdlog2(n)e ∈ π(w)SU ,

since for all n we have dlog2(n)e ≤ n, we obtain that for every m ≥ (k + `)n we
have d(wvm, vmπ(w)) ≤ 1. �

Corollary 4.A.5. If G is a tame locally compact group, then it has an at most
quadratic Dehn function.

Remark 4.A.6. If A has rank at least 2, since G has a 1-Lipschitz retraction
onto A, we deduce that the Dehn function of G is exactly quadratic. On the
other hand, if A has rank one, then G is hyperbolic and thus its Dehn function
is linear [CCMT12].

Remark 4.A.7. Actually, the theorem also shows that each higher Dehn func-
tions is asymptotically bounded by that of a large Euclidean space, and that all
fillings preserve the Lipschitz constants (up to a fixed constant). This fact is
trivial in any group quasi-isometric to a CAT(0) space, but there are instances
of tame groups for which it is not known whether they are quasi-isometric to any
CAT(0)-space, e.g. the semidirect product R2 oR2, for the action (s, t) · (u, v) =
es(u+ tv, v).

Remark 4.A.8. Recall that for a metric space X and nonprincipal ultrafilter
ω on the set of positive integers, the asymptotic cone, denoted Coneω(X), is
obtained as follows. If (xn), (yn) are sequences in X, define dω((xn), (yn)) =
limω d(xn, yn)/n ∈ [0,∞]. The asymptotic cone (Coneω(X), dω) is defined as the
metric space consisting of those sequences (xn) with dω((xn), (x0)) <∞, modulo
identification of (xn) and (yn) whenever dω((xn), (yn)) = 0.

A straightforward corollary of Theorem 4.A.3 is that if G is a tame locally
compact group, then all its asymptotic cones are contractible. Indeed, the large-
scale Lipschitz mapping γ induces a Lipschitz map

γ̃ : Coneω(G)×R≥0 → Coneω(G)

((xn), t) 7→ γ(xn, btnc)

such that γ̃(x, 0) = x and γ̃(x, t) ∈ Coneω(A) if t ≥ C|x|. Defining h(x, t) =
γ̃(x, t|x|), then h is continuous, h(x, 0) = x and h(x,C) ∈ Coneω(A) for all
x ∈ Coneω(G). Since Coneω(A) is bilipschitz homeomorphic to a Euclidean space,
this shows that Coneω(G) is contractible.
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We need to make Theorem 4.A.3 more precise, so as to provide a explicit
presentation in Corollary 4.A.5. Consider triples (m,SU , T ), where m ≥ 1 is an
integer, T is a compact symmetric generating subset of A with unit and SU is a
compact symmetric subset of U with unit.

Definition 4.A.9. We say that (m,SU , T ) is adapted to U oA and v if SU is a
vacuum subset for the right conjugation u 7→ v−1uv by v, and there exist integers
k, ` ≥ 1 with k + ` ≤ m such that v−kS2

Uv
k ⊂ SU and (v`w)−1SU(v`w) ⊂ SU for

all w ∈ T .

As observed in the proof of Theorem 4.A.3, there always exists such an adapted
triple; more precisely, for every symmetric generating subset T of A containing
{1, v} and every symmetric vacuum subset SU ⊂ U of v, (m,SU , T ) is adapted
for all m large enough. Also, is T is large enough, (2, SU , T ) is adapted to some
v ∈ T .

Theorem 4.A.10. Let G be a tame group with a tame decomposition UoA, with
an element v acting as a compaction of U . Let (m,SU , T ) be adapted to U o A
and v in the above sense. Then S = SU ∪ T is a compact generating subset of G,
and G being endowed with the corresponding word metric, the function

γ : G×N→ G; (g, n) 7→ gvn

is 1-Lipschitz in each variable; γ(g, 0) = g, and d(γ(g, n), vnπ(g)) ≤ 1 whenever
g ≥ mn. �

Corollary 4.A.11. Under the assumptions of Theorem 4.A.10, for every x ∈ G
of length n, we can write x = π(x)vmnsv−mn and s ∈ SU .

Proof. If m = (k + `)n, define s = (vmπ(x))−1γ(x,m). By the theorem, s ∈ SU ,
while x = π(x)vmsv−m. �

The corollary allow us to introduce the following definition, which will be used
in the sequel.

Definition 4.A.12. Let G = U oA be tame and v ∈ A act as a compaction on
U . Let (m,SU , T ) be adapted to U o A and v in the sense of Definition 4.A.9,
and S = SU ∪ T . By Corollary 4.A.11, if x ∈ U and |x|S = n, the element
s = v−mnxvmn belongs to SU . We define x ∈ FS as the word vmnsv−mn, which
has length 2mn+ 1 and represents x.

Corollary 4.A.13. Under the assumptions of Theorem 4.A.10, G admits a pre-
sentation with generating set S in which the relators are the following

(1) All relators of the form s1s2s3 for s1, s2, s3 ∈ SU , whenever s1s2s3 = 1 in
U ;

(2) all relators of the form ws1w
−1s2 whenever w ∈ T , s1, s2 ∈ A and

ws1w
−1s2 = 1 in G;

(3) a finite set R3 of defining relators of A including all commutation relators.
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The Dehn function of this presentation is bounded above by mn2 + δ(D,R3)(n).

Proof. Start from a combinatorial loop γ0 = (ui)i of length n. It a combinatorial
loop in the Cayley graph of (G,S), i.e., d(ui, ui+1) ≤ 1. Since γ is 1-Lipschitz,
each γj = (γ(ui, j))i is also a loop of length n. Define µn as the loop π(ui)v

n in
A. We know that for j ≥ (k + 1)n, we have d(µn(i), γn(i)) ≤ 1 for all i. So the
“homotopy” consists in

γ0  γ1  · · · γ(k+1)n  µ(k+1)n

and is finished by a homotopy from µ(k+1)n to a trivial loop inside A. So we have
to describe each step of this homotopy.

To go from γj to γj+1, we use n squares with vertices

(uiv
j, ui+1v

j, ui+1v
j+1, uiv

j+1)

for i = 1, . . . n (modulo n). To describe this square, we discuss whether u−1
i ui+1

belongs to SU or T : in the first case this is a relator of the form (2) and in the
second case it is a relator of the form (3).

To go from γj to µj for j = (k + 1)n, we use n squares vith vertices

(uiv
j, ui+1v

j, π(ui+1)vjπ(ui)v
j).

We discuss again: if u−1
i ui+1 ∈ T , this is a relator of the form (3). If u−1

i ui+1 ∈ SU ,
actually π(ui) = π(ui+1) and this square actually degenerates to a triangle of the
form (1).

Finally, the loop can be homotoped within A. If v is part of a basis of A (as
we can always assume) and T is chosen to be this basis (as well as inverses and
unity), the commutators between generators are enough.

The area of the above homotopy is then bounded by n2(k + ` + 1) (namely
n(k+`+1) steps with n squares each time), plus the area of the loop in A, which
is bounded by n2/16. �

The next proposition shows that enlarging T if necessary, we can also obtain
a universal quadratic bound for the Dehn function of A.

Proposition 4.A.14. In Zd, for every parallelepiped S =
∏d

i=1{−Mi, . . . ,Mi}
(Mi > 0), there exists a finite set of relators of length at most 4 with Dehn
function ≤ (n+ 3)2/16.

Proof. Endow Rd with the `∞ norm. Identify (Zd, S) with the lattice Λ =∏d
i=1

1
Mi

Z, with generating subset T , which is the intersection of Λ with the

unit ball of Rd. For every x ∈ Λ, we have |x|T ≥ ‖x‖∞ and |x|T ≤ 1 if and only
if ‖x‖∞ ≤ 1.

Let c0, c1, . . . , c4n = c0 be a combinatorial loop on the Cayley graph of (Λ, T ).
Then for each coordinate, the width of the projection of this loop is ≤ 2n. There-
fore there exists c ∈ Zd such that if we translate this loop by c, it is contained in
[−n, n]d, as we now suppose.
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Define, for k = 0, . . . , n, xki = kci/n ∈ Rd. So we can view the ((xki )i)k as a
sequence of loops in Rd interpolating between the trivial loop for k = 0 and the
loop (ci) for k = n. It is filled by n2 squares, each of the form (xki , x

k
i+1, x

k+1
i+1 , x

k+1
i )

where i is modulo n and k = 0, . . . , n− 1. Each edge in these square has ‖ · ‖∞-
length ≤ 1, as ‖xki − xki+1‖∞ = (k/n)‖ci − ci+1‖∞ ≤ 1 and ‖xki − xk+1

i ‖∞ =
‖ci/n‖∞ ≤ 1.

Let E be the map Rd → Λ, x 7→ (bM1x1c/M1, . . . , bMdxdc/Md). Although it is
not 1-Lipschitz, it has the property that ‖x−y‖∞ ≤ 1 implies |E(x)−E(y)|T ≤ 1.
Moreover, it is the identity on Λ. Therefore, if we set cki = E(xki ), then ((cki )i)k is
a sequence of loops in Λ interpolating between the trivial loop for k = 0 and the
loop (ci) for k = n. It is filled by 2n2 squares, each of the form (cki , c

k
i+1, c

k+1
i+1 , c

k+1
i )

where i is modulo n and k = 0, . . . , n − 1, all of whose edges have length ≤ 1
in (Λ, T ) by the aforementioned property, i.e. are edges in the Cayley graph of
(Λ, T ).

Thus the loop has area ≤ n2. So δ(4n) ≤ n2, and thus δ(n) ≤ (n + 3)2/16 for
all n. �

In combination with Corollary 4.A.13, this yields

Corollary 4.A.15. If U o A is tame, and A ' Zd. Let SU be a compact gen-
erating subset of U such that for some primitive element v1 ∈ Zd acting as a
compaction of U with vacuum subset SU , we have v1 · SU ⊂ SU .

Then there exists a presentation by a compact subset SU ∪ T (T ⊂ D) with
relators of length ≤ 4 and Dehn function ≤ 3n2; moreover T can be chosen to
contain any prescribed finite subset T ′ of A and such that (2, SU , T ) is adapted in
the sense of Definition 4.A.9.

Proof. Complete v1 to a basis (v1, w2, . . . , wd) of A. Set vi = vk1wi with k large
enough so that vi(SU) ⊂ SU for all i. It follows that v = v1 . . . vd is a compaction
as well. Also, (vi) is a basis, allowing us to identify A with Zd.

If ` ≥ 1, consider the cube T` = {−`, . . . , `}d. Each element w of this cube can

be written in a unique way as vk
∏d

i=1 v
ni
i with −` ≤ k ≤ ` and infi ni = 0. It

follows that v`w ·(SU) ⊂ SU : indeed v`w = v`−k
∏d

i=1 v
ni
i is a product of elements,

each sending SU into itself.
If ` is chosen large enough, we can ensure, in addition, that T ′ ⊂ T` and

v`(SUSU) ⊂ SU . �

4.B. Tame subgroups and the grading.

4.B.1. Tame subgroups in a general setting. Let G be a locally compact group
with a fixed semidirect product decomposition G = U oA (we shall soon specify
the hypotheses).

Definition 4.B.1. A tame subgroup of G is a subgroup of the form V o A,
which is tame, i.e., in which some element of A acts on V as a compaction (in
the sense of Definition 2.E.6).
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Note that this definition depends on the fixed semidirect product decomposi-
tion of G. As shown in Abels’ seminal work [Ab87], the tame subgroups of G can
provide considerable information on the geometry of G.

For v ∈ A, if we define Uv as the contraction subgroup

(4.B.2)

{
x ∈ U : lim

n→+∞
v−nxvn = 1

}
,

then v acts as a compaction on Uv (this is [CCMT12, Prop. 6.17], but is much
more elementary when further assumptions will be made on U) and therefore
Uv o A is tame. We call this a essential tame subgroup. Finite intersections
of essential tame subgroups are called standard tame subgroups.

4.B.2. Tame subgroups and the grading for standard solvable groups. In order
to give a more precise description of tame subgroups, we now specify to the
case of standard solvable groups (although we will momentarily return to the
general setting in §4.E). We insist that the theory can be developed in a broader
context, but at the price of technicalities or difficulties we chose not to encounter,
our context being already very general.

So we assume that UoA is a standard solvable group in the sense of Definition
1.2. The Lie algebra u of U admits a grading in the weight spaceW = Hom(A,R),
introduced in §2.E.2. Define the set of weights of u as the finite subset Wu =
{α ∈ W : uα 6= {0}}.

We say that a subset of Wu is conic if it is of the form Wu ∩ C, with C an
open convex cone not containing 0. Let C be the set of conic subsets of Wu. If
C ∈ C, define

uC =
⊕
α∈C

gα;

this is a graded Lie subalgebra of u; clearly it is nilpotent. Let UC be the closed
subgroup of U corresponding to uC under the exponential map and GC = UCoA.
In particular, if v ∈ A, define H(v) = {α ∈ Wu : α(v) > 0}.

Lemma 4.B.3. The GH(v) are the essential tame groups of G; in particular,
they are finitely many. Every tame subgroup is contained in an essential tame
subgroup. The GC are the standard tame subgroups of G.

Proof. The automorphisms of U are conjugate, through the exponential map to
K-linear automorphisms of u; under this identification, Uv corresponds to the
sum of characteristic subspaces of the operator of conjugation by v associated
to eigenvalues of modulus < 1. By definition of the grading, this is exactly⊕
{α: α(v)<0} uα = uH(−v). Thus Uv = UH(−v). Thus the GH(v) are the essential

tame subgroups.
If V oA is a tame subgroup, some v acts on it as a compaction, and therefore

V ⊂ UH(−v) and thus V o A ⊂ GH(−v).
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For the last assertion, the finite intersection
⋂
iGH(vi) is equal to G⋂

iH(vi) and
thus each standard tame subgroup has the form GC . Conversely, fix C and let
us check that GC is a finite intersection of essential tame subgroups. First write
C as an intersection of open half-spaces {`i > 0} in W . Since C ∩Wu is finite,
it therefore reduces to a finite intersection, say {`ι > 0} ∩ Wu, where ι ranges
over a finite subset of indices. Since the image of A in W is cocompact, we
can suppose that each `i is of the form α 7→ α(vi). Thus C =

⋂
H(vi), and

GC =
⋂
GH(vi). �

Remark 4.B.4. Let U o A be a standard solvable group. The proof of Lemma
4.B.3 shows that G is tame if and only if 0 is not in the convex hull of the set of
weights, and if so, there exists v ∈ A with α(v) < 0 for all weights α. Note that
v cannot always be found in a fixed generating set of A.

4.C. Generating subset and length estimates. As in §4.B.2, let G = U oA
be a standard solvable group over K =

∏
j Kj.

If V is any finite length K-module, by norm on V we mean the supremum
norm, each Vj being endowed with a Kj-norm. As in the usual case of finite-
dimensional real vector spaces, all norms are equivalent. If U o A is a standard
solvable group, we can fix a norm on u and thus define a norm map on U through
the exponential. We call this a Lie algebra norm on U (beware that it is
generally not subadditive with respect to the group law; also note that we did
not require that it is submultiplicative with respect to the Lie bracket, although
this can always been assumed after multiplication by some positive scalar).

Another norm on U can be defined as follows: since Aut(U) is conjugate to
Aut(u) through the exponential map, the group U o Aut(U) can be viewed as a
linear algebraic group and in particular has a linear representation of U oA into
some GLq(K) (argue component by component if necessary), which is faithful
in restriction to U (its kernel is reduced to the centralizer of U in A). Then,
the group of matrices Mq(K) can be endowed with any submultiplicative norm,
endowing on U a norm, called a matrix norm on U .

Definition 4.C.1. Let G = U o A be a standard solvable group and (GC) its
standard tame subgroups (there are finitely many, by Lemma 4.B.3). We call
standard subset of G a subset of the form SU ∪ T , where SU =

⋃
C SC and

SC is the exponential of the closed 1-ball of uC for some fixed norm on u, and
T is a finite symmetric generating subset of A with unit. We will check that
such a subset is necessarily generating (Proposition 4.C.2), and will then call it
a standard generating subset.

Note that by Corollary 4.A.15, the standard generating subset can be chosen
so that GC has Dehn function ≤ 3n3, with respect to the set of relators consisting
of all relations of size ≤ 4.

Proposition 4.C.2. Let S0 = SU∪T be a standard subset of the standard solvable
group G = U oA. Let ‖ · ‖′ be a Lie algebra norm on U and ‖ · ‖ a matrix norm
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on U . Then S0 is a compact generating subset of G. Moreover, for u ∈ U and
v ∈ A we have

|uv|S ' log(‖u‖) ∨ |v|T ' log(‖u‖′) ∨ |v|T ,
where x ∨ y = max(x, y) and ' is asymptotic equivalence (Definition 2.A.1).

Proof. To avoid double subscripts, we write S instead of S0. Let us first show
|uv|S � log(‖u‖) ∨ |v|T . Clearly, |v|S = |v|T ≤ |uv|S. Besides, |u|S ≤ |uv|S +
|v|T ≤ 2|uv|S. Using the above matrix representation, the norm ‖ · ‖ of an
arbitrary element of G makes sense, so if K = sup{‖x‖ : x ∈ S±1}, we have,
for all x in the n-ball, ‖x‖ ≤ Cn, where C > 1 bounds the ‖ · ‖-norm of any
element of S. In other words, for every x we have |x|S ≥ log(‖x‖)/ log(C). So
|uv|S ≥ |u|S/2 ≥ log(‖u‖)/(2 log(C)).

Let us show log(‖u‖) ∨ |v|T � log(1 + ‖u‖′) ∨ |v|T . It follows from the more
precise statement that ‖u‖′ � 1 ∨ ‖u‖s for u ∈ U (s is the nilpotency length of
U). Since we can choose the norm on the Lie algebra to be the restriction of ‖ · ‖,
this means that ‖ log(u)‖ � 1∨‖u‖s. By the Baker-Campbell-Hausdorff formula,
log(u) is a polynomial of degree s in u, so the estimate follows.

Finally, let us show that |uv|S � log(‖u‖′) ∨ |v|T . Since |uv|S ≤ |u|S + |v|T , it
is enough to show that |u|S � log(‖u‖′) ∨ 1. By definition of SU , it contains the
elements of norm ‖ · ‖′ ≤ 1 in UC for every C.

Let us begin by the case when log(u) ∈ uα for some α 6= 0. We choose (once and
for all) vα ∈ T such that α(vα) > 0. If c = infα 6=0 α(vα) > 0, we therefore have,
for every n, ‖vnαuv−nα ‖′ ≤ e−cn‖u‖′. So if n ≥ log(‖u‖′)/c we have ‖vnαuv−nα ‖′ ≤ 1,
so vnαuv

−n
α ∈ S. If ‖u‖ ≥ 1 we deduce |u|S ≤ 1 + 2(log(‖u‖′)/c + 1); if ‖u‖ ≤ 1

we have |u‖′ ≤ 1.
Now let u be arbitrary. By Lemma 2.G.13, for some fixed constants k, K, we

can write u = u1 . . . uk with ‖ui‖′ ≤ K‖u‖, with ui ∈
⋃
α6=0 exp(uα). By the tame

case, we deduce that |u|S ≤ k(3 + 2(0 ∨ log(‖u′‖))/c) � 1 ∨ log(‖u′‖′). �

Now we consider a standard generating subset of G as in Definition 4.C.1. It
has the form

⋃
C SC ∪ T , where C ranges over standard tame subgroups. We

define S as the disjoint union

S =
⊔

SC t T

and will mainly estimate areas inside the free group FS.
There exists m such that for every C, (m,SU , T ) is adapted (in the sense of

Definition 4.A.9) to GC and some compaction vC for every C. Fixing such m and
vC , we have a well-defined map, as in Definition 4.A.12

UC → FS(4.C.3)

x 7→ x = vmnC sv−mnC ∈ FS,
where s is the letter in SU equal to in GC to v−mnC xvmnC . Define

FU = {x : x ∈ UC , C ∈ C ⊂ FS}.
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Let FD ⊂ FT be a combing of A (in the sense of Definition 2.D.3); since we
assume that T contains a basis (t1, . . . , td) of A, we can define F as the set of

words of the form
∏k

i=1 t
ni
i . In terms of combings, the proof of Proposition 4.C.2

essentially shows the following.

Proposition 4.C.4. Under the above assumptions, if Z is a 1-combing of A then
F = FU ∪ Z is a combing of G.

Proof. Fix a Lie algebra norm on U , and thus on each UC by restriction. If
u ∈ U , as in the proof of Proposition 4.C.2, write u = u1 . . . uk, with ui ∈ UCi

and ‖ui‖ ≤ K‖u‖, so |ui| ≤ K ′|u| by Proposition 4.C.2. Then u = π(
∏d

i=1 ui).
We have |ui|S ≤ 2m|ui|S + 1 ≤ (2m+ 1)|ui|S ≤ (2m+ 1)K ′|u|S. It readily follows
that F is a (k + 1)-combing of π. �

4.D. Conclusion in the strongly 2-tame case.

Theorem 4.D.1. Let G = U o A be a strongly 2-tame standard solvable group.
Then G has a linear or quadratic Dehn function (linear precisely when A has
rank one).

Remark 4.D.2. Theorem 4.D.1 is actually a corollary of Theorem 4.L.1, because
for a strongly 2-tame group, we have Kill(u)0 = 0 (because Kill(u)0 is a quotient
of (u⊗u)0 which is itself trivial if u is strongly 2-tame). The point is that Theorem
4.L.1 is considerably more difficult: it requires the remainder of this section as
well as the algebraic treatment of Sections 5 and 6.

Proof of Theorem 4.D.1. If A has rank one, then G is tame and thus hyperbolic,
see Remark 4.A.6.

Now let us prove the quadratic upper bound. We argue by induction on the
length ` of u as a K-module. If ` ≤ 2, then G is tame, hence has an at most
quadratic Dehn function.

Assume now that ` ≥ 2 and the result is proved for lesser `. We nearly use the
combing from §4.C: we restrict to words of the form gsg−1 where s ∈ exp(uα) for
some α. By Lemma 2.G.13, this is a combing as well (for an arbitrary standard
solvable group).

Fix a weight β of u/[u, u]. Let v be the kernel of the projection u→ (u/[u, u])β;
this is a graded ideal in u and let V be the corresponding subgroup.

Consider a word of the form
∏c

i=1 xi, where xi ∈ exp(uαi
). Given one i such

that αi = β, we shuffle it to the left. The cost is the appearance of elements of
the form [xi, xj]. Fix C such that xi and xj belong to UC . We can change, with at

most quadratic cost [xi, xj] into [xi, xj] (where [xi, xj] is defined in GC), because

the loop [xi, xj][xi, xj]
−1

entirely lies in GC , and GC has an at most quadratic
Dehn function by Corollary 4.A.5.

We do this successively for each i such that αi = β. This, after a bounded
number of operation (depending on c), each with quadratic cost, we obtain a
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word of the form
∏

i∈I xiz where I = {i : αi = β and z is a product of elements
xi for i /∈ I and of commutators. Note that #(I) ≤ c. Thus z represents an
element of V .

Now, since all xi are contained in a single GC , we can change, with at most
quadratic cost,

∏
xi into an element y, representing an element y. Since yz

represents the identity, y ∈ V . Since y has the form gsg−1 with g a word in A
and s a conjugate of y, we deduce that the loop yz is entirely contained in V .

We finally use induction and the fact that V o A is also strongly 2-tame, to
argue that V oA has an at most quadratic Dehn function. Thus the loop yz has
an at most quadratic size, so the the original loop has an at most quadratic size,
provided c is bounded. So, using Gromov’s trick (Proposition 2.D.7), we deduce
that G has an at most quadratic Dehn function. �

4.E. Abels’ multiamalgam. Let G be any group and consider a family (Gi) of
subgroups. We call multiamalgam (or colimit) an initial object in the category
of groups H endowed with homomorphisms H → G and Gi → H, such that all
composite homomorphisms Gi → H → G are equal to the inclusion. Such an
object is defined up to unique isomorphism commuting with all homomorphisms.
It can be explicitly constructed as follows: consider the free product H of all
Gi, denote by κi : Gi → H the inclusion and mod out by the normal subgroup
generated by the κi(x)κj(x)−1 whenever x ∈ Gi ∩Gj. If the family (Gi) is stable
under finite intersections, it is enough to mod out by the elements of the form
κi(x)κj(x)−1 whenever x ∈ Gi and Gi ⊂ Gj. Clearly, the multiamalgam does not
change if we replace the family (Gi) by a larger family (G′j) such that each G′j is
contained in some Gi; in particular it is no restriction to assume that the family
is closed under intersections. Also, the image of Ĝ→ G is obviously equal to the
subgroup generated by the Gi.

Remark 4.E.1. Our (and, originally, Abels’) motivation in introducing the mul-
tiamalgam is to obtain a presentation of G. Therefore, in this point of view, the
ideal case is when Ĝ → G is an isomorphism. In many interesting cases, which
will be studied in the sequel, Ĝ→ G is a central extension.

At the opposite, if the Gi have pairwise trivial intersection, the multiamalgam
of the Gi is barely the free product of the Gi, and this generally means that the
kernel of Ĝ→ G is “large”.

Example 4.E.2. Consider a group presentation G = 〈S | R〉 in which every
relator involves at most two generators. If we consider the family of subgroups
generated by 2 elements of S, the homomorphism Ĝ → G is an isomorphism.
Instances of such presentations are presentations of free abelian groups, Coxeter
presentations, Artin presentations.

Lemma 4.E.3. In general, let G be any group, (Gi) any family of subgroups.
Suppose that each Gi has a presentation 〈Si | Ri〉 and that Si∩Sj generates Gi∩Gj

for all i, j. Then the multiamalgam of all Gi has a presentation with generators
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Si, relators

⊔
Ri and, for all (i, j) the relators of size two identifying an element

of Si and of Sj whenever they are actually equal (if (Gi) is closed under finite
intersections, those (i, j) such that Gi ⊂ Gj are enough).

Proof. This is formal. �

Following a fundamental idea of Abels, we introduce the following definition.

Definition 4.E.4. Let G be a locally compact group G with a semidirect product
decomposition G = U o A (as in §4.B). Consider the family (GC = UC o A)C∈C
of its tame subgroups V o A. Let Û be the multiamalgam of the UC ; it admits
a natural action of A, and we define Ĝ = Û o A.

Remark 4.E.5. By an easy verification, Ĝ is the multiamalgam of the GC .

4.F. Algebraic and geometric presentations of the multiamalgam. Let
G = U o A be a standard solvable group and (GC) the family of its standard
tame subgroups, GC = UC o A.

Consider the free product H =∗C UC . There is a canonical surjective homo-
morphism p : H → Û . Besides, there are canonical homomorphisms iC : UC →
H, so that p ◦ iC is the inclusion UC ⊂ Û .

The following lemma is an immediate consequence of the definition.

Lemma 4.F.1 (Algebraic presentation of the multiamalgam). The multiamalgam

Û is, through the canonical map p, the quotient of H by the normal subgroup
generated by pairs iC1(x)iC2(x)−1 where (C1, C2) ranges over pairs such that C1 ⊂
C2 and x ranges over UC1.

Our goal is to translate this presentation into a compact presentation of Ĝ.
To this end, using the notation from Definition 4.C.1, recall that S denotes the
disjoint union S =

⊔
C SC tT and FS the free group over S. There is a canonical

surjection
π : FS → H o A,

and by composition, p◦π is a canonical surjection FS → Û . If ιCi
is the inclusion

of SCi
into FS, then p ◦ π ◦ ιCi

is the inclusion of SCi
into Û .

Let us introduce some important sets of elements in the kernel of the map
FS → Û . We fix a presentation of A over T , including all commutation relators
between generators.

• Rtame =
⋃
C Rtame,C , where

⋃
C Rtame,C consists of all elements in Ker(π)∩

FTtSC
.

• R1
tame =

⋃
C R

1
tame,C , where R1

tame,C consists of all elements in Rtame,C that
are relators in the presentation of GC given in Corollary 4.A.13, as well
as the relators in Rtame,C of length two;

• Ramalg consists of the elements of the form iC1(x) iC2(x)
−1

, where (C1, C2)
ranges over pairs such that C1 ⊂ C2 and x ranges over UC1 . Here, for
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z ∈ UC for prescribed C, z is defined as in (4.C.3). We call these amal-
gamation relations;
• R1

amalg consists of those tame relations for which x ∈ SC1 . These are word
of length at two. We call these amalgamation relators.

Proposition 4.F.2 (Geometric presentation of the multiamalgam). The multia-

malgam Û is, through the canonical map p ◦ π, the quotient of FS by the normal
subgroup generated by R1

tame ∪R1
amalg.

Proof. It is a general fact that if a group Γ is presented by a symmetric generating
set Σ containing the unit and a set Π of relators, written as words over Σ, then
the kernel of the natural projection from FΣ to Γ is generated by Π as well as
the relation of length ≤ 2, namely those saying that the unit element (which is a
formal generator in FΣ) equals 1, and those saying that any two inverse elements
are actually inverse.

It therefore follows that the kernel of FS → H o A is generated by Rtame; by
Corollary 4.A.13 Rtame,C is contained in the normal subgroup generated by R1

tame,
and therefore the kernel of FS → H o A is generated by R1

tame.

By Lemma 4.F.1, the kernel of the canonical map H o A → Ĝ is generated,
as a normal subgroup by elements of the form iC1(x)iC2(x)−1 when C1 ⊂ C2 and
x ∈ UC1 . Actually, those x in SC1 are enough. Indeed, if N is a normal subgroup
of H o A, the set of x ∈ UC1 such that iC1(x) = iC2(x) modulo N is a subgroup
M normalized by A, so if M contains SC1 then M contains UC1 .

Since R1
amalg contains a lift in FS of a subset normally generating the kernel of

H o A → Ĝ, and since R1
tame normally generates the kernel of FS → H o A, it

follows that R1
tame ∪R1

amalg normally generates the kernel of FS → Ĝ. �

Proposition 4.F.3 (Quadratic filling of tame and amalgamation relations). For
the presentation

〈S | R1
tame ∪R1

amalg〉

of Ĝ, the tame and amalgamation relations have an at most quadratic area with
respect to their length.

Proof. The tame relations have an at most quadratic area by Corollary 4.A.13.

Let us consider an amalgamation relation. It has the form w = iC1(x) iC2(x)
−1

for some x ∈ UC1 and C1 ⊂ C2. The letters of xC1 are in T except one, s, in
SC1 . Perform the amalgamation relator which replaces s by its identical element
in SC2 . This replaces, with cost one, w by a null-homotopic word w′ of the same
length, entirely consisting of letters in SC2 t T . By Corollary 4.A.13, GC2 has an
at most quadratic Dehn function, so w′ has an at most quadratic area. �

Proposition 4.F.2 is a first step towards a compact presentation of G.
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4.G. Presentation of the group in the 2-tame case. The following two
theorems, which use the notion of 2-tameness introduced in Definition 2.E.8, are
established in Section 6 (Theorem 6.D.2 and Corollary 6.D.3), relying on Section
5.

Theorem 4.G.1 (Presentation of the group, weak form). Assume that G = UoA
is a 2-tame standard solvable group. Then the homomorphism Ĝ → G has a
central kernel. If moreover the degree zero component of the second homology
group H2(u)0 vanishes, the kernel of Ĝ→ G is generated by elements of the form

exp([λx, y]) exp([x, λy])−1, x, y ∈
⋃
C

(UC)j, λ ∈ Kj, j = 1 . . . , τ.

We pinpoint the striking fact that H2(u)0 = {0} does not imply that Ĝ→ G is
an isomorphism. This was pointed out by Abels [Ab87, 5.7.4], and relies on the

fact that the space HQ
2 (u)0 of 2-homology of u, viewed as a (huge) Lie algebra

over the rationals, can be larger than H2(u)0. On the other hand, the fact that

Ĝ → G has a central kernel is a new result, even in Abels’ framework (u finite

length Lie algebra over Qp); Abels however proved that Û is (s+ 1)-nilpotent if
U is s-nilpotent and this is a major step in the proof.

The elements exp([λx, y]) exp([x, λy])−1 correspond to certain loops in G, which
we call welding relations. They will be defined more precisely in §4.H.

Theorem 4.G.1 provides a nice presentation of G, whose Dehn function we
bound in the remainder of this section. The basic idea is to reduce the computa-
tion of the Dehn function to area estimates of relations of a special form. However,
this reduction requires a stronger statement. In short, this stronger statement
asserts that the theorem holds over R-algebras. Let us make this more precise.
We can view U as the group of K-points of U, where U is an affine algebraic
group over the ring K =

∏
Kj. Thus, for every commutative K-algebra A, U(A)

is the group associated to the nilpotent Lie Q-algebra u ⊗K A. Similarly, UC is

defined so that UC(A) ⊂ U(A) is the exponential of uC ⊗K A, and we define Û(A)
as the corresponding multiamalgam of the UC(A).

Theorem 4.G.2 (Presentation of the group, strong (stable) form). Assume that
G = U o A is a 2-tame standard solvable group. Then for every K-algebra A,

the homomorphism Û(A) → U(A) has a central kernel. If moreover the zero
degree component of the second homology group H2(u)0 vanishes, the kernel of

Û(A)→ U(A) is generated by elements of the form

exp([λx, y]) exp([x, λy])−1, x, y ∈
⋃
C

Uj,C(A), λ ∈ Aj, j = 1 . . . , τ.

Note that Theorem 4.G.1 is equivalent to the case A = K of Theorem 4.G.2,
given the trivial observation that the kernel of Ĝ→ G and Û → U coincide.
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4.H. Welding relations and compact presentation of G. In order trans-
late Theorem 4.G.1 into the group-theoretic setting, we need to recall Lazard’s
formulas. Here we state them as follows.

Theorem 4.H.1 (Lazard [La54]). For every s ≥ 1, there exist group words
As, Bs ∈ F2 and positive integers qs, q

′
s, such that for every simply connected s-

nilpotent Lie group G with Lie algebra g, and all x, y ∈ G, writing X = log(x) ∈ g,
Y = log(y) ∈ g, we have

log(As(x, y)) = qs(X + Y ) and log(Bs(x, y)) = q′s[X, Y ]

Here A stands for Add, and B for Bracket.

Remark 4.H.2. We see that we have the formal equality of group wordsAs(x, 1) =
xqs . Indeed, As(x, 1) has the form x` for some `, and by evaluation in R we obtain
` = qs. Similarly, we have the formal equality Bs(x, 1) = 1.

Corollary 4.H.3. In every s-nilpotent group G, abbreviating A = As, B = Bs,
q = qs, we have identities ∀x, y, z,

A(x, y) = A(y, x); B(x, y) = B(y, x)−1 ;

B(A(x, y), z) = A(B(x, z), B(y, z)) ;

A(A(x, y), zq) = A(xq, A(y, z)) ;

B(xk, y) = B(x, yk) = B(x, y)k ∀k ∈ Z.

Proof. If G is a simply connected nilpotent Lie group, this follows from the
corresponding identities in the Lie algebra: commutativity of addition, anti-
commutativity of the bracket, distributivity, associativity of addition; in the last
equality if follows from the fact that log(xk) = k log(x). Therefore this holds in
every subgroup of such a group G, and in particular in any finitely generated free
s-nilpotent group, and therefore in any nilpotent group, by substitution. �

We can now restate the second statement of Theorem 4.G.1 with no reference
to the Lie algebra in the conclusion:

Theorem 4.H.4 (Compact presentation of G). Let G = U o A be a 2-tame
standard solvable group such that H2(u)0 = {0}. Choose s so that U is s-nilpotent.

Then the (central) kernel of Ĝ→ G is generated by elements of the form

Bs+1(xλ, y)Bs+1(x, yλ)−1, x, y ∈
⋃

Uj,C , λ ∈ Kj, j = 1 . . . , τ,

where xλ denotes exp(λ log(x)).

We can view the elements

Bs+1(xλ, y)Bs+1(x, yλ)−1

as elements of the free product H = ∗C GC ; now x, y range over the disjoint
union x, y ∈

⊔
Uj,C . We call these welding relations in the free product H.
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By substitution, it gives rises to the set of relations in FS

(4.H.5)

Rweld =

{
Bs+1

(
xλ, y

)
Bs+1

(
x, yλ

)−1

: x, y ∈
⊔

Uj,C , λ ∈ Kj, j = 1 . . . , τ

}
.

in the free group FS. We call these welding relations. We define the set R1
weld of

welding relators as those welding relations for which ‖x‖′, ‖y‖′, |λ| ≤ 1, where
‖ · ‖′ is the prescribed Lie algebra norm.

It follows from Corollary 5.C.9 that G has a presentation with relators those of
Ĝ (given in Lemma 4.E.3) along with welding relators. At this point, this already
reproves Abels’ result.

Corollary 4.H.6 (Abels). If the standard solvable group G is 2-tame and H2(una)0 =
{0}, then G is compactly presented.

Proof. Since G is compactly presented if and only if G/G0 is compactly presented,
we can assume that G is totally disconnected, so H2(u)0 = {0} by assumption.

The above remarks show that if π′ is the natural projection FS → Ĝ, then
π′(R1

weld) generates normally the kernel of Ĝ → G. Therefore, by Proposition
4.F.2, G admits the compact presentation

〈S | R1
tame ∪R1

amalg ∪R1
weld〉. �

Remark 4.H.7. Let us pinpoint that this does not coincide, at this point, with
Abels’ proof. Abels did not prove that the kernel of Ĝ → G is generated by
welding relators. Instead (assuming that G is totally disconnected), he considered

the multiamalgamated product U̇ of Û and a suitable compact open subgroup
Ω of U , and Ġ = U̇ o A. Namely, Ω is the subgroup generated by SU ; it has
to be verified that it is indeed open, by a routine verification. It follows that
Ω is generated by those intersections Ω ∩ UC , so that Û → U̇ and Ĝ → Ġ are
surjective. It also easily follows from the definition that Ġ is the quotient of
Ĝ by the subgroup generated by generators of bounded length (this uses that
Ω is actually boundedly generated by SU , as we see using the Baire category
theorem). There is a natural projection Ġ→ G. Since welding relators are killed
by the amalgamation with Ω, we know that the natural projection Ġ→ G is an
isomorphism. Not having the presentation by welding relators, Abels used instead
topological arguments [Ab87, 5.4, 5.6.1] to reach the conclusion that Ġ → G is
indeed an isomorphism.

This approach, with the use of a compact open subgroup is, however, “unsta-
ble”, in the sense that it does not yield a presentation of U(A) o A when A is
an arbitrary commutative K-algebra, and the presentation with welding relators
will be needed in the sequel in a crucial way when we obtain an upper bound on
the Dehn function.
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4.I. Quadratic estimates. In order to bound the area of welding relations, we
first need to prove that certain families of loops have a quadratic filling. Denote
by Fc the free group on c generators. Refer to §4.B.2 for the definition of the
cones UC .

Theorem 4.I.1. Let G = U o A be a standard solvable group. Assume that G
is 2-tame and U is s-nilpotent. Then for every group word w(x1, . . . , xc) that

belongs to the (s + 2)-th term F
(s+2)
c of the descending central series of the free

group Fc, and for any u1, . . . , uc in
⊔
C UC, the relation w(u1, . . . , uc) in Ĝ has an

at most quadratic area with respect to its total length (the constant not depending
on c).

Intuitively, the statement is that the formal relations of (s + 1)-nilpotency,

evaluated in U , have an at most quadratic area in Ĝ (and therefore in G). (Note
that we consider the abstract disjoint union

⊔
Ui whose elements are elements u

in some UC along with the datum of C; in particular u is well-defined.)
The proof of Theorem 4.I.1 uses, as an essential and new feature, the fact that

(s + 1)-nilpotency of Û is a result that is “stable under passing to K-algebras”.
That is, it is not enough to use Theorem 4.G.1, but we need its “stable” version,

Theorem 4.G.2. Precisely, we use that Û(A) is (s+ 1)-nilpotent. (The full result

of Theorem 4.G.2 — not only the nilpotency of Û(A) — will be used in §4.K.)
We begin by a discussion, including some notation that will be used in the

proof of Theorem 4.I.1. Our goal here is to pinpoint the difficulties we have to
encounter, so that the strategy developed in the proof of Theorem 4.I.1 comes up
naturally.

Write C = {C1, . . . , Cν}, and write Uj = UCj
and Uj = UCj

. Fix 1 ≤
℘1, . . . , ℘c ≤ ν and ℘ = (℘1, . . . , ℘c). Since there are finitely many ℘ (for a given
c), it is enough to prove that for each ℘, for every (u1, . . . , uc) ∈ L℘ =

∏
i U℘i

,

the relation w(u1, . . . , uc) in Ĝ has an at most quadratic area with respect to its
total length.

Let us first work in the free product H of the Ui. The amalgam Û is the
quotient of H by a finite number of family of amalgamation relators, namely: for
every pair (j′, j) with Cj′ ⊂ Cj, define Rj′,j as set of words r′r−1, where r′ ∈ Uj′
and r is its image in Uj by the natural inclusion. By definition Ramalg is the union
of all Rj′,j in H; also define V as the union of all Uj in H.

By Theorem 6.D.1, Û is (s+1)-nilpotent. Thus, for all (x1, . . . , xc) ∈ L℘, there
exist integers m,µ, elements gk` in V , 1 ≤ k ≤ m, 1 ≤ ` ≤ µ, and amalgamation
relators rk ∈ R such that, setting

gk =

µ∏
`=1

gk`,
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we have, in H

w(x1, . . . , xc) =
m∏
k=1

gkrkg
−1
k .

A problem is that this provides m,µ depending on (x1, . . . , xc). To obtain them
uniformly, we use the fact that the hypotheses of the theorem are preserved when
passing to some suitable algebras of functions. To make this statement clear, let
us be more explicit.

If A is any K-algebra, let U(A) and Û(A) be defined as in §4.G. For any
commutative K-algebra, define H[A] as the free product of the UC(A) (it is a
priori not representable by a group scheme). Applying this to relators, we can
write, in an obvious natural way, Rj′,j = Rj′,j(K) and thus define R(A) as the
union in H[A] of the Rj′,j(A), for any commutative K-algebra A. Also define
V(A) as the union of all Uj(A) in H[A]. Define L℘(A) =

∏
iU℘i

(A), so that
L℘ = L℘(K).

We apply Theorem 6.D.1 to the product algebra A = KY , where Y is an

abstract set. It states that Û(A) is (s + 1)-nilpotent. Observe the obvious iden-
tifications

(4.I.2) Uj(A) = UY
j , L℘(A) = (L℘)Y , R(A) = RY .

This yields, for every (f1, . . . , fc) ∈ LY with fi ∈ U℘i
(A) = (U℘i

)Y the existence
of integers m,µ, elements hk` in V(A), 1 ≤ k ≤ m, 1 ≤ ` ≤ µ, and amalgamation
relators rk ∈ R(A) such that, setting

hk =

µ∏
`=1

hk`,

we have

(4.I.3) w(f1, . . . , fc) =
m∏
k=1

hkρkh
−1
k .

Now pick Y to be of large enough cardinality (continuum is enough), and apply
this to a single (f1, . . . , fc) with each (f1, . . . , fc) surjective as a function from Y
to L℘ =

∏
U℘i

. By substitution, we deduce that for all x1, . . . , xc with xi ∈ U℘i
,

there exist gk` in V , 1 ≤ k ≤ m, 1 ≤ ` ≤ µ, and amalgamation relators rk ∈ R
such that, setting gk =

∏µ
`=1 gk`, we have

w(x1, . . . , xc) =
m∏
k=1

gkrkg
−1
k .

This solves the problem of uniformity for m. However, to prove the theorem,
we need to control the size of rk in terms of the size of x. We achieve this by
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replacing KY by an algebra of functions with a suitable growth condition. We
can now pass to the proof, properly speaking.

Proof of Theorem 4.I.1. We keep Y to be a large abstract set. Endow K with the
supremum norm. Define the algebra PY as the set of functions f : (Y ×R≥0)→ K
growing at most polynomially, uniformly in Y , i.e. satisfying

∃α > 0, ∀t ≥ 0, ∀y ∈ Y, ‖f(y, t)‖ ≤ (2 + t)α.

Consider the faithful linear representation of U into GLq of §4.C and the norm
in Mq(K) defined there, so that the norm ‖ · ‖ of any element of U makes sense.

Define f = (f1, . . . , fc) : (Y ×R≥0)→ L℘ =
∏
U℘i

in such a way that

• ‖fi(y, t)‖ ≤ t for all (y, t) ∈ Y ×R≥0;
• for every (x1, . . . , xc) ∈ L, there exists y ∈ Y such that

fi(y,max
i
‖xi‖) = xi

for all i.

To construct such a f , pick injectively some y = y(x) for each x = (x1, . . . , xc),
define f(y(x),max ‖xi‖) = x and define f(y, t) = 0 for every (y, t) not of the form
(y(x),max ‖xi‖). By the first condition, f ∈ L℘(PY ).

We now use the statement of (4.I.3) with A replaced by PY , applied to (f1, . . . , fc).
This shows that there exist m,µ and α > 0 such that for every (x1, . . . , xc)
with xi ∈ Ui, there exist gk` in V with ‖gk`‖ ≤ supi(2 + ‖xi‖)α, 1 ≤ k ≤ m,
1 ≤ ` ≤ µ, and amalgamation relators rk = r′kr

′′
k
−1 ∈ R with both letters of norm

≤ supi(2 + ‖xi‖)α such that, setting gk =
∏µ

`=1 gk`, we have

(4.I.4) w(x1, . . . , xc) =
m∏
k=1

gkrkg
−1
k .

Now consider x1, . . . , xc with xi ∈ UCi
. Consider (gk`) and rk as in (4.I.4). Set

gk =
∏µ

`=1 gk`, and define rk similarly. Formula (4.I.4) means that the word

(4.I.5) $ = w(x1, . . . , xc)
−1

m∏
k=1

gkrkgk
−1

represents the identity in the free product H. We need to estimate its length:
since each of the r′k, r

′′
k and gk` have norm ≤ supi(2 + ‖xi‖)α, by Proposition

4.C.2, rk and gk have length linearly bounded above in terms of supi |xi|. So $
has length linearly bounded in terms of supi |xi|.

By Lemma 2.D.1, the area of $ is quadratically bounded in terms of sup |xi|.
Therefore, to prove that w(x1, . . . , xc) has a quadratic area, it is enough to check
that each rk has a quadratic area. Recall from Corollary 4.A.5 that each Ui oA
has a quadratic Dehn function. The loop defined by the path rk lies inside some
Ui o A; therefore, using again that the length of rk is linearly bounded in terms
of supi |xi|, its area is quadratically bounded. Thus the area of w(x1, . . . , xc) has
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a quadratic area in terms of its total length (which is ≥ supi |xi|, since we can
assume that w is not the trivial word). �

4.J. Area of welding relators. Here we prove the following

Theorem 4.J.1. If the standard solvable group G = U o A is 2-tame, then
welding relations in G have an at most cubic area.

More precisely, there exists a constant K such that for all j, all x, y ∈
⋃
C Uj,C,

and all λ ∈ Kj, the welding relation (4.H.5) has area at most Kn3, with n =
log(1 + ‖x‖+ ‖y‖+ |λ|).

Let us assume that the subgroup U , in Theorem 4.J.1, is s-nilpotent. In all
this subsection, we write A = As+1, B = Bs+1, q = qs+1. Theorem 4.I.1 applies
to the group words corresponding to equalities of Corollary 4.H.3, providing

Proposition 4.J.2. If G is 2-tame and s-nilpotent, for all x ∈ UC1, y ∈ UC2 and
z ∈ UC3, the relations

A(x, y) = A(y, x); B(x, y) = B(y, x)−1

B(A(x, y), z) = A(B(x, z), B(y, z));

A(A(x, y), zq) = A(xq, A(y, z))

B(xk, y) = B(x, yk) = B(x, y)k

have an at most quadratic area in Ĝ. �

Note that in the last case, the quadratic upper bound is of the form ckn
2, where

ck may depend on k.
We now proceed to prove Theorem 4.J.1. Using (with quadratic cost) the

“bilinearity” of B (or restricting scalars from the beginning), we can suppose
that Kj is equal to R or Qp (although the forthcoming argument can be adapted
with unessential modifications to their finite extensions). If Kj = Qp, define
πj = p. If K = R, define πj = 2. Define Λ1

j(n) ⊂ Q as

Λ1
j(n) =

{
λ =

n−1∑
i=0

εiπ
i
j : εi ∈ {−πj + 1, . . . , πj − 1}

}
.

Lemma 4.J.3. For every κ, there exists K such that for all n, all j, all x, y ∈⋃
Uj,C with log(1 + ‖x‖+ ‖y‖) ≤ n and all λ ∈ Λj

1(κn), the welding relation

B
(
xλ, y

)
B
(
x, yλ

)−1

has area ≤ Kn3.

Proof. We can work for a given j, so we write π = πj. Write

λ =
κn−1∑
i=0

εiπ
i
j (εi ∈ {−πj + 1, . . . , πj − 1}).
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If we set

λi =
κn−1∑
j=i

εjπ
j−i,

we have λ0 = λ, λκn = 0, and, for all i

λi = πλi+1 + εi

Set z = q−1y and σi =
∑i

j=1 εiπ
i (so σ−1 = 0); consider the word

Φi = A
(
B
(
λix, πiz

)
, B (x, σi−1z)

)
Here, for readability, we write λx (etc.) instead of xλ. This is natural since x

can be identified to its Lie algebra logarithm. For i = 0, σi−1 = 0 so, since 1 = 1
and, formally, B(x, 1) = 1 and A(x, 1) = xq (see Remark 4.H.2), we have

Φ0 = B
(
λx, z

)q
.

For i = κn, λn = 0 and σi−1 = λ so this is (using that formally B(1, y) = 1
and A(1, y) = yq)

Φκn = B
(
x, λz

)q
.

Let us show that we can pass from Φi to Φi+1 with quadratic cost. In the
following computation, each  means one operation with quadratic cost, i.e.,
with cost≤ K0n

2 for some constant K0 only depending on the group presentation.
The tag on the right explains why this quadratic operation is valid, namely:

• (1) means both the homotopy between loops lies in one tame subgroup.
• (2) means the operation follows from Proposition 4.J.2; to be specific:

– (2)distr left for

B(A(x, y), z) = A(B(x, z), B(y, z))

and similarly (2)distr right on the right

– (2)Q for an equality of the type

B(x, yk) = B(xk, y) = B(x, y)k,

with k an integer satisfying |k| ≤ max(q, π).
– (2)assoc for the identity A(A(x, y), zq) = A(xq, A(y, z)).

• Or a tag referring to a previous computation, written in brackets.

λix = q(πλi+1q−1x+ εiq−1x)(4.J.4)

 
(
πλi+1q−1x+ εiq−1x

)q
(1)

 
(
πλi+1q−1x+ εiq−1x

)q
(1)

 A
(
πλi+1q−1x, εiq−1x

)
(1)
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So by substitution we obtain

B
(
λix, πiz

)
 B

(
A
(
πλi+1q−1x, εiq−1x

)
, πiz

)
[4.J.4]

(4.J.5)

 A
(
B
(
πλi+1q−1x, πiz

)
, B
(
εiq−1x, πiz

) )
(2)distr left

 A
(
B
(
πλi+1q−1x, πiz

)
, B
(
q−1x, εiπiz

) )
(2)Q

Independently we have

B (x, σi−1z) B
(
q−1x

q
, σi−1z

)
(1)(4.J.6)

 B
(
q−1x, σi−1z

)q
(2)Q

Again by substitution, this yields

Φi =A
(
B
(
λix, πiz

)
, B (x, σi−1z)

)(4.J.7)

 A
(
A
(
B
(
πλi+1q−1x, πiz

)
, B
(
q−1x, εiπiz

) )
, B
(
q−1x, σi−1z

)q)
[4.J.5, 4.J.6]

 A
(
B
(
πλi+1q−1x, πiz

)q
, A
(
B
(
q−1x, εiπiz

)
, B
(
q−1x, σi−1z

)))
(2)assoc

 A
(
B
(
πλi+1q−1x, πiz

)q
, B
(
q−1x,A

(
εiπiz, σi−1z

)))
(2)distr right

(4.J.8)

By similar arguments

B
(
πλi+1q−1x, πiz

)q (2)Q
 B

(
λi+1x, πi+1z

)
,

and

B
(
q−1x,A

(
εiπiz, σi−1z

))
 B

(
q−1x, q(εiπiz + σi−1z)

)
(1)

 B
(
x, εiπiz + σi−1z

)
(2)Q

=B (x, σiz)

so substituting from (4.J.8) we get

Φi  A
(
B
(
λi+1x, πi+1z

)
, B (x, σiz)

)
= Φi+1
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in quadratic cost, say ≤ K1n
2 (noting that each Φi has length ≤ K2n for some

fixed constant K2). Note that the constant K1 only depends on the group pre-
sentation, because the above estimates use a quadratic filling only finitely many
times, each among finitely many types (note that we used (2)Q only for k in a
bounded interval, only depending on K and s).

It follows that we can pass from Φ0 to Φκn with cost ≤ K1κn
3. On the other

hand, by substitution of type (2)Q, we can pass with quadratic cost from B(λx, y)

to B(λx, q−1y)q = Φ0 and from Φκn = B(x, λq−1y)q to B(x, λy). So the proof of
the lemma is complete. �

Conclusion of the proof of Theorem 4.J.1. Let now Λ2
j(n) be the set of quotients

λ′/λ′′ with λ′, λ′′ ∈ Λ1
j(n), λ′′ 6= 0. Lemma 4.J.3 immediately extends to the case

when λ ∈ Λ2
j . It follows from the definition that Λ2

j(κn) contains all elements of

the form λ =
∑κn

i=−κn εiπ
i
j, with εi ∈ {−πj, . . . , πj}.

If Kj = R, πκnj Λ2
j(κn) contains all integers between −π−2κn

j and π2κn
j . Thus

Λ2
j(κn) contains a set which is |π−κn|-dense in the ball of radius |πκn|. If Kj =

Qp, π
κnΛ2

j(κn) contains a |π2κn|-dense subset of Zp. Thus Λ2
j(κn) contains a

|πκn|-dense subset of the ball of radius |π−κn|. In both cases, defining %j =
max(|πj|, |πj|−1), we obtain that Λ2

j(κn) contains a %−κnj -dense subset of the ball
of radius %κnj in Kj.

We now fix j and write % = %j, π = πj. We pick κ = 2/ log(%), so that
%κn = e2n. We assume that n ≥ log(1/|q|), where |q| is the norm of q in Kj (if
Kj = R this is an empty condition). It follows that %−κn|q|−1en ≤ 1.

Now fix λ ∈ Kj with |λ| ≤ en. We need to prove that we can pass from

B(λx, y) to B(x, λy) with cubic cost; clearly it is enough to pass from B(λx, y)q

to B(x, λy)q with cubic cost.
Since |λ| ≤ en ≤ %κn, we can write λ = µ+qε with µ ∈ Λ2(κn) and |qε| ≤ %−κn.

So |ε| ≤ %−κn|q|−1 ≤ e−n.
Also, assume that n ≥ log(%). So we can find an integer k with n/ log(%) ≤ k ≤

2n/ log(%). Thus, if we define η = π±k, with the choice of sign so that |η| > 1;
we have en ≤ |η| ≤ e2n ≤ en|ε|−1.

Using a computation as in (4.J.4), we obtain, we quadratic cost

B(λx, y) =B
(

(µ+ qε)x, y
)

 B
(
A(µq−1x, εx), y

)
[4.J.4]

 A
(
B
(
µq−1x, y

)
, B(εx, y)

)
(2)distr left

and similarly, with quadratic cost.

B
(
x, λy

)
 A

(
B(x, µq−1y), B(x, εy)

)
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By the previous case, with cubic cost we have

B
(
µq−1x, y

)
 B

(
x, µq−1y

)
So it remains to check that with cubic cost we have

(4.J.9) B(εx, y) B(x, εy).

If η is the element introduced above, observe that η ∈ Λ2
j(κn) and en ≤ |η| ≤

en|ε|−1. We have, with cubic cost

(4.J.10) B(εx, y) B(ηεx, η−1y); B(η−1x, ηεy) B(x, εy).

Since max(|ηε|, |η|−1) ≤ e−n, it follows that all four elements ηεx, η−1y, η−1x,
εy have norm at most one, and it follows that we can perform

(4.J.11) B
(
ηεx, η−1y

)
 B

(
η−1x, ηεy

)
by application of a single welding relator. So (4.J.9) follows from (4.J.10) and
(4.J.11). �

4.K. Area of words of bounded combinatorial length. To estimate the
area of arbitrary words, we need a generalization of Theorem 4.I.1. Because of
the incurring formalism, let us give a self-contained treatment. Therefore, let us
forget all the previously introduced notation, although we can have it in mind
(so as to apply it to the previous setting in §4.L).

By K we mean a finite product of local fields (in a first reading, we can assume
it is a single local field). Let A be a fixed discrete group. Let U1, . . . ,Uν be affine
K-group schemes of finite type, each with an action of A; write Ui = Ui(K).
Assume that for each i, we have a compact presentation

〈Si | Πi〉
of Ui oA. Given fixed K-embeddings of Ui in SLq, the norm of an element of Ui
makes sense. We assume that the length |g| of any g ∈ Ui with respect to Si is
' Si. For each x ∈ Ui, we assume that the word length of x with respect to Si is
' log(1 +‖x‖) (if UioA is a standard solvable group, this assumption is fulfilled
by Proposition 4.C.2). Then, for x ∈ Ui, fix a representing word x in Si, of size
' log(1 + ‖x‖); we assume that we can do so.

We introduce some objects of the form X[A], we use brackets rather than
parentheses to emphasize that these objects are possibly not representable by a
scheme.

Fix 1 ≤ i1, . . . , ik ≤ ν. Consider finitely many closed subschemes R` ⊂∏k
`=1 Ui` , globally invariant by the action of A (thought of as algebraically param-

eterized words, doomed to be relators). For convenience, write R[A] =
⋃
`R`(A)

for any K-algebra A (it would be representable if K were a field; anyway this is
not an issue).
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Let H[A] be the free product ∗νi=1 Ui(A). There is an obvious product map

πA :
∏k

`=1 Ui`(A) → H[A]. Define Q[A] as the quotient of H[A] by the normal
subgroup generated by πA(R[A]). Informally, Q is a group generated by algebraic
generators and algebraic sets of relators. A priori, Q is not representable by a
group scheme over K (e.g., if R is empty, Q(K) is the free product H(K)).

Now fix an integer c ≥ 0 and 1 ≤ ℘1, . . . , ℘c ≤ ν; if w ∈ Fc, define

L℘w[A] =

{
(f1, . . . , fc) ∈

c∏
i=1

U℘i
: w(f1, . . . , fc) = 1 in Q(A)

}
.

In particular, L℘1 [A] =
∏c

i=1 U℘i
(A), so we write as L℘1 (A). In general, for w 6= 1,

we cannot a priori represent L℘w is by a scheme.

Theorem 4.K.1. Fix c, ℘, w ∈ Fc, and define L℘w as above. Assume that L℘w is
representable by a K-scheme, i.e. there exists a closed subscheme M ⊂

∏c
i=1 U℘i

such that for every (reduced) commutative K-algebra A we have M(A) = L℘w[A]
(equality as subsets of L℘1 (A)). Assume in addition the following

• all presentations 〈Si | Πi〉 have Dehn function bounded above by some
superadditive function δ1;
• there is a compact subset R ⊂ R(K) such that for every r ∈ R(K), the

area of r with respect to 〈
⋃
Si |

⋃
Πi ∪R〉 is finite and ≤ δ2(|r|).

Then for every (x1, . . . , xc) ∈ L℘w[K], the area of w(x1, . . . , xc) is � (δ1+δ2)(sup |xi|)
(where the constant may depend on c).

Here, if r = (ρ1, . . . , ρk) ∈ R(K), we write r = ρ1 . . . ρk, and | · | denotes the
word length in the free group FS, where S =

⊔
Si.

Remark 4.K.2. The language of schemes is essentially here for convenience.
For the reader not comfortable with it, we can avoid its use at the cost of intro-
ducing some further subscripts. Write K =

⊕
Kj with Kj a field, decompose

Ui =
∏

j Uj,i, and define L℘j,w ⊂
∏c

i=1 Uj,℘i
accordingly. The representability

assumption of Theorem 4.K.1 can be restated as follows: for all j there is a
Kj-closed subvariety Mj of

∏c
i=1 U such that for all (reduced) commutative Kj-

algebra A we have L℘j,w[A] = Mj(A).

Proof. The proof follows the steps of that of Theorem 4.I.1.
If Y is an abstract set, let us first observe that there is an obvious inclusion

L℘w
[
KY
]
⊂ L℘w[K]Y , but if Y is infinite, it does not follow from the definition

that it is an equality. However, M being a affine scheme, it is obvious that
M(K)Y = M(KY ). Moreover, consider the algebra PY = PY (K) of functions
Y ×R≥0 of at most polynomial growth, uniformly in Y . For any affine K-scheme
X of finite type (with a given embedding in an affine space), X(K) inherits of a
norm and the set PY (X(K)) is well-defined.

There is an obvious inclusion L℘w[PY (K)] ⊂ PY [L℘w(K)]. For the same reason as
previously, it is not a priori an equality. Nevertheless, the equality M(PY (K)) =
PY (M(K)) is clear, so L℘w[PY (K)] = PY [L℘w(K)].
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Therefore the argument of the proof of Theorem 4.I.1 carries over. Let V be the
union of all Uj in H. We obtain that there exist m,µ and α > 0 such that for every
(x1, . . . , xc) ∈ L℘w[K], there exist gk` in V with ‖gk`‖ ≤ sup(1+‖xi‖)α, 1 ≤ k ≤ m,
1 ≤ ` ≤ µ, and rk in R = R[K], with each letter of norm ≤ sup(1 + ‖xi‖)α, such
that, setting gk =

∏µ
`=1 gk`, we have, in H[K]

w(x1, . . . , xc) =
m∏
k=1

gkrkg
−1
k .

We continue as in the proof of Theorem 4.I.1. Since by the assumptions, for
each i and x ∈ Ui we have |x| ' log(1 + ‖x‖), the word

(4.K.3) w(x1, . . . , xc)
−1

m∏
k=1

gkrkgk
−1

has linear size, say ≤ sn with respect to n = sup |xi|. By Lemma 2.D.1, the area
of (4.K.3) with respect to 〈

⊔
Si |

⊔
Πi〉 is ≤ δ1(sn). The remaining contribution

is that of the rk and is ≤
∑m

k=1 δ2(|rk|) � δ2(n) by assumption. �

4.L. Concluding step for standard solvable groups.

Theorem 4.L.1. Let G be a standard solvable group. If G is 2-tame and H2(u)0 =
0 then its Dehn function is at most cubic. If moreover Kill(u)0 = {0} then its
Dehn function is quadratic (or linear in case A has rank one).

Theorem 4.K.1 provides area estimates for null-homotopic words of bounded
combinatorial length, i.e., of the form w(x1, . . . , xc) for bounded c. The remaining
essential ingredient is “Gromov’s trick” described in §2.D.3. It allows to reduce
the study to the area of such words form some bounded c (only depending on the
group).

Proof of Theorem 4.L.1. Let us begin by the second statement. If A has rank
one, then 2-tame implies tame, and in that case, the Dehn function is linear (see
Remark 4.A.6). Otherwise, if A has rank at least 2, the Dehn function is at least
quadratic. So let us assume that G is 2-tame with H2(u)0 = Kill(u)0 = {0} and
prove that its Dehn function is at most quadratic.

Let us apply Theorem 4.K.1. The Ui = Ui(K) are the tame subgroups, with
suitable compact presentations, which can be chosen to have an at most quadratic
Dehn function, by Corollary 4.A.5. The Rj consist of the amalgamation relations.
Picking a suitable compact subset of Rj(K) as in §4.F, the amalgamation relations
have an at most quadratic area by Proposition 4.F.3. In the notation introduced
before Theorem 4.K.1, the group Q(K) is equal to Û . For every commutative K-
algebra A, we have HA

2 (u⊗KA)0 = HK
2 (u)0⊗KA = {0}, and similarly KillA(u⊗K

A)0 = {0}. Thus by Corollary 6.D.4, Q(A)→ U(A) is an isomorphism. Therefore,
Q is an affine group scheme, and thus we can apply Theorem 4.K.1. Fixing c, we
apply it with w = t1 . . . tc (where ti are the free generators of Fc).
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So for every c and 1 ≤ ℘1, . . . , ℘c ≤ ν, there exists a constant C = C(c, ℘)
such that for all (x1, . . . , xc) ∈

∏
i U℘i

such that x1 . . . xc represents 1 in G (i.e.,
(x1, . . . , xc) ∈ L℘w), the area of x1 . . . xc is at most C(n2 + 1), where n =

∑
|xi|.

Note that C can be chosen depending only on c (by considering sup℘C(c, ℘),
where ℘ ranges over {1, . . . , ν}c).

Recalling that each xi has the form dsd−1 with s a letter in U and d a word in
A, we conclude by Proposition 2.D.7.

Now let us assume Kill(u)0 arbitrary. The above proof can be repeated, but
we have to include welding relators in the presentation. In the argument, we
also have to deal, at the end, with relations of quadratic area, as well as welding
relations. By Theorem 4.J.1, those have at most cubic area. This proves that for
every c there exists a constant K ′′ such that for every null-homotopic element of
the form x1 · · ·xc with x1, . . . , xc in

⊔
C UC , has area ≤ K ′′n3. Again, we conclude

by Proposition 2.D.7. �

Remark 4.L.2. If Kill(u)0 6= {0}, then the Dehn function δ of Ĝ with respect
to the presentation 〈S | R1

tame ∪ R1
amalg〉 is infinite for n large enough. Precisely,

suppose Kill(u)j,0 6= {0}. Consider the set of welding relations

B(λx, y)B(x, λy)−1, x, y ∈
⋃
C

Uj,C , ‖x‖′, ‖y‖′ ≤ 1, λ ∈ Q with |λ|Kj
≤ 1.

Since λ ∈ Q, these are indeed relations in Ĝ. These are relations of length
2N , where N is the length of the formal word B(x, y). Suppose by contradiction
that δ(2N) = k < ∞. Then we can write, for all x, y ∈

⋃
C Uj,C with ‖x‖′ ≤ 1,

‖y‖′ ≤ 1, λ ∈ Q with |λ| ≤ 1,

B(λx, y)B(x, λy)−1 =
k∏
i=1

girig
−1
i in FS

The ri have bounded length, and a standard argument based on van Kampen
diagrams (see Lemma 2.D.2) shows that the gi = gi(x, y, λ) can be chosen to have
bounded length. Push this forward to HoA (recall that H is the free product of
all Ui). Then the tame relators and the relators of T are killed, so the remaining
ri are amalgamation relators iC1(s)iC2(s)

−1 (or their inverses) for C1 ⊂ C2 and
s ∈ SC1 . By a compactness argument, it follows that all B(λx, y)B(x, λy)−1

for all λ in the closed unit ball of Kj and all x, y in
⋃
C Uj,C of norm ≤ 1, are

products of amalgamation relators in H. By Corollary 5.C.9, it follows that
W2(uj)

Q,Kj = {0} and by Theorem 5.C.13 this contradicts Kill(u)j,0 6= {0}.

4.M. Generalized standard solvable groups. We define a generalized stan-
dard solvable group as a locally compact group of the form U o N , where the
definition is exactly as for standard solvable groups (Definition 1.2), except that
N is supposed to be nilpotent instead of abelian. Such a group is tame if some
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element c of N acts on U as a compaction. Clearly split triangulable Lie groups
are special cases of generalized standard solvable groups.

Theorem 4.M.1. Let G be a generalized standard solvable group not satisfy-
ing any of the (SOL or 2-homological) obstructions. Then δG(n) � nδN(n). If
moreover Kill(u)0 = {0}, then δG(n) � δN(n)

The reduction of Theorem 4.M.1 to the case where G is tame can be transposed
without any change from the standard solvable case. In particular, one obtains
from the proof of Theorem 4.J.2 that δG is controlled by n times the maximum
over Dehn functions of tame subgroups of G. If G = U oN is a tame generalized
standard solvable group it is tempting to believe that, in a way analogous to §4.A,
there is a large-scale Lipschitz deformation retraction of G onto N . However, the
proof only carries over when the element c of N acting as a compaction of N can
be chosen to be central in N . Unfortunately, this can not always be assumed and
we need a more complicated approach.

Theorem 4.M.2 (The tame case). Consider a generalized standard solvable
group G = U o N such that there exists c ∈ N acting on U as a compaction.
Then the Dehn function of G is equivalent to that of N .

Proof. Recall that we write group commutators as ((x, y)) = x−1y−1xy; we also
use the standard notation xy = y−1xy. Iterated commutators are defined in
(2.G.1).

Since N is a Lipschitz retract of G, we have δN � δG; let us prove that δG � δN .
Let S = SU ∪ SN be a compact generating set containing a vacuum set for c. let
us define

FU = {cnsc−n ∈ FS, s ∈ SU , n ∈ N}.
A straightforward adaptation of the proof of Proposition 4.C.4 implies that given
a combing Z of N , then F = FU ∪ Z is a combing of G. Hence by Theorem
2.D.6, it is enough to control the area of relations of the form

sw1
1 . . . swk

k ,

where k is a fixed positive integer, s1, . . . , sk ∈ SU and w1, . . . , wk are words of
length ≤ n in SN . At this point one can use the fact that conjugation by c is
compacting. Indeed, up to conjugating the word sw1

1 . . . swk
k by cq with q ' n, one

can assume that each swi
i belongs to SU . Since k is bounded independently of n,

we deduce Theorem 4.M.2 from the following lemma. �

Lemma 4.M.3. Relations of the form swt, where s and t belong to SU and where
w is a word of length ' n in SN have area � δN(n).

Proof. For the sake of readability, we first consider the (easier) case when [N,N ]
is central in N .

Denote j = in, where i is an integer to be determined latter in the proof, but
that will only depend on G and S (hence is to be considered as bounded).
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Up to conjugating by a power of c, it is enough to evaluate the area of the
relation swc

j
tc

j
. Since c is a contracting element, it turns out that tc

j
= u−1 ∈ SU .

It is straightforward to check that the relation tc
j
u has area � j. Hence we are

left to consider the relation swc
j
u.

Denoting y = ((w, cn)) = w−1c−nwcn, we have

(4.M.4) wcj = cjw((w, cj)) = cjyi.

Moreover the area of the relation ((w, cj))y−i is controlled by the Dehn function
of N , so we are reduced to compute the area of

(sc
j

)wy
i

u.

Denote Na the Zariski closure of the range of N in Aut(U). The algebraic
group Na decomposes as DV where A (resp. V ) is semi-simple (resp. unipotent).
Let us write c = cdcv and w = wdcv according to this decomposition. Endow the
Lie algebra of U with some norm. The crucial observation is that y = ((w, cn)) =
((wv, c

n
v )). It follows that the matrix norm of y (acting on the Lie algebra of U)

is at most CnD for some C,D depending only on G and S.
Let K > 1 be a constant such that the matrix norm of every subword of wy is

at most Kn. Let z be a prefix of wyi: it is of the form ryk, where r is a subword
of wy, and k ≤ i. The matrix norm of z is therefore at most CinDKn.

Since c acts as a contraction, one can choose i be such that the matrix norm of
ci is less than K−2. Hence the matrix norm of cjz is less than CinDK−n which
is bounded by some function of i, C,D and K. It follows that for any prefix r
of cjwyi has bounded matrix norm. Let aq for q = 1, 2, . . . be the sequence of
letters of the word cjwyi, and let zq = a1 . . . aq. It follows that the elements szq

are bounded in U . Now let t−1
q be words in SU of bounded length representing

the elements szq . We conclude by reducing successively the relations (tq−1)aqtq
whose area are bounded. This solves the case where N is 2-steps nilpotent.

If N is not assumed to be 2-step-nilpotent, then the relation ((a, bi)) = ((a, b))i

does not hold anymore. Therefore we cannot simply replace ((w, cj)) by ((w, cn))i,
as we did above. We shall use instead a more complicated formula, namely the
one given by Lemma 2.G.2. According to that lemma, one can write ((w, cj)) as
a product of m iterated commutators (or their inverses) in the letters w±1 and
c±n. The rest of the proof is then identical to the step 2 nilpotent case, replacing
in the previous proof, the power of commutators yi = ((w, cn))i by this product
of (iterated) commutators. �

5. Central extensions of graded Lie algebras

This section contains results on central extensions of graded Lie algebras, which
will be needed in Section 6. Let Q ⊂ K be fields of characteristic zero (for
instance, Q = Q and K is a nondiscrete locally compact field). To any graded
Lie algebra, we associate a central extension in degree zero, which we call its
“blow-up”, whose study will be needed in Section 6. We are then led to following
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problem: given a Lie algebra g over K, we need to compare the homologies HK
2 (g)

and HQ
2 (g) of g viewed as a Lie algebra over K and as a Lie algebra over Q by

restriction of scalars. When g is defined over Q, i.e. g = l⊗QK, this problem has
been tackled in several papers [KL82, NW08]. Here most of the work is carried
out over an arbitrary commutative ring; this generality will be needed as we need
to apply the results over suitable rings of functions.

5.A. Basic conventions. The following conventions will be used throughout
this chapter. The letter R denotes an arbitrary commutative ring (associative
with unit). Unless explicitly stated, modules, Lie algebras are over the ring R
and are not assumed to be finitely generated. The reader is advised not to read
this part linearly but rather refer to it when necessary.

Gradings. We fix an abelian group W , called the weight space. By graded mod-
ule, we mean an R-module V endowed with a grading, namely an R-module
decomposition as a direct sum

V =
⊕
α∈W

Vα.

Elements of Vα are called homogeneous elements of weight α. An R-module
homomorphism f : V → W between graded R-modules is graded if f(Vα) ⊂ Wα

for all α. If V is a graded module and V ′ is a subspace, it is a graded submodule
if it is generated by homogeneous elements, in which case it is naturally graded
and so is the quotient V/V ′. By the weights of V we generally mean the subset
WV ⊂ W consisting of α ∈ W such that Vα 6= {0}. We use the notation

VO =
⊕
α 6=0

Vα.

By graded Lie algebra we mean a Lie algebra g endowed with an R-module
grading g =

⊕
gα such that [gα, gβ] ⊂ gα+β for all α, β ∈ W .

Tensor products. If V,W are modules, the tensor product V ⊗W = V ⊗R W is
defined in the usual way. The symmetric product V }V is obtained by modding
out by the R-linear span of all v ⊗ w − w ⊗ v and the exterior product V ∧ V is
obtained by modding out by the R-linear span of all v⊗w+w⊗v (or equivalently
all v⊗v if 2 is invertible in R). More generally the nth exterior product V ∧· · ·∧V
is obtained by modding out the nth tensor product V ⊗ . . . ⊗ V by all tensors
v1⊗ · · · ⊗ vn +w1⊗ · · · ⊗wn, whenever for some 1 ≤ i 6= j ≤ n, we have wi = vj,
wj = vi and wk = vk for all k 6= i, j.

IfW1,W2 are submodules of V , we will sometimes denote byW1∧W2 (resp.W1}
W2) the image of W1 ⊗W2 in V ∧ V (resp. V } V ). In case W1 = W2 = W ,
the latter map factors through a module homomorphism W ∧ W → V ∧ V
(resp. W }W → V } V ), and this convention is consistent when this homomor-
phism is injective, for instance when W is a direct factor of V .
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If V,W are graded then V ⊗W is also graded by

(V ⊗W )α =
⊕

{(β,γ):β+γ=α}

Vβ ⊗Wγ.

When V = W , we see that V ∧ V and V } V are quotients of V ⊗ V by graded
submodules and are therefore naturally graded; for instance ifW has no 2-torsion

(V ∧ V )0 = (V0 ∧ V0)⊕

 ⊕
α∈(W−{0})/±

Vα ⊗ V−α

 .

Homology of Lie algebras. Let g be a Lie algebra (always over the commutative
ring R). We consider the complex of R-modules

· · · g ∧ g ∧ g ∧ g
d4−→ g ∧ g ∧ g

d3−→ g ∧ g
d2−→ g

d1−→ 0

given by

d2(x1, x2) = −[x1, x2]

d3(x1, x2, x3) = x1 ∧ [x2, x3] + x2 ∧ [x3, x1] + x3 ∧ [x1, x2]

and more generally the boundary map

dn(x1, . . . , xn) =
∑

1≤i≤j≤n

(−1)i+j[xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn;

and define the second homology group H2(g) = Z2(g)/B2(g), where Z2(g) =
Ker(d2) is the set of 2-cycles and B2(g) = Im(d3) is the set of 2-boundaries.
(We will focus on di for i ≤ 3 although the map d4 will play a minor computational
role in the sequel. This is of course part of the more general definition of the nth
homology module Hn(g) = Ker(dn)/Im(dn+1), which we will not consider.) If
A → R is a homomorphism of commutative rings, then g is a Lie A-algebra by
restriction of scalars, and its 2-homology as a Lie A-algebra is denoted by HA

2 (g).
If g is a graded Lie algebra, then the maps di are graded as well, so H2(g) is
naturally a graded R-module.

Iterated brackets. In a Lie algebra, we define n-iterated bracket as the usual
bracket for n = 2 and by induction for n ≥ 3 as

[x1, . . . , xn] = [x1, [x2, . . . , xn]].

Central series and nilpotency. Define the descending central series of the Lie
algebra g by g1 = g and gi+1 = [g, gi] for i ≥ 1. We say that g is s-nilpotent if
gs+1 = {0}.
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5.A.1. The Hopf bracket. Consider a central extension of Lie algebras

0→ z→ g
p→ h→ 0.

Since z is central, the bracket g ∧ g→ g factors through an R-module homomor-
phism B : h ∧ h → g, called the Hopf bracket. It is unique for the property
that B(p(x)∧ p(y)) = [x, y] for all x, y ∈ g (uniqueness immediately follows from
surjectivity of g ∧ g→ h ∧ h).

Lemma 5.A.1. For all x, y, z, t ∈ h we have B([x, y]∧[z, t]) = [B(x∧y), B(z∧t)].

Proof. Observe that if x̄, ȳ are lifts of x and y then B(x ∧ y) = [x̄, ȳ], and that
[x̄, ȳ] is a lift of [x, y]. In view of this, observe that both terms are equal to
[[x̄, ȳ], [z̄, t̄]]. �

5.A.2. 1-tameness.

Definition 5.A.2. We say that a Lie algebra g is 1-tame if it is generated by
gO =

⊕
α 6=0 gα.

Lemma 5.A.3. Let g be a graded Lie algebra. Then g is 1-tame if and only if
we have g0 =

∑
β[gβ, g−β], where β ranges over nonzero weights.

Proof. One direction is trivial. Conversely, if g is 1-tame, then g0 is generated
as an abelian group by elements of the form x = [x1, . . . , xk] with k ≥ 2 and xi
homogeneous of nonzero weight. So x = [x1, y] with y = [x2, . . . , xk] ∈ gO and
x1 ∈ gO. �

Lemma 5.A.4. Let g be a graded Lie algebra. Then the ideal generated by gO
coincides with the Lie subalgebra generated by gO and in particular is 1-tame.

Proof. Let h be the subalgebra generated by gO; it is enough to check that h is
an ideal, and it is thus enough to check that [g0, h] ⊂ h. Set h1 = gO and hd =
[gO, hd−1], so that h =

∑
d≥1 hd. It is therefore enough to check that [g0, hd] ⊂ hd

for all d ≥ 1. This is done by induction. The case d = 1 is clear. If d ≥ 2, x ∈ g0,
y ∈ gO, z ∈ hd−1, then using the induction hypothesis

[x, [y, z]] = [y, [x, z]]− [[y, x], z] ∈ [gO, hd−1] ⊂ hd

and we are done. �

We use this to obtain the following result, which will be used in Section 7.

Lemma 5.A.5. Let g be a graded Lie algebra with descending central series
(gi), and assume that g0 is s-nilpotent. Then gs+1 is contained in the subalgebra
generated by gO. In particular, if g0 is nilpotent and g∞ =

⋂
gi, then g∞ is

contained in the subalgebra generated by gO.

Proof. By Lemma 5.A.4, it is enough to check that gs+1 is contained in the ideal
j generated by gO. It is sufficient to show that gs+1 ∩ g0 ⊂ j. Each element
x of gs+1 ∩ g0 can be written as a sum of nonzero (s + 1)-iterated brackets of
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homogeneous elements. Each of those brackets involves at least one element of
nonzero degree, since otherwise all its entries would be contained in g0 and it
would vanish. So x belongs to the ideal generated by gO. �

5.B. The blow-up.

Definition 5.B.1. Let g be an arbitrary graded Lie algebra. Define the blow-
up graded algebra g̃ as follows. As a graded vector space, g̃α = gα for all α 6= 0,
and g̃0 = (g ∧ g)0/d3(g ∧ g ∧ g)0.

Define a graded R-module homomorphism τ : g̃→ g by τ(x) = x if x ∈ g̃O and
τ(x ∧ y) = [x, y] if x ∧ y ∈ g̃0 (which of course factors through 2-boundaries).

Let us define the Lie algebra structure [·, ·]′ on g̃. Suppose that x ∈ g̃α, y ∈ g̃β.

• if α + β 6= 0, define [x, y]′ = [τ(x), τ(y)];
• if α + β = 0, define [x, y]′ = τ(x) ∧ τ(y).

Lemma 5.B.2. With the above bracket, g̃ is a Lie algebra and τ is a Lie algebra
homomorphism, whose kernel is central and naturally isomorphic to H2(g)0. Its
image is the ideal gO + [g, g] of g.

Proof. Let us first check that τ is a homomorphism (of non-associative algebras).
Let x, y ∈ g̃ have nonzero weight α and β. In each case, we apply the definition
of [·, ·]′ and then of τ . If α + β 6= 0

τ([x, y]′) = τ([τ(x), τ(y)]) = [τ(x), τ(y)];

if α + β = 0 then

τ([x, y]′) = τ(τ(x) ∧ τ(y)) = [τ(x), τ(y)];

if x has weight α 6= 0 and y ∧ z has weight 0 then

τ([x, y ∧ z]′) = τ([τ(x), τ(y ∧ z)]) = [τ(x), τ(y ∧ z)];

and similarly τ([y∧ z, x]′) = [τ(y∧ z), τ(x)]; if x∧ y and z∧w have weight 0 then

τ([x ∧ y, z ∧ w]′) = τ(τ(x ∧ y) ∧ τ(z ∧ w)) = [τ(x ∧ y), τ(z ∧ w)].

By linearity, we deduce that τ is a homomorphism. Since τα is an isomorphism
for α 6= 0 and τ0 = −d2, the kernel of τ is equal by definition to H2(g)0. Moreover,
by definition the bracket [x, y]′ only depends on τ(x)⊗ τ(y), and it immediately
follows that Ker(τ) is central in g̃.

Let us check that the bracket is a Lie algebra bracket; the antisymmetry being
clear, we have to check the Jacobi identity. Take x ∈ g̃α, y ∈ g̃β, z ∈ g̃γ. From
the definition above, we obtain (discussing on whether or not β + γ is zero)

• if α + β + γ 6= 0, [x, [y, z]′]′ = [τ(x), [τ(y), τ(z)]];
• if α + β + γ = 0, [x, [y, z]′]′ = τ(x) ∧ [τ(y), τ(z)].
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Therefore, the Jacobi identity for (x, y, z) immediately follows from that of g in
the first case, and from the fact we killed 2-boundaries in the second case.

We have τ(g̃O) = gO and τ(g̃0) = [g, g]0. Therefore the image of τ is equal to
gO + [g, g]. The latter is an ideal, since it contains [g, g]. �

Definition 5.B.3. We say that a graded Lie algebra g is relatively perfect in
degree zero if it satisfies one of the following (obviously) equivalent definitions

• 0 is not a weight of g/[g, g];
• g0 ⊂ [g, g];
• g = gO + [g, g];
• g is generated by gO + [g0, g0];
• g̃→ g is surjective (in view of Lemma 5.B.2).

Note that if g is 1-tame, then it is relatively perfect in degree zero, but the
converse is not true, as shows the example of a nontrivial perfect Lie algebra
with grading concentrated in degree zero. The interest of this notion is that it is
satisfied by a wealth of graded Lie algebras that are very far from perfect (e.g.,
nilpotent).

Theorem 5.B.4. Let g be a graded Lie algebra. If g is relatively perfect in degree
zero (e.g., g is 1-tame), then the blow-up g̃

τ→ g is a graded central extension with
kernel in degree zero, and is universal among such central extensions. That is,

for every surjective graded Lie algebra homomorphism h
p→ g with central kernel

z = z0, there exists a unique graded Lie algebra homomorphism φ : g̃→ h so that
the composite map g̃→ h→ g coincides with the natural projection.

Proof. By Lemma 5.B.2, g̃→ g is a central extension with kernel in degree zero.
Denote by Bh : g ∧ g→ h the Hopf bracket associated to h→ g (see §5.A).

Let us show uniqueness in the universal property. Clearly, φ is determined on
g̃O. So we have to check that φ is also determined on [g̃, g̃]. Observe that the map
g̃ ∧ g̃→ h, x ∧ y 7→ φ([x, y]) = [φ(x), φ(y)] factors through a map w : g ∧ g→ h,
so w(τ(x) ∧ τ(y)) = [φ(x), φ(y)] for all x, y ∈ g̃. Since p ◦ φ = τ and since h is
generated by the image of φ and by its central ideal Ker(p), we deduce that for
all x, y ∈ h, we have w(p(x) ∧ p(y)) = [x, y]. By the uniqueness property of the
Hopf bracket (see §5.A), we deduce that w = Bh. So for all x, y ∈ g̃, φ([x, y]) is
uniquely determined as Bh(τ(x) ∧ τ(y)).

Now to prove the existence, define φ : g̃→ h to be p−1 on g̃O, and φ(x ∧ y) =
Bh(x∧ y) if x∧ y ∈ g̃0. It is clear that φ is a graded module homomorphism and
that p ◦ φ = τ . Let us show that φ is a Lie algebra homomorphism, i.e. that the
graded module homomorphism σ : g̃ ∧ g̃ → h, (x ∧ y) 7→ φ([x, y]′) − [φ(x), φ(y)]
vanishes. Since p◦φ is a homomorphism and pO is bijective, we have (p◦σ)O = 0,
so it is enough to check that σ vanishes in degree 0. If x and y have nonzero
opposite weights, noting that p ◦ φ is the identity on gO,

φ([x, y]′) = φ(x ∧ y) = Bh(x ∧ y) = [p−1(x), p−1(y)] = [φ(x), φ(y)].
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If x ∧ y and z ∧ t belong to g̃0 = (g ∧ g)0, then, using Lemma 5.A.1, we have

φ([x ∧ y, z ∧ t]′) =φ([x, y] ∧ [z, t]) = Bh([x, y] ∧ [z, t])

=[Bh(x ∧ y), Bh(z ∧ t)] = [φ(x ∧ y), φ(z ∧ t)].

By linearity, we deduce that σ0 = 0 and therefore φ is a Lie algebra homomor-
phism. �

Corollary 5.B.5. If g is relatively perfect in degree zero then ˜̃g = g̃.

Proof. Observe that ˜̃g→ g has kernel z concentrated in degree zero, so it imme-
diately follows that [z, gO] = 0. We need to show that z is central in ˜̃g. Since

g = [g, g] + gO, it is enough to show that [z, [˜̃g, ˜̃g]] = {0}. By the Jacobi identity,

[z, [˜̃g, ˜̃g]] ⊂ [˜̃g, [z, ˜̃g]]. Now since g̃ → g has a central kernel, [z, ˜̃g] is contained in

the kernel of ˜̃g→ g̃, which is central in ˜̃g. So [˜̃g, [z, ˜̃g]] = {0}. Thus z is central in
˜̃g. The universal property of g̃ then implies that ˜̃g→ g̃ is an isomorphism. �

Lemma 5.B.6. Let g be a graded Lie algebra and g̃ its blow-up. If g is 1-tame,
then so is g̃.

Proof. Suppose that g is 1-tame. Then by linearity, it is enough to check that for
every x ∈ g0 and u, v of nonzero opposite weights, the element x ∧ [u, v] belongs
to [g̃O, g̃O]. This is the case since modulo 2-boundaries, this element is equal to
u ∧ [x, v] + v ∧ [u, x] ∈ (gO ∧ gO)0. �

Lemma 5.B.7. Let gi be finitely many graded Lie algebras (all graded in the same
abelian group) and g̃i their blow-up. If g =

∏
gi satisfies the assumption that

g/[g, g] has no opposite weights, then the natural homomorphism
∏̃

gi →
∏

g̃i is
an isomorphism. Equivalently, H2(

∏
i gi)0 →

⊕
H2(gi)0 is an isomorphism.

Proof. For each i, there are homomorphisms gi →
∏

gj → gi, whose composition
is the identity, and hence H2(gi)0 → H2(

∏
gj)0 → H2(gi)0, whose composition is

the identity again. So we obtain homomorphisms⊕
H2(gi)0 → H2

(∏
gi

)
0
→
⊕

H2(gi)0,

whose composition is the identity. To finish the proof, we have to check that⊕
H2(gi)0 → H2(

∏
gi)0 is surjective, or equivalently that in Z2(

∏
gi)0, every

element x is the sum of an element in
⊕

i Z2(gi)0 and a boundary. Now observe
that

Z2

(∏
gi

)
0

=
⊕

Z2(gi)0 ⊕
⊕
i<j

(gi ∧ gj)0.

So we have to prove that for i 6= j, gi ∧ gj consists of boundaries. Given an
element x ∧ y (x ∈ gi, y ∈ gj homogeneous), the assumption on g/[g, g] implies
that, for instance, y is a sum

∑
k[zk, wk] of commutators. Projecting if necessary
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into gj, we can suppose that all zk and wk belong to gj. So

x ∧ y = x ∧
∑
k

[zk, wk] =
∑
k

d3(x ∧ zk ∧ wk). �

5.C. Homology and restriction of scalars. We now deal with two commuta-
tive rings A,B coming with a ring homomorphism A → B (we avoid using R as
the previous results will be used both with R = A and R = B). If g is a graded Lie
algebra over B, it can then be viewed as a graded Lie algebra over A by restriction
of scalars. This affects the definition of the blow-up. There is an obvious surjec-
tive graded Lie algebra homomorphism g̃A → g̃B. The purpose of this part is to
describe the kernel of this homomorphism (or equivalently of the homomorphism
HA

2 (g)0 → HB
2 (g)0), and to characterize, under suitable assumptions, when it is

an isomorphism.
Our main object of study is the following kernel.

Definition 5.C.1. If g is a Lie algebra over B, we define the welding module
WA,B

2 (g) as the kernel of the natural homomorphism HA
2 (g)→ HB

2 (g), or equiva-
lently of the homomorphism (g∧A g)/BA

2 (g)→ (g∧B g)/BB
2 (g). If g is graded, it

is a graded module as well, and WA,B
2 (g)0 then also coincides with the kernel of

g̃A → g̃B.

The following module will also play an important role.

Definition 5.C.2. If g is a Lie algebra over B, define its Killing module Kill(g) (or
KillB(g) if the base ring need be specified) as the cokernel of the homomorphism

T : g⊗ g⊗ g → g} g

u⊗ v ⊗ w 7→ u} [v, w] + v } [u,w].

If g is graded, it is graded as well.

Note that we can also write T (u⊗w⊗ v) = [u, v]}w−u} [v, w], and thus we
see that the set of B-linear homomorphisms from Kill(g) to any B-module M is
naturally identified to the set of the so-called invariant bilinear maps g×g→M .

Lemma 5.C.3. Let v be a B-module. Then the kernel of the natural surjective
A-module homomorphism v⊗A v→ v⊗B v is generated, as an abelian group, by
by elements

(5.C.4) λx⊗A y − x⊗A λy

with λ ∈ B, x, y ∈ v. The same holds with ⊗ replaced by } or ∧.

Proof. Endow v ⊗A v with a structure of a B-module, using the structure of B-
module of the left-hand v, namely λ(x⊗ y) = (λx⊗ y) if λ ∈ B, x, y ∈ v.

Let W be the subgroup generated by elements of the form (5.C.4); it is clearly
an A-submodule, and is actually a B-submodule as well. The natural A-module
surjective homomorphism φ : (v ⊗A v)/W → v ⊗B v is B-linear. To show it is a
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bijection, we observe that by the universal property of v⊗Bv, we have a B-module
homomorphism ψ : v⊗B v→ (v⊗A v)/W mapping x⊗B y to x⊗A y modulo W .
Clearly, ψ and φ are inverse to each other.

Let us deal with ∧, the case of } being similar. The group v∧A v is defined as
the quotient of v ⊗A v by symmetric tensors (i.e. by the subgroup generated by
elements of the form x⊗ y+ y⊗ x), and the group v∧B v is defined the quotient
of v⊗B v by symmetric tensors. By the case of ⊗, this means that v ∧B v is the
quotient of v⊗A v by the subgroup generated by symmetric tensors and elements
(5.C.4). This implies that that v ∧B v is the quotient of v ∧A v by the subgroup
generated by elements (5.C.4) (with ⊗ replaced by ∧) �

Proposition 5.C.5. For any Lie algebra g, the A-module homomorphism

Φ : B⊗A g⊗A g → WA,B
2 (g)

λ⊗ x⊗ y 7→ λx ∧ y − x ∧ λy

is surjective. If g is graded and is 1-tame, then Φ0 : B⊗A (g⊗A g)0 → WA,B
2 (g)0

is surjective in restriction to B⊗ (gO ⊗ gO)0.

Proof. The group (g ∧A g)/BA
2 (g) is defined as the quotient of g ∧A g by 2-

boundaries, and (g ∧B g)/BB
2 (g) is the quotient of g ∧B g by 2-boundaries, or

equivalently, by Lemma 5.C.3, is the quotient of g ∧A g by 2-boundaries and
elements of the form

(5.C.6) λx ∧A y − x ∧A λy.
It follows that the kernel of (g ∧A g)/BA

2 (g) → (g ∧B g)/BB
2 (g) is generated by

elements of the form (5.C.6), proving the surjectivity of Φ.
For the additional statement, define W ′ = Φ(B⊗ (gO⊗gO))0. We have to show

that any element λx∧A y− x∧A λy as in (5.C.6) with x, y of zero weight belongs
to W ′. By linearity and Lemma 5.A.3, we can suppose that y = [z, w] with z, w
of nonzero opposite weight. So, modulo boundaries,

λx ∧ [w, z]− x ∧ λ[w, z] =− w ∧ [z, λx]− z ∧ [λx,w]− x ∧ λ[w, z]

=− w ∧ λ[z, x] + λw ∧ [z, x],

which belongs to W ′. �

Proposition 5.C.7. Let g be a Lie algebra over B. Then the map

Φ : B⊗A g⊗A g→ WA,B
2 (g)

of Proposition 5.C.5 factors through the natural projection

B⊗A g⊗A g→ B⊗A KillA(g);

moreover in restriction to B ⊗A g ⊗A [g, g], it factors through B ⊗A KillB(g). In
particular, if g is graded and g/[g, g] has no opposite weights, then Φ0 factors
through B⊗A KillB(g).
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Proof. All ⊗, ∧, } are meant over A.
Write Φλ(x⊗ y) = Φ(λ⊗ x⊗ y). It is immediate that Φλ(y ⊗ x) = Φλ(x⊗ y)

(even before modding out by 2-boundaries), and thus Φλ factors through g } g.
Let us now check that Φλ factors through KillA(g). Modulo 2-boundaries:

Φλ(x} [y, z]− y } [z, x]) =λx ∧ [y, z]− x ∧ λ[y, z]

− λy ∧ [z, x] + y ∧ λ[z, x]

=− z ∧ [λx, y] + z ∧ [x, λy] = 0.

For the last statement, by Lemma 5.C.3, we have to show that Φλ(µx} [y, z]) =
Φλ(x } µ[y, z]) for all x, y, z ∈ g and µ ∈ B. Indeed, using the latter vanishing
we get

Φλ(µx} [y, z]) = Φλ(y } [z, µx]) = Φλ(y } [µz, x]) = Φλ(x, [y, µz]). �

In turn, we obtain, as an immediate consequence.

Corollary 5.C.8. Let g be a graded Lie algebra over B such that g/[g, g] has no

opposite weights. If KillB(g)0 = {0} then WA,B
2 (g)0 = {0}.

Proof. By Propositions 5.C.5 and 5.C.7, Φ0 induces a surjection B⊗A Kill(g)B0 →
WA,B

2 (g)0. �

Under the additional assumptions that A = Q is a field of characteristic 6= 2
and g is defined over Q, i.e. has the form l ⊗Q B for some Lie algebra l over
Q, Corollary 5.C.8 easy follows from [NW08, Theorem 3.4]. We are essentially
concerned with finite-dimensional Lie algebras g over a field K of characteristic
zero (K playing the role of B) and A = Q, but nevertheless in general we cannot
assume that g be defined over Q.

We will also use the more specific application.

Corollary 5.C.9. Assume that A = Q and B = K =
∏τ

j=1 Kj is a finite product
of locally compact fields Kj, each isomorphic to R or some Qp. Let BKj

be the
closed unit ball in Kj. Assume that g is finite-dimensional over K, that is, g =∏

j gj with gj finite-dimensional over Kj. Suppose that g is 1-tame and g/[g, g]
has no opposite weights. For every j and weight α, let Vj,α be a neighbourhood of

0 in gj,α = (gj)α. Then the welding module W2(g)Q,K = Ker
(
H2(g)Q0 → H2(g)K0

)
is generated by elements of the form Φ(λ ⊗ x ⊗ y) with λ ∈ BKj

and x ∈ Vj,α,
y ∈ Vj,−α, where α ranges over nonzero weights and j = 1, . . . , τ .

Proof. By Proposition 5.C.5, WA,B
2 (g) is generated by elements of the form Φ(λ′⊗

x′ ⊗ y′), with λ′ ∈ K and x′, y′ ∈ g are homogeneous of nonzero opposite weight.
By linearity and Lemma 5.B.7, these elements for which

(λ′, x′, y′) ∈
⋃
j

⋃
α6=0

Kj × gj,α × gj,−α
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are enough. Given such an element (λ′, x′, y′) ∈ Kj × gj,α × gj,−α, using that
Kj = Q + BKj

, write λ′ = α + λ with α ∈ Q and λ ∈ BK. Also, since
gj,±α = QVj,±α, write x′ = µx and y′ = γy with µ, γ ∈ Q, x ∈ Vj,α, y ∈ Vj,−α.
Clearly, by the definition of Φ, we have Φ(α⊗ x′ ⊗ y′) = 0, so

Φ(λ′ ⊗ x′ ⊗ y′) = Φ(λ⊗ µx⊗ γy) = µγΦ(λ⊗ x⊗ y),

and Φ(λ⊗ x⊗ y) is of the required form. �

5.C.1. Construction of 2-cycles. We now turn to a partial converse to Corollary
5.C.8.

Define HCA
1 (B) (or HC1(B) if A is implicit) as the quotient of B ∧A B by the

A-submodule generated by elements of the form uv ∧w + vw ∧ u+wu ∧ v. This
is the first cyclic homology group of B (which is usually defined in another
manner; we refer to [NW08] for the canonical isomorphism between the two).

Lemma 5.C.10. Assume that K is a field of characteristic zero and Q a subfield.
Suppose that K contains an element t that is transcendental over Q. Assume that
either K has characteristic zero, or K ⊂ Q((t)). Then HCQ

1 (K) 6= {0}. More

precisely, the image of t ∧ t−1 in HCQ
1 (K) is nonzero.

Proof. We denote W by the Q-linear subspace of K ∧QK generated by elements
of the form uv ∧ w + vw ∧ u+ wu ∧ v.

Let us begin by the case of Q((t)). Define a Q-bilinear map F : Q((t))2 → Q by

(5.C.11) F
(∑

xit
i,
∑

yjt
j
)

=
∑
k∈Z

kxky−k.

Observe that the latter sum is finitely supported. (In Q[t, t−1], the above map
appears in the definition of the defining 2-cocycle of affine Lie algebras, see
[Fu].) We see that F is alternating by a straightforward computation, and that
F (t, t−1) = 1. Setting f(x ∧ y) = F (x, y), if x =

∑
xit

i, etc., we have

f(xy ∧ z) =
∑
k∈Z

k(xy)kz−k

=
∑
k∈Z

k
∑
i+j=k

xiyjz−k

=−
∑

i+j+k=0

kxiyjzk;

thus
f(xy ∧ z + yz ∧ x+ zx ∧ y) = −

∑
i+j+k=0

(k + i+ j)xiyjzk = 0.

Hence f factors through a Q-linear map from HCQ
1 (Q((t)))→ Q mapping t ∧ t−1

to 1. The proof is thus complete if K ⊂ Q((t)).
Now assume that K has characteristic zero; let us show that t ∧ t−1 has a

nontrivial image in HC1(K). Since K has characteristic zero, the above definition
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(5.C.11) immediately extends to the field Q((t−∞)) =
⋃
n>0Q((t1/n)) of Puiseux

series and hence t ∧ t−1 has a nontrivial image in HCQ
1 (Q((t−∞))) for every field

Q of characteristic zero.
To prove the general result, let (uj)j∈J be a transcendence basis of K over

Q(t). Replacing Q by Q(tj : j ∈ J) if necessary, we can suppose that K is

algebraic over Q(t). Let Q̂ be an algebraic closure of Q. By the Newton-Puiseux

Theorem, Q̂((t−∞)) is algebraically closed. By the Steinitz Theorem, there exists a

Q(t)-embedding of K into L = Q̂((t−∞)). This induces a Q-linear homomorphism

HCQ
1 (K)→ HCQ

1 (L) mapping the class of t∧t−1 in HCQ
1 (K) to the class of t∧t−1

in HCQ
1 (L); the latter is mapped in turn to the class t ∧ t−1 in HCQ̂

1 (L), which is

nonzero. So the class of t ∧ t−1 in HCQ
1 (K) is nonzero. �

Theorem 5.C.12. Let g be a Lie algebra over B, which is defined over A, i.e.
g ' B⊗A gA for some Lie algebra gA over A. Consider the homomorphism

ϕ : (g ∧A g)/BA
2 (g) → M = HCA

1 (B)⊗KillA(gA)

(λ⊗ x) ∧ (µ⊗ y) 7→ (λ ∧ µ)⊗ (x} y).

Then ϕ is well-defined and surjective, and ϕ(WA,B
2 (g)) = 2M . In particular, if 2

is invertible in A, gA is a graded Lie algebra and M0 = HC1(B)⊗Kill(gA)0 6= {0},
then WA,B

2 (g)0 6= {0}.
The above map ϕ was considered in [NW08], for similar motivations. Assuming

that A is a field of characteristic zero, the methods in [NW08] can provide a more
precise description (as the cokernel of an explicit homomorphism) of the kernel

WA,B
2 (g) = Ker(HA

2 (g) → HB
2 (g)). Since we do not need this description and in

order not to introduce further notation, we do not include it.

Proof of Theorem 5.C.12. Let us first view φ as defined on g∧Ag. The surjectivity
is trivial. By Proposition 5.C.5 (with grading concentrated in degree 0), we see

that WA,B
2 (g) is generated by elements of the form λx∧µy−µx∧λy with x, y ∈ gA

(we omit the ⊗ signs, which can here be thought of as scalar multiplication); the
image by ϕ of such an element is 2(λ∧µ)(x}y), which belongs to 2M . Conversely,
since 2M is generated by elements of the form 2(λ ∧ µ)(x } y), we deduce that

ϕ(WA,B
2 (g)) = 2M .

Let us check that ϕ vanishes on 2-boundaries (so that it is well-defined on
g ∧A g modulo 2-boundaries):

ϕ(tx ∧ [uy, vz]) = (t ∧ uv)⊗ (x} [y, z]);

ϕ(uy ∧ [vz, tx]) = (u ∧ vt)⊗ (y } [z, x]) = (u ∧ vt)⊗ (x} [y, z]);

ϕ(vz ∧ [tx, uy]) = (v ∧ tu)⊗ (z } [x, y]) = (v ∧ tu)⊗ (x} [y, z])

and since t∧ uv + u∧ vt+ v ∧ tu = 0 in HC1(A), the sum of these three terms is
zero.

The last statement clearly follows. �
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5.C.2. The characterization. Using all results established in the preceding para-
graphs, we obtain

Theorem 5.C.13. Let g be a finite-dimensional graded Lie algebra over a field
K of characteristic zero, assume that g/[g, g] has no opposite weights. Let Q be
a subfield of K, so that K has infinite transcendence degree over Q. We have
equivalences

• WQ,K
2 (g)0 = {0} (i.e., HQ

2 (g)0 → HK
2 (g)0 is an isomorphism);

• KillK(g)0 = {0}.

Corollary 5.C.14. Under the same assumptions, we have equivalences

• HQ
2 (g)0 = {0} (i.e. the blow-up g̃→ g is an isomorphism);

• HK
2 (g)0 = KillK(g)0 = {0}. �

The interest is that in both the theorem and the corollary, the first condition is
a problem of linear algebra in infinite dimension, while the second is linear algebra
in finite dimension (not involving Q) and is therefore directly computable in terms
of the structure constants of g.

Proof of Theorem 5.C.13. Suppose that KillK(g)0 = 0. By Corollary 5.C.8, the

induced homomorphism HQ
2 (g)0 → H2(g)0 is bijective.

Conversely, suppose that KillK(g)0 6= 0. Since g is finite-dimensional over K,
there exists a subfield L ⊂ K, finitely generated over Q, such that g is defined
over Q, i.e. we can write g = gL ⊗L K. Obviously, KillK(g) = KillL(gL) ⊗L K,
so KillL(gL) 6= 0. Let (x }Q y) be the representative of a nonzero element in
KillL(gL). Let λ be an element of K, transcendental over L. By Lemma 5.C.10,
the element λ ∧ λ−1 has a nontrivial image in HCL

1 (K). By Theorem 5.C.12
(applied with (A,B) = (L,K)), we deduce that

cL = λx ∧L λ−1y − λ−1x ∧L λy
is not a 2-boundary, i.e. is nonzero in HL

2 (g)0. In particular the element cQ
(written as cL with ∧Q instead of ∧L) is nonzero in HK

2 (g)0 since its image in
HL

2 (g) is cL, while its image cK in g ∧K g and hence in HK
2 (g)0 is obviously

zero. �

5.D. Auxiliary descriptions of H2(g)0 and Kill(g)0. In this subsection, all
Lie algebras are over a fixed commutative ring R.

Definition 5.D.1. Let g be a graded Lie algebra. We say that g is doubly
1-tame if for every α we have g0 =

∑
β/∈{0,α,−α}[gβ, g−β].

In view of Lemma 5.A.3, doubly 1-tame implies 1-tame, and the reader can
easily find counterexamples to the converse. This definition will be motivated in
Section 6, because it is a consequence of 2-tameness (Lemma 6.B.1(1)), which
will be introduced therein.

The purpose of this subsection is to provide descriptions of H2(g)0 and Kill(g)0.
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5.D.1. The tame 2-homology module. Let us begin by the trivial observation that
if α+ β + γ = 0 and α, β, γ 6= 0, then α+ β, β + γ, γ + α 6= 0. It follows that d3

maps (gO ∧ gO ∧ gO) into gO ∧ gO. Define the tame 2-homology module

HO2 (g)0 = (Ker(d2) ∩ (gO ∧ gO)0)/d3(gO ∧ gO ∧ gO)0.

We are going to prove the following result.

Theorem 5.D.2. Let g be a graded Lie algebra. The natural homomorphism
HO2 (g)0 → H2(g)0 induced by the inclusion (gO ∧ gO)0 → (g ∧ g)0 is surjective if
g is 1-tame, and is an isomorphism if g is doubly 1-tame.

Remark 5.D.3. In Abels’ second group, (g∧g)0 and (g∧g∧g)0 have dimension
4 and 5, while (gO ∧ gO)0 and (gO ∧ gO ∧ gO)0 have dimension 3 and 2. Thus, we
see that the computation of HO2 (g)0 is in practice easier than the computation of
H2(g)0.

Lemma 5.D.4. Let g be any graded Lie algebra. If g is 1-tame, then

(1) g0 ∧ g0 ⊂ Im(d3) + (gO ∧ gO)0;

(2) g0 ∧ g0 ∧ g0 ⊂ Im(d4) + g0 ∧ (gO ∧ gO)0;

Proof. Observe that (1) is a restatement of Lemma 5.B.6.
The second assertion is similar: if u, v have nonzero opposite weights and

x, y ∈ g0, then, modulo Im(d4), the element x ∧ y ∧ [u, v] is equal to

y ∧ u ∧ [v, x]− [x, y] ∧ u ∧ v + x ∧ v ∧ [u, y]− y ∧ v ∧ [u, x]− x ∧ u ∧ [v, y],

which belongs to g0 ∧ (gO ∧ gO)0. �

Proposition 5.D.5. Consider the following R-module homomorphism

Φ : gO ⊗ gO ⊗ gO ⊗ gO → (gO ∧ gO)/d3(gO ∧ gO ∧ gO)

u⊗ v ⊗ x⊗ y 7→ x ∧ [y, [u, v]]− y ∧ [x, [u, v]].

If g is doubly 2-tame, then there exists an R-module homomorphism

Ψ : g0 ⊗ g0 → (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0

such that whenever α, β are non-collinear weights, we have

Ψ([x, y]⊗ [u, v]) = Φ(u⊗ v ⊗ x⊗ y), ∀x ∈ gα, y ∈ g−α, u ∈ gβ, v ∈ g−β.

Moreover, Ψ is antisymmetric, i.e. factors through g0 ∧ g0.

Proof. Suppose that α, β are non-collinear weights and that x ∈ gα, y ∈ g−α,
u ∈ gβ, v ∈ g−β. We have d3 ◦ d4(x ∧ y ∧ u ∧ v) = 0. If we write this down in
(gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0, four out of six terms vanish and we get

d3([x, y] ∧ u ∧ v) + d3([u, v] ∧ x ∧ y) = 0,

which expands as

(5.D.6) Φ(u⊗ v ⊗ x⊗ y) + Φ(x⊗ y ⊗ u⊗ v) = 0.
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Define, for w ∈ g0, Ψx,y(w) = x ∧ [y, w]− y ∧ [x,w]. The mapping

(x, y) 7→ Ψx,y ∈ Hom(g0, (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0 )

is bilinear and in particular extends to a homomorphism

σ : (gO ⊗ gO)0 → Hom(g0, (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0 ).

Since g is doubly 1-tame, any w ∈ g0 can be written as
∑

[ui, vi] with ui ∈ gβi ,
vi ∈ g−βi , βi /∈ {0,±α}, so, using (5.D.6)

Ψx,y(w) =
∑
i

Φ(ui ⊗ vi ⊗ x⊗ y)

=−
∑
i

Φ(x⊗ y ⊗ ui ⊗ vi) =
∑
i

Ψui,vi([x, y]).

This shows that σ(x ⊗ y) only depends on [x, y], i.e. we can write σ(x ⊗ y) =
σ′([x, y]). Define, for z, w ∈ g0

Ψ(z ⊗ w) = σ′(z)(w).

By construction, whenever z = [x, y] and w = [u, v], with x ∈ gα, y ∈ g−α,
u ∈ gβ, v ∈ g−β and α, β are not collinear, we have

Ψ([x, y]⊗ [u, v]) = Φ(u⊗ v ⊗ x⊗ y);

from (5.D.6) we see in particular that Ψ is antisymmetric. �

Proof of Theorem 5.D.2. If g is 1-tame, the surjectivity immediately follows from
Lemma 5.D.4(1).

Now to show the injectivity of the map of the theorem, suppose that c ∈
(gO ∧ gO)0 is a 2-boundary and let us show that c belongs to d3(gO ∧ gO ∧ gO)0.
In view of Lemma 5.D.4(2), we already know that c belongs to d3(g ∧ gO ∧ gO)0,
and let us work again modulo d3(gO ∧ gO ∧ gO)0, so that we can suppose that c
belongs to d3(g0∧ (gO∧gO)0), and we wish to check that c = 0. Since g is doubly
1-tame, we can write

c =
∑

d3([ui, vi] ∧ xi ∧ yi)

with xi ∈ gαi
, yi ∈ g−αi

, ui ∈ gβi , vi ∈ g−βi , αi, βi nonzero and αi 6= ±βi. Write
wi = [ui, vi]. Then

c =

(∑
i

wi ∧ [xi, yi]

)
+

(∑
i

(xi ∧ [yi, wi] + yi ∧ [wi, xi])

)
,

the first term belongs to g0 ∧ g0 and the second to (gO ∧ gO)0/d3(gO ∧ gO ∧ gO)0;
since c is assumed to lie in (gO ∧ gO)0 we deduce that

(5.D.7)
∑
i

wi ∧ [xi, yi] = 0
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in g0 ∧ g0. Therefore

c
∑
i

xi ∧ [yi, wi] + yi ∧ [wi, xi] =
∑
i

Φ(ui ⊗ vi ⊗ xi ⊗ yi).

Now using Proposition 5.D.5 we get

c =
∑
i

Ψ(wi ∧ [xi, yi]) = Ψ

(∑
i

wi ∧ [xi, yi]

)
= 0

again by (5.D.7). �

5.D.2. The tame Killing module.

Definition 5.D.8. Let g be a graded Lie algebra over R. Consider the R-module
homomorphism

T : (g}R g)⊗R g → g}R g

u} v ⊗ w 7→ u} [v, w] + v } [u,w].

By definition, Kill(g) is the cokernel of T . We define KillO(g)0 as the cokernel of
the restriction of T to

((gO } gO)⊗ gO)0 → (gO } gO)0.

Note that T satisfies the identities, for all x, y, z

T (x} y ⊗ z) + T (y } z ⊗ x) + T (z } x⊗ y) = 0.

There is an canonical homomorphism KillO(g)0 → Kill(g)0.

Theorem 5.D.9. Let g be a graded Lie algebra. If g is 1-tame then the homo-
morphism KillO(g)0 → Kill(g)0 is surjective; if g is doubly 1-tame then it is an
isomorphism.

Lemma 5.D.10. Let g be an arbitrary Lie algebra. Then we have the identity

T (w, x, [y, z]) = T ([x, z], w, y)− T ([x, y], w, z)

− T ([w, y], x, z) + T ([w, z], x, y);

Proof. Use the four equalities

T ([x, z], w, y) =w } [[x, z], y] + [x, z]} [w, y],

T ([y, x], w, z) =w } [[y, x], z] + [y, x]} [w, z],

T ([w, z], x, y) =x} [[w, z], y] + [w, z]} [x, y],

T ([y, w], x, z) =x} [[y, w], z] + [y, w]} [x, z];

the sum of the four right-hand terms is, by the Jacobi identity and cancelation
of ([·, ·]} [·, ·])-terms, equal to

−w } [[z, y], x]− x} [[z, y], w] = T (w, x, [z, y]). �
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Lemma 5.D.11. Let g be an arbitrary graded Lie algebra. Let α, α′, β, β′ be
nonzero weights, with α + β, α + β′, α′ + β, α′ + β′ 6= 0, and (x, x′, y, y′) ∈ gα ×
gα′ × gβ × gβ′. Then, modulo T (gO } gO ⊗ gO), we have

(1) T (x, x′, [y, y′]) = 0.

and

(2) T ([x, x′], y, y′) = T ([y, y′], x, x′).

Let α0, β, γ, γ
′ be weights with β, γ, γ′ 6= 0, α0 /∈ {−γ,−γ′}. For all w0 ∈ gα0 , x ∈

gβ, y ∈ gγ, y
′ ∈ gγ′ we have

(3) T (w0, x, [y, y
′]) = T ([x, y′], w0, y)− T ([x, y], w0, y

′).

Let α, α′, β, β′ be nonzero weights with α + α′, β + β′ 6= 0. For all x ∈ gα, x
′ ∈

gα′ , y ∈ gβ′ , y
′ ∈ gβ′ we have

(4) T (x, y, [x′, y′]) = T ([x, y′], y, x′)− T ([y, x′], x, y′).

Proof. This are immediate from the formula given by Lemma 5.D.10 applied to
(x, x′, y, y′), resp. (x, y, x′, y′), resp. (w0, x, y, z), resp. (x, y, x′, y′). �

Lemma 5.D.12. Let g be a doubly 1-tame graded Lie algebra. Let α, β, γ be
weights with α, β 6= 0 and α + β + γ = 0, and (x, y, z) ∈ gα × gβ × gγ. Then,
modulo T (gO } gO ⊗ gO), we have

(1) T (x, y, z) = 0.

Let α, α′, β, β′ be weights, with α, β 6= 0 and α+α′+β+β′ = 0, and (x, x′, y, y′) ∈
gα × gα′ × gβ × gβ′. Then, modulo T (gO } gO ⊗ gO), we have and

(2) T ([x, y′], y, x′) = T ([y, x′], x, y′).

Proof. Let us check the first assertion. If γ 6= 0 this is trivial, so assume γ = 0
(so α = −β). Since g is doubly 1-tame, we can write z =

∑
[ui, vi] with ui, vi of

opposite weights, not equal to ±α. Then Lemma 5.D.11(1) applies.
From (1) and Lemma 5.D.11(4), we obtain (2) when α + α′, β + β′ 6= 0. Since

α + α′ + β + β′ = 0, the only remaining case is when α + α′ = β + β′ = 0. If
α + β′ 6= 0, then both sides in (2) are in ((gO } gO) ⊗ gO)0. So (2) is proved
whenever (α, β, α′, β′) 6= (α, α,−α,−α).

To tackle this last case, let us use this to prove first the following: if γ is a
nonzero weight, w0 ∈ g0, z ∈ gγ ,z′ ∈ g−γ, then T (w0, z, z

′) + T (w0, z
′, z) = 0.

Indeed, since g is doubly 1-tame, this reduces by linearity to w0 = [u, u′] with
u ∈ gδ, u

′ ∈ g−δ and δ /∈ {0,±γ}. So, using twice (2) in one of the cases already
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proved, we obtain

T (w0, z, z
′) =T ([u, u′], z, z′)

=T ([z, z′], u, u′)

=− T ([z′, z], u, u′)

=− T ([u, u′], z′, z)

=− T (w0, z
′, z)

Now suppose that (α, β, α′, β′) = (α, α,−α,−α). Then, using the antisymme-
try property above and again using one last time one already known case of (2),
we obtain

T ([x, y′], y, x′) =− T ([x, y′], x′, y)

=− T ([x′, y], x, y′)

= T ([y, x′], x, y′). �

Lemma 5.D.13. Let g be a 1-tame graded Lie algebra. Then

(1) (g} g)0 = T (g} g⊗ g)0 + (gO } gO)0;
(2) T (g} gO ⊗ gO)0 = T (g} g⊗ g)0.

Proof. Suppose that x, y ∈ g0. To show that x } y belongs to the right-hand
term in (1), it suffices by linearity to deal with the case when y = [u, v] with u, v
homogeneous of nonzero opposite weight. Then

x} [u, v] = T (x, u, v)− u} [x, v],

which is the sum of an element in ((g } g) ⊗ g)0 and an element in (gO } gO)0.
So (1) is proved.

Let us prove (2). By linearity, it is enough to prove that any element T (x, y, [u, v]),
where x, y have weight zero and u, v have nonzero opposite weight, belongs to
T (g⊗ gO ⊗ gO)0: the formula in Lemma 5.D.10 expresses T (x, y, [u, v]) as a sum
of four terms in T (g⊗ gO ⊗ gO)0. �

Proposition 5.D.14. Let g be a doubly 1-tame graded Lie algebra. Then

T (g⊗ g⊗ g) ∩ (gO } gO)0 ⊂ T ((gO ⊗ gO ⊗ gO)0).

Proof. Fix u, v ∈ nβ, n−β (β 6= 0) and consider the R-module homomorphism

Φu,v : g0 → M = (g} g)0/T ((gO ⊗ gO ⊗ gO)0)

w 7→ u} [v, w].

The mapping (u, v) 7→ Φu,v ∈ HomR(g0,M) is bilinear. Therefore it extends to a

mapping s 7→ Φ̂s defined for all s ∈ (gO ⊗ gO)0.
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If s =
∑
xi ⊗ yi ∈ g ∧ g, we write 〈s〉 =

∑
[xi, yi]. Now consider, for s, s′ ∈

(gO ⊗ gO)0, Ψ̂(s⊗ s′) = Φ̂s(〈s′〉) ∈M . In other words,

Ψ̂((u⊗ v)⊗ (x⊗ y)) = u} [v, [x, y]].

We have2

Ψ̂((u⊗ v)⊗ (x⊗ y)) =u} [v, [x, y]]

=− T ([x, y], u, v) + [x, y]} [u, v]

and similarly

Ψ̂((x⊗ y)⊗ (u⊗ v)) = −T ([u, v], x, y) + [u, v]} [x, y],

so

Ψ̂((u⊗ v)⊗ (x⊗ y))− Ψ̂((x⊗ y)⊗ (u⊗ v))

=T ([u, v], x, y)− T ([x, y], u, v) = 0

by Lemma 5.D.12(2). Thus, Ψ̂ is symmetric and we can write Ψ̂(s⊗s′) = Ψ̂(s}s′).
Note that (trivially) Ψ(s } s′) = 0 whenever s′ is a 2-cycle (i.e. 〈s′〉 = 0), so by

the symmetry Ψ̂ factors through a map Ψ : g0 } g0 →M such that

Ψ̂(s} s′) = Ψ(〈s′〉} 〈s′〉)

for all s, s′ ∈ (gO ∧ gO)0. In other words, we can write

u} [v, [x, y]] = Ψ([u, v]} [x, y]).

Now consider some element in T (g⊗ g⊗ g) ∩ (gO } gO)0. By Lemma 5.D.13,
it can be taken in T (g⊗ gO ⊗ gO). We write it as

τ =
∑
T (xi, yi, zi).

With xi, yi, zi homogenous and yi, zi of nonzero weight. Since we work modulo
((gO } gO) ⊗ gO)0, we can suppose xi is of weight zero for all i, and we have to
prove that τ = 0. So

τ =

(∑
i

xi } [yi, zi]

)
+

(∑
i

yi } [xi, zi]

)
,

the first term belongs to g0 ∧ g0 and the second to the quotient KillO(g)0 of
(gO ∧ gO)0 by ((gO } gO)⊗ gO)0, so

(5.D.15)
∑
i

xi } [yi, zi] = 0.

2Given a map defined on a tensor product such as Ψ, we freely view it as a multilinear map
when it is convenient.
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Now, writing xi =
∑

j[uij, vij] with uij, vij of nonzero opposite weight

τ =
∑
i

yi } [xi, zi]

=
∑
i,j

yi } [zi, [uij, vij]]

=
∑
i,j

Ψ([yi, zi]} [uij, vij])

=
∑
i

Ψ([yi, zi]} xi) = Ψ

(∑
i

[yi, zi]} xi

)
= 0 by (5.D.15). �

Proof of Theorem 5.D.9. The first statement follows from Lemma 5.D.13(1) and
the second from Proposition 5.D.14. �

6. Abels’ multiamalgam

6.A. 2-tameness. In this section, we deal with real-graded Lie algebras, that is,
Lie algebras graded in a real vector space W . As in Section 5, Lie algebras are,
unless explicitly specified, over the ground commutative ring R.

Let g be a real-graded Lie algebra. We say that P ⊂ W is g-principal if g is
generated, as a Lie algebra, by gP =

∑
α∈P gα (note that this only depends on

the structure of Lie ring, not on the ground ring R). We say that P (or (g,P))
is k-tame if whenever α1, . . . , αk ∈ P , there exists an R-linear form ` on W such
that `(αi) > 0 for all i = 1, . . . , k. Note that P is 1-tame if and only if 0 /∈ P and
is 2-tame3 if and only if for all α, β ∈ P we have 0 /∈ [α, β]. Note that k-tame
trivially implies (k − 1)-tame.

We say that the graded Lie algebra g is k-tame if there exists a g-principal
k-tame subset. Note that for k = 1 this is compatible with the definition in
§5.A.2.

Example 6.A.1. As usual, we write Wg = {α : gα 6= {0}}.
• g = sl3 with its standard Cartan grading, Wg = {αij : 1 ≤ i 6= j ≤

3}∪{0} (with αij = ei−ej, (ei) denoting the canonical basis of R3); then
{α12, α23, α31} and {α21, α13, α32} are g-principal and 2-tame.
• If P1 is the set of weights of the graded Lie algebra g/[g, g], then any
g-principal set contains P1; conversely if g is nilpotent then P1 itself is
g-principal. Thus if g is nilpotent, then g is k-tame if and only if 0 is not
in the convex hull of k weights of g/[g, g].

3This paper will not deal with k-tameness for k ≥ 3 but this notion is relevant to the study
of higher-dimensional isoperimetry problems.
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6.B. Lemmas related to 2-tameness. This subsection gathers a few technical
lemmas needed in the study of the multiamalgam in §6.C and §6.D. The reader
can skip it in a first reading.

The following lemma was proved by Abels under more specific hypotheses (g
nilpotent and finite-dimensional over a p-adic field). As usual, by [gβ, gγ] we mean
the module generated by such brackets.

Lemma 6.B.1. Let g be a real-graded Lie algebra and P ⊂ W a g-principal
subset. Suppose that (g,P) is 2-tame. Then

(1) for any ω ∈ W, we have g0 =
∑

β[gβ, g−β], with β ranging over W−Rω;

(2) if R+α ∩ P = ∅, then gα =
∑

[gβ, gγ], with (β, γ) ranging over pairs in
W −Rα such that β + γ = α.

Lemma 6.B.1 is a consequence of the more technical Lemma 6.B.2 below (with
i = 1). Actually, the proof of Lemma 6.B.1 is based on an induction which
makes use of the full statement of Lemma 6.B.2. Besides, while Lemma 6.B.1
is enough for our purposes in the study of the multiamalgam of Lie algebras in
§6.C, the statements in Lemma 6.B.2 involving the descending central series is
needed when studying multiamalgams of nilpotent groups in §6.D.

Lemma 6.B.2. Under the assumptions of Lemma 6.B.1, let (gi) be the descend-
ing central series of g and giα = gi ∩ gα (we avoid writing giα because of the
ambiguity if α = 0). Then

(1) for any ω ∈ W, we have gi0 =
∑

j+k=i

∑
β[gjβ, g

k
−β], with β ranging over

W −Rω;
(2) if R+α ∩ P = ∅, then giα =

∑
j+k=i

∑
[gjβ, g

k
γ], with (β, γ) ranging over

pairs in W −Rα such that β + γ = α;
(3) if α /∈ P, then giα =

∑
j+k=i

∑
[gjβ, g

k
γ], with (β, γ) ranging over pairs in

W such that β + γ = α and 0 /∈ [β, γ].

Proof. Define g[1] =
∑

α∈P gα, and by induction g[i] = [g[1], g[i−1]] for i ≥ 2; note

that this depends on the choice of P . Define g
[i]
α = gα ∩ g[i]. Note that each g[i]

is a graded submodule of g.
Let us prove by induction the following statement: in the three cases,

(6.B.3) g[i]
α ⊂

∑
j,k≥1, j+k=i

∑
β+γ=α...

[
g

[j]
β , g

[k]
γ

]
where in each case (β, γ) satisfies the additional requirements of (1), (2), or (3)
(we encode this in the notation

∑
β+γ=α...).

Since in all cases, α /∈ P , the case i = 1 is an empty (tautological) statement.
Suppose that i ≥ 2 and the inclusions (6.B.3) are proved up to i − 1. Consider

x ∈ g
[i]
α . By definition, x is a sum of elements of the form [y, z] with y ∈ g

[1]
β ,

z ∈ g
[i−1]
γ with β + γ = α. If β and γ are linearly independent over R, the

additional conditions are satisfied and we are done. Otherwise, since β ∈ P , we
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have β 6= 0 and we can write γ = rβ for some r ∈ R. There are three cases to
consider:

• r > 0. Then we are in Case (3), and 0 /∈ [β, γ], so the additional condition
in (3) holds.
• r = 0. Then β = α 6= 0 is a principal weight, which is consistent with

none of Cases (1), (2) or (3).
• r < 0. Then since β ∈ P , we have R+γ ∩ P = ∅, so we can apply

the induction hypothesis of Case (2) to z; by linearity, this reduces to

x = [y, [u, v]] with y ∈ g
[1]
β , u ∈ g

[j]
δ , v ∈ g

[k]
ε , j + k = i − 1, δ + ε = rβ,

and δ, ε not collinear to β. By the Jacobi identity,

(6.B.4) x ∈
[
g

[j]
δ , g

[k+1]
α−δ

]
+
[
g[k]
ε , g

[j+1]
α−ε

]
.

If α 6= 0, then we are in Case (3) or (2), and we get the additional
conditions of (2) (and therefore of (3)). If α = 0 (i.e. r = −1), we are in
Case (1) and if ω ∈ Rβ, we see (6.B.4) satisfies the additional conditions
of (1). However, the case ω /∈ Rβ is trivial since then the writing x = [y, z]
itself satisfies the additional condition of (1).

At this point, (6.B.3) is proved. Now write g{i} =
∑

`≥i g
[`]. Note that g

{i}
α =∑

`≥i g
[`]
α .

Obviously, for ` ≥ i we have

g[`]
α ⊂

∑
j+k=`

∑
β+γ=α...

[
g
{j}
β , g{k}γ

]
⊂
∑
j+k=i

∑
β+γ=α...

[
g
{j}
β , g{k}γ

]
,

so

g{i}α ⊂
∑
j+k=i

∑
β+γ=α...

[
g
{j}
β , g{k}γ

]
,

and since the inclusion
[
g
{j}
β , g

{k}
γ

]
⊂ g

{i}
α is clear, we get the equality

g{i}α =
∑
j+k=i

∑
β+γ=α...

[
g
{j}
β , g{k}γ

]
.

By Lemma 2.G.14, for all ` ≥ 1, we have g{`} = g`, and therefore g
{`}
δ = g`δ for

all ` and all δ, whence the desired equalities. �

6.C. Multiamalgams of Lie algebras.

6.C.1. The definition. By convex cone in a real vector space, we mean any subset
stable under addition and positive scalar multiplication (such a subset is neces-
sarily convex). Let C be the set of convex cones of W not containing 0. Let g be
a real-graded Lie algebra over the ring R. If C ∈ C, define

gC =
⊕
α∈C

gα;
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this is a graded Lie subalgebra of g (if Wg is finite, gC is nilpotent). Denote by
x 7→ x̄ the inclusion of gC into g.

Definition 6.C.1. Define ĝ = ĝR as the multiamalgam (or colimit) of all gC ,
where C ranges over C.

This is by definition an initial object in the category of Lie algebras h endowed
with compatible homomorphisms gC → h.

It can be realized as the quotient of the Lie R-algebra free product of all gC , by
the ideal generated by elements x − y, where x, y range over elements in gC , gD
such that x̄ = ȳ and C,D range over C. Note that among those relators, we can
restrict to homogeneous x, y as the other ones immediately follow. Since the free
product as well as the ideal are graded, ĝ is a graded Lie algebra; in particular, ĝ
is also the multiamalgam of the gC in the category of Lie algebras graded in W .
The inclusions gC → g induce a natural homomorphism ĝ→ g.

6.C.2. Link with the blow-up. Let g̃ be the blow-up introduced in §5.B. For every
C ∈ C, the structural homomorphism g̃C → gC is an isomorphism, and therefore
we obtain compatible homomorphisms gC → g̃C ⊂ g, inducing, by the universal
property, a natural graded homomorphism ĝ→ g̃.

Theorem 6.C.2. If g is 1-tame, then the natural Lie algebra homomorphism
κ : ĝR → g̃R is surjective, and if g is 2-tame, κ is an isomorphism. In particular, if
g is 2-tame then the kernel of ĝR → g is central in ĝ and is canonically isomorphic
(as an R-module) to HR

2 (g)0.

To prove the second statement, we need the following lemma.

Lemma 6.C.3 (Abels). If g is 2-tame, then ĝ → g has central kernel, concen-
trated in degree zero.

Proof of Theorem 6.C.2 from Lemma 6.C.3. If g is 1-tame, then so is g̃ by Lemma
5.B.6, and the surjectivity of κ follows, proving the first assertion.

If g is 2-tame, then by Lemma 6.C.3, ĝ→ g has central kernel concentrated in
degree zero, so by the universal property of the blow-up (Theorem 5.B.4), there
is a section s of the natural map κ. By uniqueness in the universal properties,
s ◦ κ and κ ◦ s are both identity and we are done.

The last statement is then an immediate consequence of Lemma 5.B.2. �

Proof of Lemma 6.C.3. If α is a nonzero weight of g, then there exists C ∈ Cg
such that α ∈ C. By the amalgamation relations, the composite graded homo-
morphism gα → gC → ĝ does not depend on the choice of C. We thus call it iα
and call its image mα.

Let us first check that whenever α, β are non-zero non-opposite weights, then
we have the following inclusion in ĝ

(6.C.4) [mα,mβ] ⊂ mα+β.
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We begin with the observation that if γ, δ are nonzero weights with δ /∈ −R+γ,
then

(6.C.5) iγ+δ([gγ, gδ]) = [mγ,mδ].

Indeed, in the above definition of i, we can choose C to contain both γ and δ.
In particular if α /∈ −R+β, then (6.C.4) is clear. Let us prove (6.C.4) assuming
that α ∈ R−β. By 2-tameness, we can suppose that R+β ∩P = ∅, so by Lemma
6.B.1(2), gβ ⊂

∑
[gγ, gδ], where (γ, β) ranges over the set Q(β) of pair of weights

such that γ + δ = β and γ, δ are not in Rβ(= Rα). So, applying (6.C.5), we
obtain mβ ⊂

∑
(γ,δ)∈Q(β)[mγ,mδ]. Therefore

[mα,mβ] ⊂
∑

(γ,δ)∈Q(β)

[mα, [mγ,mδ]].

If we fix such (γ, δ) ∈ Q(β), we get, by the Jacobi identity and using that α, β, δ
are pairwise non-collinear

[mα, [mγ,mδ]] ⊂[mγ, [mδ,mα]] + [mδ, [mα,mγ]]

⊂[mγ,mδ+α] + [mδ,mα+γ]

⊂mγ+δ+α = mα+β,

and finally [mα,mβ] ⊂ mα+β. So (6.C.4) is proved.
Now define w0 as the submodule of ĝ

(6.C.6) w0 =
∑
γ 6=0

[mγ,m−γ].

We are going to check that for every α 6= 0

(6.C.7) [mα,w0] ⊂ mα

and

(6.C.8) [w0,w0] ⊂ w0.

Before proving (6.C.7), let us first check that for every nonzero α, if R(α) is
the set of nonzero weights not collinear to α then

(6.C.9) [mα,m−α] ⊂
∑

β∈R(α)

[mβ,m−β].

Indeed, by 2-tameness, we can suppose that R+(−γ)∩P = ∅, and apply Lemma
6.B.1(2), so

g−α ⊂
∑

(γ,δ)∈Q(−α)

[gγ, gγ];

by (6.C.5) we deduce

m−α ⊂
∑

(γ,δ)∈Q(−α)

[mα,mδ];
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so

[mα,m−α] ⊂
∑

(γ,δ)∈Q(−α)

[mα, [mγ,mδ]].

If (γ, δ) ∈ Q(−α), we have, by the Jacobi identity and then (6.C.4)

[mα, [mγ,mδ]] ⊂[mγ, [mδ,mα]] + [mδ, [mα,mγ]]

⊂[mγ,mδ+α] + [mδ,mα+γ]

=[mγ,m−γ] + [mδ,m−δ];

we thus deduce (6.C.9).
We can now prove (6.C.7), namely if α, γ 6= 0, then [mα, [mγ,m−γ]] ⊂ mα.

By (6.C.9) we can assume that α and γ are not collinear, in which case (6.C.7)
follows from (6.C.4) by an immediate application of Jacobi’s identity.

To prove (6.C.8), we need to prove that w0 is a subalgebra, or equivalently
that for every α 6= 0, we have

[w0, [mα,m−α]] ⊂ w0.

Indeed, using the Jacobi identity and then (6.C.7)

[w0, [mα,m−α]] ⊂[mα, [m−α,w0]] + [m−α, [w0,mα]]

⊂[mα,m−α] + [m−α,mα] ⊂ w0.

so (6.C.8) is proved.
We can now conclude the proof of the lemma. By the previous claims (6.C.4),

(6.C.7), and (6.C.8), if w0 is defined as in (6.C.6) the submodule
(⊕

α 6=0 mα

)
⊕w0

is a Lie subalgebra of ĝ. Since the mα for α 6= 0 generate ĝ by definition, this
proves that this Lie subalgebra is all of ĝ.

Therefore, if φ : ĝ → g is the natural map, we see that φα is the natural
isomorphism mα → gα. Thus Ker(φ) is contained in ĝ0. If z ∈ Ker(φ) and
x ∈ mα for some α 6= 0, then

φ([z, x]) = [φ(z), φ(x)] = [0, φ(x)] = 0,

so [z, x] = φ−1
α (φ([z, x])) = 0. Thus z centralizes mα for all α; since these generate

ĝ, we deduce that z is central. �

6.C.3. On the non-2-tame case. There is a partial converse to Theorem 6.C.2: if
R is a field and g/[g, g] is not 2-tame, then ĝ has a surjective homomorphism onto
a free Lie algebra on two generators. In particular, if g is nilpotent (as in all our
applications), g̃ is nilpotent as well but ĝ is not. The argument is straightforward:
the assumption implies that there is a graded surjective homomorphism g → h,
where h is the abelian 2-dimensional algebras with weights α, β with β ∈ R−α,

inducing a surjective homomorphism ĝ → ĥ. Now it follows from the definition
that h is the free product of the 1-dimensional Lie algebras hα and hβ and hence
is not nilpotent.



GEOMETRIC PRESENTATIONS OF LIE GROUPS AND THEIR DEHN FUNCTIONS 95

6.D. Multiamalgams of groups. In this part, g is a nilpotent real-graded Lie
algebra over a commutative Q-algebra R of characteristic zero (although the
results would work in characteristic p > s + 1, where s is the nilpotency length
of the Lie algebra involved).

For C ∈ Cg, let G and GC be the groups associated to g and gC by Malcev’s
equivalence of categories between nilpotent Lie algebras over Q and uniquely
divisible nilpotent groups, described in Theorem 2.G.5. Let the embedding GC →
G corresponding to gC → g be written as g 7→ ḡ. Let Ĝ be the corresponding
amalgam, namely the group generated by the free product of GC for C ∈ Cg,
modded out by the relators xy−1 whenever x̄ = ȳ.

The following result was proved by Abels [Ab87, Cor. 4.4.14] assuming that
R = Qp and that g is finite-dimensional. This is one of the most delicate points in
[Ab87]. We provide a sketch of the (highly technical) proof, in order to indicate
how his proof works over our general hypotheses.

Theorem 6.D.1 (Abels). Suppose that g is 2-tame and s-nilpotent. Then Ĝ is
(s+ 1)-nilpotent.

For the purpose of Section 4, we need a stronger result. Abels asked [Ab87,

4.7.3] whether Ĝ → G is always a central extension. This is answered in the
positive by the following theorem.

Theorem 6.D.2. Under the same hypotheses, the nilpotent group Ĝ is uniquely
divisible, and its Lie algebra is ĝQ in the natural way. In particular, the ho-
momorphism Ĝ → G has a central kernel, naturally isomorphic to HQ

2 (g)0 as a
Q-linear space.

Proof. Our proof is based on Theorem 6.D.1 and some generalities about nilpotent
groups, which are gathered in §2.G.

Since by Theorem 6.D.1, Ĝ is nilpotent, and since it is generated by divisible
subgroups, it is divisible (see Lemma 2.G.6). Therefore by the (standard) Lemma

2.G.4, to check that Ĝ is uniquely divisible, it is enough to check that it is
torsion-free. Since Ĝ is known to be (s + 1)-nilpotent, we see that Ĝ is the
multiamalgam (=colimit) of the GC within the category K of (s + 1)-nilpotent

groups. Therefore, Ĝ is the quotient of the free product W in K of the GC by
amalgamations relations. By Lemma 2.G.8, W is a uniquely divisible torsion-
free nilpotent group. Since, for x, y ∈ W , whenever xy−1 is an amalgamation
relation, xry−r is an amalgamation relation as well for all r ∈ Q, Proposition
2.G.12 applies to show that the normal subgroup N generated by amalgamation
relations is divisible. Therefore Ĝ/N is torsion-free, hence uniquely divisible.

It follows that Ĝ is also the multiamalgam of the GC in the category K0 of
uniquely divisible (s + 1)-nilpotent groups. By Malcev’s Theorem 2.G.5, this
category is equivalent to the category of (s + 1)-nilpotent Lie algebras over Q.
Therefore, if H is the group associated to ĝ and H → GC are the homomorphisms
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associated to gC → ĝ, then H and the family of homomorphisms GC → H satisfy
the universal property of multiamalgam in the category K0, and this gives rise
to a canonical isomorphism Ĝ→ H. In particular, by Theorem 6.C.2, the kernel
W of Ĝ→ G is central in Ĝ, and isomorphic to HQ

2 (g)0. �

Corollary 6.D.3. Under the same hypotheses, if moreover HR
2 (g)0 = {0} then

the central kernel of Ĝ→ G is generated, as an abelian group, by elements of the
form

exp([λx, y]) exp([x, λy])−1, λ ∈ R, x, y ∈
⋃
C

gC .

If R =
∏τ

j=1 Rj is a finite product of Q-algebras (so that g =
∏

j gj canonically),

then those elements exp([λx, y]) exp([x, λy])−1 with λ ∈ Rj and x, y ∈ gj are
enough.

Proof. The additional assumption and Theorem 6.D.2 imply that the kernel of
Ĝ→ G is naturally isomorphic, as a Q-linear space, to the kernel WQ,R

2 (g) of the

natural map HQ
2 (g)0 → HR

2 (g)0.
Let N be the normal subgroup of G generated by elements of the form

exp([λx, y]) exp([x, λy])−1, x, y ∈
⋃

gC , λ ∈ R;

clearly N is contained in the kernel W of Ĝ → G. By Proposition 2.G.12, N is
divisible, i.e., N is a Q-linear subspace of W . Therefore Ĝ/N is uniquely divisible

and its Lie algebra can be identified with ĝ/N . By definition of N , in Ĝ/N we

have exp([λx, y]) = exp([x, λy]) for all x, y ∈
⋃
gC . So in the Lie algebra of Ĝ/N ,

which is equal to ĝ/N we have [λx, y] = [x, λy]. Since by Proposition 5.C.5, the
subgroup W is generated by elements of the form exp([λx, y]− [x, λy]) when x, y
range over

⋃
GC and λ ranges over R, it follows that N = W .

It remains to prove the last statement. By Lemma 5.B.7, H2(g)0 can be iden-
tified with the product

∏
j H2(gj)0. In particular, by Proposition 5.C.5, it is

generated by elements of the form [λx, y] − [x, λy] when x, y ∈
⋃
gj,C , λ ∈ Rj,

and j = 1, . . . , τ . Then, we can conclude by a straightforward adaptation of the
above proof. �

Corollary 6.D.4. Under the same hypotheses, if moreover HR
2 (g)0 = KillR(g)0 =

{0}, then Ĝ→ G is an isomorphism.

Proof. As observed in the proof of Corollary 6.D.3, since HR
2 (g)0 = 0, the kernel

of Ĝ→ G is isomorphic to WQ,R
2 (g)0. Since KillR(g)0 = 0, Corollary 5.C.8 implies

that WQ,R
2 (g)0 = 0. �

Proof of Theorem 6.D.1 (sketched). We only sketch the proof; the proof in [Ab87]
(with more restricted hypotheses) is 8 pages long.

Fix a 2-tame g-principal subset P . Let S denote the set of all half-lines R>0w
(w 6= 0) inW . Consider the descending central series (Gi). Let M i

C be the image
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of Gi ∩GC in Ĝ and MC = M1
C . Let Ai be the normal subgroup of Ĝ generated

by all M i
C , where C ranges over S.

Abels also introduces more complicated subgroups. Let L denote the set of
lines of W (i.e. its projective space). Each line L ∈ L contains exactly two half
lines:

L = S1 ∪ {0} ∪ S2.

Define the following subgroups of Ĝ

M[L] = M1
[L] = 〈MS1 ∪MS2〉

and, by induction

M i
[L] =

〈
M i

S1
∪M i

S2
∪
⋃

j+k=i

((
M j

[L],M
k
[L]

))〉
,

where ((·, ·)) denote the subgroup generated by group commutators.
Abels proves the following lemma [Ab87, 4.4.11]: if L ∈ L and C is a open

cone in W such that L+ C ⊂ C, then

(6.D.5)
((
M j

C ,M
k
[L]

))
⊂M j+k

C .

The interest is that Mk
[L] is a complicated object, while the right-hand term M j+k

C

is a reasonable one.
Abels obtains [Ab87, Prop. 4.4.13] the following result, which can appear as a

group version of Lemma 6.B.2(1): for any L0 ∈ L and any i, the ith term of the

descending central series Ĝi is generated, as a subgroup and modulo Ai, by the
M i

[L] where L ranges over L − {L0}, or, in symbols,

(6.D.6) Ĝi =

〈 ⋃
L6=L0

M i
[L]

〉
Ai.

It is important to mention here that all three items of Lemma 6.B.2 are needed
in the proof of (6.D.6) (encapsulated in the proof of [Ab87, Prop. 4.4.7]).

To conclude the proof, suppose that G is s-nilpotent. We wish to prove that
((Ĝ, Ĝs+1)) = {1}. Since Ĝ is easily checked to be generated by MS for S ranging
over S, it is enough to check, for each S ∈ S

(6.D.7)
((
MS, Ĝ

s+1
))

= {1}.

Now since G is s-nilpotent, As+1 = {1}, so we can forget “modulo As+1” in
(6.D.6) (with i = s+ 1), so (6.D.7) follows if we can prove

((MS,M
s+1
[L] )) = {1}

for all L ∈ L with maybe one exception L0; namely, we choose L0 to be the line
generated by −S. Then S + L is an open cone, (6.D.5) applies and we have

((MS,M
s+1
[L] )) ⊂ ((MS+L,M

s+1
[L] )) ⊂M s+2

S+L = {1}. �
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7. Central and hypercentral extensions

In this section, unless explicitly specified, all Lie algebras are finite-dimensional
over a field K of characteristic zero.

7.A. Introduction of the section. The purpose of this section is to prove the
negative statements of the introduction in presence of 2-homological obstructions
(Theorem D.2), gathered in the following theorem.

Theorem 7.A.1. (1) If G is a standard solvable group (see Definition 1.2)
satisfying the non-Archimedean 2-homological obstruction, then G is not
compactly presented;

(2) if G is a standard solvable group satisfying the 2-homological obstruction,
then it has an least exponential Dehn function (possibly infinite);

(3) if G is a real triangulable group with the 2-homological obstruction, then
it has an at least exponential Dehn function.

(1) and (2) are proved, by an elementary argument relying on central exten-
sions, in §7.B. (3) is much more involved. The reason is that the exponential
radical g∞ is not necessarily split in g and the non-vanishing of H2(g)0 does not
necessarily yield a central extension of g in degree zero (an explicit counterex-
ample is given in §7.E). We then need some significant amount of work to show
that it provides, anyway, a hypercentral extension.

7.B. FC-Central extensions. We use the following classical definition, which
is a slight weakening of the notion of central extension.

Definition 7.B.1. Consider an extension

(7.B.2) 1→ Z
i→ G̃→ G→ 1.

We say that it is an FC-central extension if i(Z) is FC-central in G̃, in the sense

that every compact subset of i(Z) is contained in a compact subset of G̃ that is
invariant under conjugation.

This widely used terminology is (lamely) borrowed from the discrete case, in
which it stands for “Finite Conjugacy (class)”.

In the following, the reader can assume, in a first reading, that the FC-central
extensions (defined below) are central. The greater generality allows to consider,
for instance, the case when Z is a local field on which the action by conjugation
is given by multiplication by elements of modulus 1.

Consider now an FC-central extension as in (7.B.2), and assume that G̃ gen-
erated by a compact subset S (symmetric with 1); Fix k, set Wk = Z ∩ Sk, and

W̌k =
⋃
g∈G̃ gWkg−1, which is a compact subset of Z by assumption. The fol-

lowing easy lemma, is partly a restatement of [BaMS93, Lemma 5] (which deals
with finitely generated groups and assumes Z is central).
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Lemma 7.B.3. Let γ̃ be any path in the Cayley graph of G̃ with respect to S,
joining 1 to an element z of Z. Let γ be the image of γ̃ in the Cayley graph
of G (with respect to the image of S). If γ̃ can be filled by m (≤ k)-gons, then
z ∈ W̌k

m
.

Proof. If γ̃ can be filled by m (≤ k)-gons, then z can be written (in the free group

over S, hence in G̃) as z =
∏m

i=1 hirih
−1
i , where ri, hi ∈ G̃, ri ∈ Ker(G̃→ G) = Z

having length ≤ k with respect to S, i.e. ri ∈ Wk. Thus hirih
−1
i ∈ W̌k; hence

z ∈ W̌k
m

. �

The group Z may or not be compactly generated; if it is the case, let U a
compact generating set of Z, and define the distortion of Z in G as

dG,Z(n) = max(n, sup{|g|U : g ∈ Z, |g|S ≤ n});
if Z is not compactly generated set dG,Z(n) = +∞. Note that this function
actually depends on Z and U as well, but its ∼-equivalence class only depends
on (G,Z).

Proposition 7.B.4. Given a FC-central extension as above, if G is compactly
presented, then Z is compactly generated and its Dehn function satisfies δG(n) �
dG,Z(n).

Proof. By Lemma 7.B.3, if G is presented by S and relators of length ≤ k, then
Z is generated by W̌k, which is compact.

If U is a compact generating set for Z, then Wk ⊂ U ` for some `. Write
d(n) = dG,Z(n) (relative to S and U) and δ(n) = δG(n). Consider g ∈ Z with

|g|S ≤ n and |g|U = d(n). Taking γ̃ to be a path of length ≤ n in G̃ joining 1
and g as in Lemma 7.B.3, we obtain that the loop γ in G has length ≤ n and
area m, and Lemma 7.B.3 implies that d(n) = |g|U ≤ m`. So δ(n) ≥ d(n)/`. �

Proof of (1) and (2) in Theorem 7.A.1. In the setting of (1), we assume thatG =
U oA satisfies the non-Archimedean 2-homological obstruction, so that for some
j, Kj is non-Archimedean and the condition Z = H2(uj)0 6= 0 means that the
action of A on Uj can be lifted to an action on a certain FC-central extension

1→ Z
i→ Ũj → Uj → 1,

so that i(Z) is contained and FC-central in [Ũj, Ũj]. Thus it yields an FC-central
extension

(7.B.5) 1→ Z
i→ Ũ o A→ U o A→ 1,

where Ũ = Ũj ×
∏

j′ 6=j Uj′ , and Ũ o A is compactly generated. By Proposition
7.B.4, it follows that U o A is not compactly presented.

In the setting of (2), the proof is similar, with Kj being Archimedean; there

is a difference however: in (7.B.5), Z need not be FC-central in Ũ o A, because
of the possible real unipotent part of the A-action. Note that i(Z) is central in
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Ũ . We then consider an A-irreducible quotient Z ′′ = Z/Z ′ of Z and consider the
FC-central extension

1→ Z ′′
i→ Ũ oD → U oD → 1.

Since the real group Uj is exponentially distorted, it follows that i(Z ′′) is expo-
nentially distorted as well and by Proposition 7.B.4, it follows that U oD has an
at least exponential Dehn function. �

7.C. Hypercentral extensions. To prove Theorem 7.A.1(3), the natural ap-
proach seems to start with a real triangulable group G with H2(g∞)0 6= 0 and find
a central extension of G with exponentially distorted center. If the exponential
radical of G is split, i.e. if G = G∞oA for some nilpotent group A, the existence
of such a central extension follows by a simple argument similar to that in the
proof of Theorem 7.A.1(2). Unfortunately, in general such a central extension
does not exist; although there are no simple counterexamples, we construct one
in §7.E.

Nevertheless, in order to prove Theorem 7.A.1(3), the geometric part of the
argument is the following variant of Proposition 7.B.4.

Proposition 7.C.1. Let G be a connected triangulable Lie group and G∞ its
exponential radical (see Definition 2.F.2). Suppose that there exists an extension
of connected triangulable Lie groups

1 −→ N −→ H −→ G −→ 1

with N hypercentral in H (i.e. the ascending central series of H covers N) and
with N ∩H∞ 6= {1}. Then G has an (at least) exponential Dehn function.

Proof. We fix a compact generating set S in H, and its image S ′ in G. Let hn ∈ N
be an element of linear size n in H and exponential size ' en in H. Pick a path
of size n joining 1 to h in H, i.e. represent h by a word γn = x1 . . . xn in H with
xi ∈ S. Push this path forward to G to get a loop of size n in G; let an be its
area. So in the free group over S, we have

γn =
an∏
j=1

gnjrnjg
−1
nj

where rj is a relation of G (i.e. represents the identity in G) of bounded size. By
a standard argument using van Kampen diagrams (see Lemma 2.D.2), we can
choose the size of gnj to be at most ≤ C(an + n), where C is a positive constant
only depending on (G,S ′). Push this forward to H to get

hn =
an∏
j=1

gnjrnjg
−1
nj ,

where rnj here is a bounded element of N , and gnj has length ≤ C(an + n) in H.
Since the action of H on N by conjugation is unipotent, we deduce that the size
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in N of gnjrnjg
−1
nj is polynomially bounded with respect to an+n, say � (an+n)d

(uniformly in j). Therefore hn has size � (an+n)d+1. Since (hn) has exponential
growth in N , we deduce that (an) also grows exponentially. �

Let us emphasize that at this point, the proof of Theorem 7.A.1(3) is not yet
complete. Indeed, given a real triangulable group G with H2(g∞)0 6= 0, we need
to check that we can apply Proposition 7.C.1. This is the contents of the following
theorem. If V is a G-module, V G denotes the set of G-fixed points. Also, see
Definition 2.F.1 for the definition of g∞.

Theorem 7.C.2. Let G be a triangulable Lie group. Suppose that H2(g∞)G 6=
{0}. Then there exists an extension of connected triangulable Lie groups

1 −→ N −→ H −→ G −→ 1

with N hypercentral in H and with N ∩G∞ 6= {1}.

The theorem will easily follow from the analogous (more general) result about
solvable Lie algebras.

By epimorphism of Lie algebras we mean a surjective homomorphism, and we
denote it by a two-headed arrow h� g. Such an epimorphism is k-hypercentral
if its kernel z is contained in the kth term hk of the ascending central series of
h; when k = 1, that is, when z is central in h, it is simply called a central
epimorphism. Also, if m is a g-module, we write mg = {m ∈ m : ∀g ∈ g, gm =
0}.

Definition 7.C.3. We say that a hypercentral epimorphism g� h between Lie
algebras has polynomial distortion if the induced epimorphism g∞ � h∞ is
bijective; otherwise we say it has non-polynomial distortion.

Theorem 7.C.4. Let g be a K-triangulable Lie algebra. Assume that H2(g∞)g 6=
{0}. Then there exists a hypercentral epimorphism h � g with non-polynomial
distortion.

The condition H2(g∞)g 6= {0} can be interpreted as H2(g∞)0 6= {0}, where g
is endowed with a Cartan grading (see §2.F, especially Lemma 2.F.6). Theorem
7.C.4 will be proved in §7.D.

Proof of Theorem 7.C.2 from Theorem 7.C.4. Since G is triangulable, exp(g) =
g∞. Theorem 7.C.4 provides a hypercentral epimorphism h � g, with kernel
denoted by z, and with non-polynomial distortion, i.e. h∞ ∩ z 6= {0}. Since z
is hypercentral, the action of g on z is nilpotent, hence triangulable, and since
moreover g and z are triangulable, we deduce that h is triangulable. Let H → G
be the corresponding surjective homomorphism of triangulable Lie groups and Z
its kernel, which is hypercentral. Then H∞ ∩ Z 6= {1}, because the Lie algebra
counterpart holds. So the theorem is proved. �
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7.D. Proof of Theorem 7.C.4.

Lemma 7.D.1. Let g � h � l be epimorphisms of Lie algebras such that the
composite homomorphism is a hypercentral epimorphism. If g� l has polynomial
distortion then so does h� l.

Proof. This is trivial. �

Lemma 7.D.2. Let g be a Lie algebra and (T t)t∈K be a one-parameter group of
unipotent automorphisms of g. Let h� g be a central epimorphism. Then there
exists a Lie algebra k with an epimorphism ρ : k � h such that the composite
homomorphism k� g is a central epimorphism, and such that the action of (T t)
lifts to a unipotent action on k.

Remark 7.D.3. The conclusion of Lemma 7.D.2 cannot be simplified by the
requirement that k = h, as we can see, for instance, by taking h to be the direct
product of the 3-dimensional Heisenberg algebra and a 1-dimensional algebra and
a suitable 1-parameter subgroup of unipotent automorphisms of g = h/[h, h].

Proof of Lemma 7.D.2. Set z = Ker(h � g) and denote the Hopf bracket (see
§5.A.1) by

[·, ·]′ : g ∧ g→ h.

Pick a linear projection π : h→ z and define b(x ∧ y) = π([x, y]′). This gives a
linear identification of h with g⊕ z, for which the law is given as

[ 〈x1, z1〉 , 〈x2, z2〉 ] = 〈 [x1, x2] , b(x1 ∧ x2) 〉
(in this proof, we write pairs 〈x, z〉 rather than (x, z) for the sake of readability).
Observe that T t naturally acts on g∧ g, preserving Z2(g) and B2(g). If c ∈ g∧ g,
define the function

αc : K → z

u 7→ b(T uc).

If d is the dimension of g, let W denote the space of K-polynomial mappings
of degree < 2d from K to z; the dimension of W is 2d dim(z). Now t 7→ T t is a
polynomial of degree < d valued in the space of endomorphisms of g, so is also
polynomial of degree < 2d valued in the space of endomorphisms of g ∧ g. So αc
is a polynomial of degree < 2d, from K to z.

If c ∈ g ∧ g is a boundary then αc = 0. So α defines a central extension
k = g⊕W (as a vector space) of g with kernel W , with law

[〈x1, ζ1〉, 〈x2, ζ2〉] = 〈[x1, x2], αx1∧x2〉, 〈x1, ζ1〉, 〈x2, ζ2〉 ∈ g⊕W.
From now on, since elements of W are functions, it will be convenient to write
elements of k as 〈x, ζ(u)〉, where u is thought of as an indeterminate. For t ∈ K,
the automorphism T t lifts to an automorphism of k given by

T t(〈x, ζ(u)〉) = 〈T tx, ζ(u+ t)〉.
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This is obviously a one-parameter subgroup of linear automorphisms; let us check
that these are Lie algebra automorphisms (in the computation, for readability we
write the brackets as [·; ·], with semicolons instead of commas).

[T t(〈x1, ζ1(u)〉) ; T t(〈x2, ζ2(u)〉) ] = [ 〈T tx1, ζ1(u+ t)〉 ; 〈T tx2, ζ2(u+ t)〉 ]
= 〈 [T tx1;T tx2] , αT tx1∧T tx2(u) 〉
= 〈 [T tx1;T tx2] , b(T u(T tx1 ∧ T tx2)) 〉
= 〈T t[x1;x2] , b(T t+ux1 ∧ T t+ux2) 〉
= 〈T t[x1;x2] , αx1∧x2(t+ u) 〉
= T t(〈 [x1;x2] , αx1∧x2(u)〉 )
= T t( [ 〈x1, ζ1(u)〉 ; 〈x2, ζ2(u)〉 ] ),

so these are Lie algebra automorphisms. Now the mapping

k → h

ρ : 〈x, ζ(u)〉 7→ 〈x, ζ(0)〉

is clearly a surjective linear map; it is also a Lie algebra homomorphism: indeed

[ ρ(〈x1, ζ1(u)〉) ; ρ(〈x2, ζ2(u)〉) ] = [ 〈x1, ζ1(0)〉 ; 〈x2, ζ2(0)〉 ]
= 〈 [x1;x2] , b(x1 ∧ x2) 〉
= 〈 [x1;x2] , αx1∧x2(0) 〉
= ρ(〈 [x1;x2] , αx1∧x2(u)〉 )
= ρ([ 〈x1, ζ1(u)〉 ; 〈x2, ζ2(u)〉 ]) �

Lemma 7.D.4. The statement of Lemma 7.D.2 holds true if we replace, in both
the hypotheses and the conclusion, central by k-hypercentral.

Proof. The case k = 1 was done in Lemma 7.D.2. Decompose h � g as h �
h1 � g, with h � h1 central (with kernel z) and h1 � g (k − 1)-hypercentral.
By induction hypothesis, there exists k with k � h1 such that the composite
epimorphism k� g is k-hypercentral and such that (T t) lifts to k. Consider the
fibered product h×h1 k of the two epimorphisms h� h1 and k� h1, so that the
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two lines in the diagram below are central extensions and both squares commute.

g

0 // z // h // // h1
//

?? ??

0

0 z h×h1 k

OOOO

// k

OOOO

// 0

m

OOOO
;; ;;

Applying Lemma 7.D.2 again to h ×h1 k � k, we obtain m � h ×h1 l so that
the composite epimorphism m � k is central and so that (T t) lifts to m. So the
composite map m� h is the desired homomorphism. �

We say that a Lie algebra g is spread if it can be written as g = no s where
n is nilpotent, s is reductive and acts reductively on n. It is spreadable if there
exists such a decomposition.

When g is solvable, s is abelian and a Cartan subalgebra of g is given by the
centralizer h = Cg(s) = Cn(s) × s. In particular, the s-characteristic decompo-
sition of g coincides with the h-characteristic decomposition, and the associated
Cartan gradings are the same.

This remark is useful when we have to deal with a homomorphism n1 o s →
n2 o s which is the identity on s: indeed such a homomorphism is graded for the
Cartan gradings.

Proof of Theorem 7.C.4. We first prove the result when g is spread, so g = uod.
Let k be the dimension of u/g∞. We argue by induction on k.

Suppose that k = 0. We have a grading of g∞, valued in d∨. Consider the
blow-up construction (Lemma 5.B.2): it gives a graded Lie algebra g̃∞ and a
graded surjective map g̃∞ � g∞ with central kernel concentrated in degree zero
and isomorphic to H2(g∞)0. This grading, valued in d∨, defines a natural action
of d on g̃∞ and the epimorphism g̃∞ o d � g∞ o d is central. By construction,
the kernel H2(g∞)0 is contained in (g̃∞od)∞ so this (hyper)central epimorphism
has non-polynomial distortion.

Now suppose that k ≥ 1. Let n be a codimension 1 ideal of g containing g∞od.
Since n contains gO ⊕ d, the intersection of n with u0 is a hyperplane in u0. So
there exists a one-dimensional subspace l ⊂ u0, such that g = n o l. Note that
the grading of g, valued in d∨, extends that of n and n∞ = g∞ and in particular,
H2(n∞)0 6= {0}.

By induction hypothesis, there exists a hypercentral epimorphism h� n, with
non-polynomial distortion. By Lemma 7.D.4, there exists a hypercentral epimor-
phism m� h (with kernel z) so that the action of ead(l) on n lifts to a unipotent
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action on m. This corresponds to a nilpotent action of l on m. Let zi be the in-
tersection of the ith term of the ascending central series of m with z, so z` = z for
some `. On each zi+1/zi, the action of l is nilpotent and the adjoint action of m is
trivial. So the action of mo l on each zi+1/zi, hence on z, is nilpotent. That is, z is
hypercentral in mo l (this is where the argument would fail with “hypercentral”
replaced by “central”). So m o l � g is the desired hypercentral epimorphism:
by Lemma 7.D.1, m � n has non-polynomial distortion and therefore so does
mo l� g.

Now the result is proved when g is spread. In general, fix a faithful linear
representation g→ gln, and let h = uo d be the splittable hull of g in gln (that
is, the subalgebra generated by semisimple and nilpotent parts of elements of g for
the additive Jordan decomposition, see [Bou, Chap. VII, §5]). If n is any Cartan
subalgebra of h, then n′ = n∩ g is a Cartan subalgebra of g [Bou, Chap. VII, §5,
Ex. 8]. Now n = (u ∩ n) + n′, but every n-weight of h vanishes on u ∩ n. So the
n-grading of h extends the n′-grading of g (in other words, the embedding g ⊂ h is
a graded map). In particular, since g∞ = h∞, this equality is an isomorphism of
graded algebras and we deduce that H2(h∞)0 6= {0}. So we obtain a hypercentral
extension m � h, with non-polynomial distortion because g∞ = h∞. By taking
the inverse image of g in m, we obtain the desired hypercentral extension of g. �

7.E. An example without central extensions. We prove here that in the
conclusion of Theorem 7.C.2, it is not always possible to replace, in the conclusion,
hypercentral by central. We begin by the following useful general criterion.

Proposition 7.E.1. Let g be a finite-dimensional solvable Lie algebra with its
Cartan grading. Then g has a central extension with non-polynomial distortion
if and only if the image of (Ker(d2) ∩ (gO ∧ gO))0 in H2(g)0 is zero (i.e. it is
contained in Im(d3)).

Proof. Suppose that the image of the above map is nonzero. By the blow-up
construction (Lemma 5.B.2), we obtain a central extension ğ � g with kernel
H2(g)0 concentrated in degree zero. By the assumption, there exist xi, yi in g, of
nonzero opposite weights ±αi, such that

∑
xi ∧ yi is a 2-cycle and is nonzero in

H2(g)0. This means that in ğ, the element z =
∑

[xi, yi] is a nonzero element of
the central kernel H2(g)0. So z ∈ ğ∞ and the central epimorphism ğ � g does
not have polynomial distortion.

Conversely, suppose that there exists a central epimorphism ğ � g with non-
polynomial distortion, with kernel z. Note that the Cartan grading lifts to ğ, so
that the kernel z is concentrated in degree zero. By assumption, z∩ ğ∞ contains a
nonzero element z. By Lemmas 5.A.3 and 5.A.4, we can write, in ğ, z =

∑
[xi, yi]

with xi, yi of nonzero opposite weights. Thus in g,
∑
xi∧ yi is a nonzero element

of H2(g)0. �

Let G̃ be the 15-dimensional R-group of 6× 6 upper triangular matrices of the
form
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(7.E.2)


1 x12 u13 u14 u15 u16

0 1 0 0 x25 x26

0 0 t3 u34 u35 u36

0 0 0 t4 u45 u46

0 0 0 0 1 x56

0 0 0 0 0 1

 ,

where t3, t4 are nonzero. Its unipotent radical Ũ consists of elements of the form
(7.E.2) with t3 = t4 = 1 and its exponential radical Ẽ consists of elements in
Ũ for which x12 = x25 = x26 = x56 = 0. If D denotes the (two-dimensional)
diagonal subgroup in G̃, the quotient G̃/Ẽ is isomorphic to the direct product of
D with a 4-dimensional unipotent group (corresponding to coefficients x12, x25,
x26, x56). Note that the extension 1→ Ẽ → Ũ → Ũ/Ẽ → 1 is not split.

Let Z the 2-dimensional subgroup of Ũ consisting of matrices with all entries
zero except u16 and x26. Note that Z is hypercentral and has non-trivial inter-
section with the exponential radical of G̃.

Define G = G̃/Z; it is 13-dimensional. The weights of E = Ẽ/Z are arranged
as follows (the principal weights are in boldface)

(7.E.3) 14 34

13 15 35 36

45 46

and the other basis elements of weight zero in g are 33, 44, 12, 25, 56.
We see that e is 2-tame. Besides, H2(e)0 6= 0, as 13 ∧ 36 is a 2-cycle in degree

that is not a 2-boundary, as follows from the observation that e has an obvious
nontrivial central extension in degree zero, given by at the level of groups by

1→ Z/Z ′ → Ẽ/Z ′ → E → 1,

where Z ′ is the one-dimensional subgroup at position 26 (that is, the subgroup
of Z consisting of matrices with u16 = 0), which is normalized by Ẽ but not by
Ũ .

Since H2(g∞)0 6= {0}, by Theorem 7.C.4 there exists a hypercentral epimor-
phism h→ g with non-polynomial distortion. By contrast, every central epimor-
phism h→ g has polynomial distortion. This follows from Proposition 7.E.1 and
the following proposition.

Proposition 7.E.4. Let g be the above 13-dimensional triangulable Lie algebra.
Then in H2(g)0, the image of (Ker(d2) ∩ (gO ∧ gO))0 is zero.
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Proof. To streamline the notation, we denote by ij the elementary matrix usually
denoted by Eij, with 1 at position (i, j) and zero everywhere else (including the
diagonal). By considering each pair of nonzero opposite weights in (7.E.3), we
can describe the map d2 on a basis of the 4-dimensional space (uO ∧ uO)0.

13 ∧ 35
d27−→ −15 13 ∧ 36 7−→ 0,

14 ∧ 45 7−→ −15, 14 ∧ 46 7−→ 0;

accordingly a basis of (Ker(d2) ∩ (gO ∧ gO))0 is given by

13 ∧ 35− 14 ∧ 45, 13 ∧ 36, 14 ∧ 46;

we have to check that these are all boundaries; let us snatch them one by one:

12 ∧ 25 ∧ 56
d37−→ 56 ∧ 15.

13 ∧ 34 ∧ 45 7−→ 13 ∧ 45− 14 ∧ 45

13 ∧ 35 ∧ 56 7−→ 56 ∧ 15 + 13 ∧ 36

14 ∧ 45 ∧ 56 7−→ 56 ∧ 15 + 14 ∧ 46. �

Combining with Proposition 7.E.1, we get:

Corollary 7.E.5. We have H2(g∞)0 6= {0}, but there is no central extension of
Lie groups

1 −→ R
j−→ Ğ −→ G −→ 1

with j(R) exponentially distorted in Ğ. �

8. G not tame

Here we prove that any group satisfying the SOL obstruction has an at least
exponential Dehn function. The method also provides the result that any group
satisfying the non-Archimedean SOL obstruction is not compactly presented.

8.A. Combinatorial Stokes formula.

Definition 8.A.1. Let X be a set and let R be any commutative ring. We call
a closed path a sequence c = (c0, . . . , cn) of points in X with c0 = cn (so we can
view it as indexed by Z/nZ). If α, β are functions X → R, we define∫

c

βdα =
∑

i∈Z/nZ

β(ci)(α(ci+1)− α(ci−1))

Clearly, this is invariant if we shift indices. The following properties are im-
mediate consequences of the definition.

• (Antisymmetry) We have∫
c

βdα = −
∫
c

αdβ.
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• (Concatenation) If c0 = ci = cn and we write c′ = (c0, . . . , ci) and c′′ =
(ci, . . . , cn), ∫

c

βdα =

∫
c′
βdα +

∫
c′′
βdα.

• (Filiform vanishing) If n = 2 then the integral vanishes. More generally,
the integral vanishes when c is filiform, i.e., n is even and ci = cn−i for
all i.

Indeed, the difference
∫
c
βdα−

∫
c′
βdα−

∫
c′′
βdα is equal to

β(c0)[(α(ci+1)− α(ci−1)) + (α(c1)− α(cn−1))

−(α(c1)− α(ci−1))− (α(ci+1)− α(cn−1))] = 0.

The filiform vanishing is immediate for n = 2 and follows in general by an induc-
tion based on the concatenation formula.

Now let us deal with a Cayley graph of a group G with a generating set S,
and we consider paths in the graph, that is sequences of vertices linked by edges.
Thus any closed path based at 1 can be encoded by a unique element of the
free group FS, which is a relation (i.e. an element of the kernel of FS → G), and
conversely, if r is a relation, we denote by [r] the corresponding closed path based
at 1. Note that G acts by left translations on the set of closed paths. The above
properties imply the following

• (Product of relations) If r, r′ are relations, we have∫
[rr′]

βdα =

∫
[r]

βdα +

∫
[r′]

βdα.

• (Conjugate of relations) If r is a relation and γ ∈ FS,∫
[γrγ−1]

βdα =

∫
γ·[r]

βdα.

• (Combinatorial Stokes formula) Suppose that a relation r is written as a
product r =

∏
i=1 γiriγ

−1
i of conjugates of relations. Then∫

[r]

βdα =
k∑
i=1

∫
γi·[ri]

βdα.

The formula for products follows from concatenation if there is no simplification
in the product rr′, and follows by also using the filiform vanishing otherwise.
The formula for conjugates also follows using the filiform vanishing. The Stokes
formula follows from the two previous by an immediate induction.

Remark 8.A.2. The above combinatorial Stokes formula is indeed analogous to
the classical Stokes formula on a disc: here the left-hand term is thought of as an
integral along the boundary, while the right-hand term is a discretized integral
over the surface.
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8.B. Loops in groups of SOL type. Let K1 and K2 be two nondiscrete locally
compact fields. Consider the group

G = (K1 ×K2) o(`1,`
−1
2 ) Z,

where |`2|K2 ≥ |`1|K1 > 1, with group law written so that the product depends
affinely on the right term:

(x, y, n)(x′, y′, n′) = (x+ `n1x
′, y + `−n2 y′, n+ n′).

Write |`1|K1 = |`2|µK2
with 0 < µ ≤ 1

Now we can also view x and y as the projections to the coordinates in the above
description. In the next lemmas, we consider a normed ring K (whose norm is
submultiplicative, not necessarily multiplicative), and functions A : K1 → K,
and B : K2 → K, yielding functions α, β : G → R defined by α = A ◦ x and
β = B ◦ y.

Lemma 8.B.1. Suppose that A is 1-Lipschitz and that B satisfies the Hölder
condition

|B(s)−B(s′)| ≤ |s− s′|µ, ∀s, s′ ∈ K2.

Then
∫
βdα is bounded on triangles of bounded diameter.

Proof. Let us consider a triangle T of bounded diameter (viewed as a closed path
of length three), i.e. three points (g0, g0h, g0h

′), where h and h′ are bounded (but
not g0!). Note that as a consequence of the antisymmetry relation,

∫
T
βdα does

not change if we add constants to both α and β. We can therefore assume that
α(g0) = β(g0) = 0. Hence∫

T

βdα = β(g0h)α(g0h
′)− β(g0h

′)α(g0h).

In coordinates, suppose that g0 = (x0, y0, n0), h = (x, y, n) and h′ = (x′, y′, n′).
Then g0h = (x0+`n0

1 x, y0+`−n0
2 y, n0+n), and g0h

′ = (x0+`n0
1 x
′, y0+`−n0

2 y′, n0+n′).
Since A(x0) = B(x0) = 0, we have∫

T

βdα = B(y0 + `−n0
2 y)A(x0 + `n0

1 x
′)−B(y0 + `−n0

2 y′)A(x0 + `n0
1 x).

By our assumptions on A and B, we have∣∣∣∣∫
T

βdα

∣∣∣∣ ≤ |`−n0
2 y|µ|`n0

1 x
′|+ |`−n0

2 y′|µ|`n0
1 x|

= |y|µ|x′|+ |y′|µ|x|,
which is duly bounded when h, h′ are bounded. �

Fix n ≥ 1. We consider the relation

γ1,n = tnxt−nytnx−1t−ny−1;

this is a closed path of length 4n + 4, where x, y and t denote (by abuse of
notation) the elements (1, 0, 0) , (0, 1, 0) and (0, 0, 1) of G = K1 ×K2 o Z.
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Lemma 8.B.2. Consider A,B, α, β as introduced before Lemma 8.B.1. Suppose
here that B(0) = 1 and B vanishes outside the open 1-ball of K2. Then, denoting
by | · |K the norm in K, we have∣∣∣∣∣

∫
γ1,n

βdα

∣∣∣∣∣
K

= |2`n1 |K.

Proof of Lemma 8.B.2. To simplify the notation, let us denote by c the closed
path of length 4n + 4 defined by γ1,n. In the integral

∫
c
βdα, only those points

ci for which “βdα” is nonzero, i.e. both α(ci+1) 6= α(ci−1) and β(ci) 6= 0, do
contribute. In this example as well as the forthcoming ones, this will make most
terms be equal to zero. The closed path c can be decomposed as

c0 = (0, 0, 0), (0, 0, 1), . . . , (0, 0, n− 1), (0, 0, n) = cn,

cn+1 = (`n1 , 0, n), (`n1 , 0, n− 1), . . . , (`n1 , 0, 1), (`n1 , 0, 0) = c2n+1,

c2n+2 = (`n1 , 1, 0), (`n1 , 1, 1), . . . , (`n1 , 1, n− 1), (`n1 , 1, n) = c3n+2,

c3n+3 = (0, 1, n), (0, 1, n− 1), . . . , (0, 1, 1), (0, 1, 0) = c4n+3.

We see that x(ci+1) 6= x(ci−1) only for i = n, n + 1, 3n + 2, 3n + 3. Moreover,
for i = 3n+ 2, 3n+ 3, y(ci) = 1, so B(y(ci)) = 0. Thus∫

βdα =
n+1∑
i=n

B(y(ci))(A(x(ci+1))− A(x(ci−1))) = 2B(0)(A(`n1 )− A(0));

thus ∣∣∣∣∫ βdα

∣∣∣∣
K

= |2A(`n1 )|K. �

Lemma 8.B.3. Endow K = K1 ×K2 with the max norm. The following func-
tions satisfy the conditions of Lemmas 8.B.1 and 8.B.2.

• A1 : K1 → R, x 7→ |x| and A2 : K1 → K, x 7→ (x, 0);
• B1 : K1 → R, x 7→ max(0, 1−|x|), and, if K2 is ultrametric, the function

K2 → K mapping x to (0, 1− x) if |x| < 1 and to 0 if |x| ≥ 1.

Proof. It is trivial that A1 and A2 are 1-Lipschitz. Also, note that since µ ≤ 1,
any function B satisfying the condition |B(s)−B(s′)| ≤ max(1, |s−s′|) obviously
satisfies the Hölder condition |B(s)−B(s′)| ≤ |s−s′|µ. It is clear that B1 satisfies
the former condition; if K2 is ultrametric then whenever |x| < 1 and |x′| ≥ 1 we
have |x− x′| ≥ 1, so the former condition is also satisfied. �

To illustrate the interest of the notions developed here, note that this is enough
to obtain the following result.

Proposition 8.B.4. Under the assumptions above, if 2 6= 0 in K1, the group

G = (K1 ×K2) o(`1,`
−1
2 ) Z

has at least exponential Dehn function, and if both K1 and K2 are ultrametric
then G is not compactly presented.
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We use the following convenient language: in a locally compact group G with a
compact system of generators S, we say that a sequence of null-homotopic words
(wn) in FS has asymptotically infinite area if for every R, there exists N(R) such
that no wn for n ≥ N(R) is contained in the normal subgroup of FS generated
by null-homotopic words of length ≤ R. By definition, the non-existence of such
a sequence is equivalent to G being compactly presented.

Proof of Proposition 8.B.4. Set I =
∫
γ1,n

βdα.

We first use the functions A = A1 and B = B1 of Lemma 8.B.3. By Lemma
8.B.2, |I| ≥ |2A1(`n1 )|R = 2|`1|nK1

. Suppose that γ1,n can be decomposed into
jn triangles of diameter ≤ R. By the combinatorial Stokes formula (see §8.A)
and Lemma 8.B.1, |I| ≤ Cjn, where the constant C = C(R) > 0 is provided by
Lemma 8.B.1. It follows that jn ≥ 2|`1|K1/C. Hence the area of γ1,n grows at
least exponentially, so the Dehn function of G grows at least exponentially.

Now assume that both K1 and K2 are ultrametric, so that K is ultrametric
as well; we use the functions A = A2 and B = B2 of Lemma 8.B.3. By Lemma
8.B.2, |I| ≥ |2`n1 |K = |2|K1|`1|nK1

. By Lemma 8.B.1, for each R there is a bound
C(R) on norm of the integral of βdα over any triangle of diameter ≤ R. By
ultrametricity and the combinatorial Stokes theorem, C(R) is a bound for the
norm of the integral of βdα over an arbitrary loop that can be decompose into
triangles of diameter ≤ R. Since (|2|K1|`1|nK1

) is unbounded, this shows that
for every R there exists n such that γ1,n cannot be decomposed into triangles of
diameter ≤ R. Thus the sequence (γ1,n) has asymptotically infinite area. This
shows that G is not compactly presented. �

Remark 8.B.5. The assumption that K1 does not have characteristic two can
be removed, but in that case we need to redefine

∫
βdα as

∑
i β(ci)(α(ci+1) −

α(ci)). The drawback of this definition is that the integral is not invariant under
conjugation. However, with the help of Lemma 2.D.2, it is possible to conclude.
Since we are not concerned with characteristic two here, we leave the details to
the reader.

However Proposition 8.B.4 is not enough for our purposes, because we do not
only wish to bound below the Dehn function of the group G, but also of various
groups H mapping onto G. In general, the loop γ1,n does not lift to a loop in
those groups, so we consider more complicated loops γk,n in G, which eventually
lift to the groups we have in mind. However, to estimate the area, we will go on
working in G, because we know how to compute therein, and because obviously
the area of a loop in H is bounded below by the area of its image in G.

Define by induction

γk,n = γk−1,ngkγ
−1
k−1,ng

−1
k .

Here, gk denotes the element (0, yk, 0) in the group G, where the sequence (yi) in
K2 satisfies the following property: y1 = 1 and for any non-empty finite subset I
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of integers, ∣∣∣∣∣∑
i∈I

yi

∣∣∣∣∣ ≥ 1.

For instance, if K2 is ultrametric, this is satisfied by yi = `i2; if K2 = R, the
constant sequence yi = 1 works. The sequence (yi) will be fixed once and for all.

Fix n. We wish to compute, more generally,
∫
γk,n

βdα. Write the path γk,n as

(ci). Note that for given n, ci does not depend on k (because γk,n is an initial
segment of γk+1,n). Write the length of γk,n as λk,n (λ1,n = 4n + 4, λk+1,n =
2λk,n + 2).

Lemma 8.B.6. The number n being fixed, we have

(1) There exists a sequence finite subsets Fi of the set of positive integers, such
that for all i, we have y(ci) =

∑
j∈Fi

yj, and satisfying in addition: for all

i < λk,n and all k ≥ 1, we have Fi ⊂ {1, . . . , k}. Moreover y(ci) 6= 0 (and
thus Fi 6= ∅), unless either

– i ≤ 2n+ 2, or
– i = λj,n for some j.

(2) Assume that 1 ≤ i ≤ n − 1, or n + 2 ≤ i ≤ 2n + 2, or i = λj,n for some
j. Then x(ci−1) = x(ci+1).

Proof.

(1) The sequence (Fi) is constructed for i < λk,n, by induction on k. For
k = 1, we set Fi = ∅ if i ≤ 2n− 1 and Fi = {1} if 2n+ 2 ≤ i ≤ 4n+ 3 =
λ1,n − 1, and it satisfies the equality for y(ci) (see the proof of Lemma
8.B.2, where ci is made explicit for all i ≤ λ1,n = 4n+ 4).

Now assume that k ≥ 2 and that Fi is constructed for i < λ = λk−1,n

with the required properties. We set Fλ = ∅; since cλ = (0, 0, 0), the
condition holds for i = λ. It remains to deal with i when λ < i < λk,n; in
this case ci = gkc2λ−i, so y(ci) = yk+y(ci). Thus if we set Fi = {k}∪F2λ−i,
remembering by induction that F2λ−i ⊂ {1, . . . , k − 1}, we deduce that
y(ci) =

∑
j∈Fi

yj; clearly Fi ⊂ {1, . . . , k}.
(2) This was already checked for i ≤ 2n+ 2 (see the proof of Lemma 8.B.2).

In the case i = λj,n, we have ci−1 = gj and ci+1 = gj+1, so x(ci−1) =
x(ci+1). �

Lemma 8.B.7. Under the assumptions of Lemma 8.B.2, we have∫
γk,n

βdα = |2`1|nK1
.

Proof. By Lemma 8.B.6, if both |y(ci)| < 1 and x(ci−1) 6= x(ci+1), then i = n or
i = n + 1. It follows that the desired integral on γk,n is the same as the integral
on γ1,n computed in Lemma 8.B.2. �
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8.C. Groups with the SOL obstruction.

Theorem 8.C.1. Let G1 be a locally compact, compactly generated group, and
suppose there is a continuous surjective homomorphism

G1 → G = (K1 ×K2) o(`1,`
−1
2 ) Z,

where 0 6= 2 in K1. Suppose that G1 has a nilpotent normal subgroup H whose
image in G contains K1 ×K2. Then

• the Dehn function of G is at least exponential.
• if both K1 and K2 are ultrametric, then G is not compactly presented.

Proof. Let k0 be the nilpotency length of H and fix k ≥ k0. Using Lemma 8.B.7
and arguing as in the proof of Proposition 8.B.4 (using Lemma 8.B.7 instead
if Lemma 8.B.2), we obtain that the loops γk,n, which have linear length with
respect to n, have at least exponential area, and asymptotically infinite area in
case K1 and K2 are both ultrametric.

Lift x, y, and gk to elements x̃, ỹ, g̃k in H and t to an element t̃ in G; set
X̃n = t̃nx̃t̃−n; since H is normal, X̃n ∈ H. This lifts γk,n to a path γ̃k,n based at

1; let vk,n be its value at λk,n, so v1,n = X̃nỹX̃
−1
n ỹ−1 and vk+1,n = vk,ng̃kv

−1
k,ng̃k

−1.
We see by an immediate induction that vk,n belongs to the (k+ 1)th term in the
descending central series of H. Since k ≥ k0, we see that γ̃k,n is a loop of G,
of linear length with respect to n, mapping to γk,n. In particular, its area is at
least the area of γk,n. So we deduce that γ̃k,n has at least exponential area with
respect to n, and has asymptotically infinite area in case K1 and K2 are both
ultrametric. �

We will also need the following variant, in the real case.

Theorem 8.C.2. Let G1 be a locally compact, compactly generated group, and
suppose there is a continuous homomorphism with dense image

G1 → G = (R×R) o R,

so that the element t ∈ R acts by the diagonal matrix (`t1, `
−t
2 ) (`2 ≥ `1 > 0).

Suppose that G1 has a nilpotent normal subgroup H whose image in G contains
R×R. Then the Dehn function of G is at least exponential.

Proof. Since the homomorphism has dense image containing R×R, there exists
some element t̃ mapping to an element t of the form (0, 0, τ) with τ > 0. Changing
the parameterization of G if necessary (replacing `i by `τi for i = 1, 2), we can
suppose that τ = 1. Then lift x and y and pursue the proof exactly as in the
proof of Theorem 8.C.1. �

Remark 8.C.3. To summarize the proof, the lower exponential bound is ob-
tained by finding two functions α, β on G1 such that the integral

∫
βdα is bounded

on triangles of bounded diameter, and a sequence (γn) of combinatorial loops of
linear diameter such that

∫
γn
βdα grows exponentially.
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This approach actually also provides a lower bound on the homological Dehn
function [Ger92, BaMS93, Ger99] as well. Let us recall the definition. Let G be
a locally compact group with a generating set S and a subset R of the kernel of
FS → G consisting of relations of bounded length, yielding a polygonal complex
structure with oriented edges and 2-faces. Let A be a commutative ring. For
i = 0, 1, 2, let Ci(G,A) be the real vector space freely spanned by the set of
vertices, resp. oriented edges, resp. oriented 2-faces. Endow each Ci(G,A) with
the `1 norm. There are usual boundary operators

C2(G,A)
∂2→ C1(G,A)

∂1→ C0(G,A).

satisfying ∂1 ◦ ∂2 = 0. If Z1(G,A) is the kernel of ∂1, then it is easy to extend,
by linearity, the definition of

∫
c
βdα (from §8.A) to c ∈ Z1(G,A).

Following [Ger99], define, for c ∈ Z1(G,A)

HFillAG,S,R(c) = inf{‖P‖1 : P ∈ C2(G,A), ∂2(P ) = c}.
and

HδAG,S,R(n) = sup{HFill(z)AG,S,R : z ∈ Z1(G,A), ‖z‖1 ≤ n}.
Clearly, if c is a basis element (so that its area makes sense)

HFill(c)RG,S,R ≤ HFill(c)ZG,S,R ≤ areaG,S,R(c);

it follows that
HδRG,S,R(n) ≤ HδZG,S,R(n) ≤ δG,S,R(n).

The function HFill(c)AG,S,R is called theA-homological Dehn function of (G,R, S)

(the function HFill(c)ZG,S,R is called abelianized isoperimetric function in [BaMS93]).
If finite, it can be shown by routine arguments that its ≈-asymptotic behavior
only depends on G. Some Bestvina-Brady groups [BeBr97] provide examples
of finitely generated groups with finite integral Dehn function but infinite Dehn
function. Until recently, no example of a compactly presented group was known
for which the integral (or even real) homological Dehn function is not equivalent
to the integral homological Dehn function; the issue was raised, for finitely pre-
sented groups, both in [BaMS93, p. 536] and [Ger99, p. 1]; the first examples
have finally been obtained by Abrams, Brady, Dani and Young in [ABDY13].

Let us turn back to G1 (a group satisfying the hypotheses of Theorem 8.C.1 or
8.C.2): for this example, since R consists of relations of bounded length, it follows
that the integral of βdα over the boundary of any polygon is bounded. Since∫
γn
βdα grows exponentially, it readily follows that HFillRG1

(γn) grows at least

exponentially and hence HδRG1
(n) (and thus HδZG1

(n)) grows at least exponentially.
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[Al91] J. Alonzo. Inégalités isopérimétriques et quasi-isométries. C.R. Acad. Sci. Paris. Sér.
311, 761–764 (1991).

[AW76] R. Azencott, E.N. Wilson. Homogeneous Manifolds with Negative Curvature. I. Trans.
Amer. Math. Soc. 215 (1976) 323–362.

[Ba60] G. Baumslag. Some aspects of groups with unique roots. Acta Math. 104 (1960)
217–303.

[BGSS92] G. Baumslag, S. M. Gersten, M. Shapiro, and H. Short, Automatic groups and amal-
gams, these proceedings.in: Algorithms and Classification in Combinatorial Group
Theory, G. Baumslag and C. F. Miller III, eds., MSRI Publications 23, Springer, New
York, 1992, 179–194.

[BaMS93] G. Baumslag, C. Miller III, H.Short. Isoperimetric inequalities and the homology of
groups. Inv. Math 113 (1993), 531–560.

[BeBr97] M. Bestvina, N. Brady. Morse theory and finiteness properties of groups. Invent.
math. 129, 445–470 (1997)

[BiS78] R. Bieri, R. Strebel. Almost finitely presented soluble groups. Comment. Math. Helv.,
53(2):258–278, 1978.
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32 (1982), no. 4, 119–142.
[Mag35] W. Magnus. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring.

Math. Ann. 111 (1935), 259–280.
[Mal49a] A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13

(1949) 9-32; English translation, Amer. Math. Soc. Transl., no. 39 (1951).
[Mal49b] A. I. Malcev. Generalized nilpotent algebras and their associated groups. Mat. Sbornik

(N.S.) 25 (67) (1949), 347–366.
[NW08] K-H. Neeb and F. Wagemann. The second cohomology of current algebras of general

Lie algebras Canad. J. Math. Vol. 60 (4) (2008) 892–922.
[Os02] D. V. Osin. Exponential radical of solvable Lie groups. J. Algebra 248 (2002), 790–805.
[Se] J-P. Serre. Lie algebras and Lie groups. Lecture Notes in Mathematics, 1500. Springer-

Verlag, Berlin, 1992.
[St70] I. Stewart. An algebraic treatment of Malcev’s theorems concerning nilpotent Lie

groups and their Lie algebras. Compositio Math. 22 (1970) 289?312.
[Var00] N. Varopoulos. A geometric classification of Lie groups. Rev. Mat. Iberoam. 16(1)

(2000) 49–136.
[We11] S. Wenger. Nilpotent groups without exactly polynomial Dehn function, J. Topology

4 (2011), 141–160.
[Y06] Robert Young. Filling inequalities for nilpotent groups. arXiv:math/0608174 (2006).
[Y13] Robert Young. The Dehn function of SL(n;Z). Annals of Math. 177(3) (2013), 969-

1027.
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