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Abstract

We prove that a metric space does not coarsely embed into a Hilbert
space if and only if it satisfies a sequence of Poincaré inequalities, which
can be formulated in terms of (generalized) expanders. We also give quan-
titative statements, relative to the compression. In the equivariant context,
our result says that a group does not have the Haagerup property if and
only if it has relative property T with respect to a family of probabili-
ties whose supports go to infinity. We give versions of this result both in
terms of unitary representations, and in terms of affine isometric actions
on Hilbert spaces.

1 Introduction

1.1 Obstruction to coarse embeddings

The notion of expanders has been pointed out by Gromov as an obstruction for

a metric space to coarsely embed into a Hilbert space. Recall [JS] (see also [L])

that a sequence of expanders is a sequence of finite connected graphs (Xn) with

bounded degree, satisfying the following Poincaré inequality for all f ∈ `2(Xn)

1

|Xn|2
∑

x,y∈Xn

|f(x)− f(y)|2 ≤ C

|Xn|
∑
x∼y

|f(x)− f(y)|2, (1.1)

for some constant C > 0, and whose cardinality |Xn| goes to infinity when n →
∞. An equivalent formulation in `p [M2] can be used to prove that expanders do

not coarsely embed into Lp for any 1 ≤ p <∞.
∗The author is supported by the NSF grant DMS-0706486.
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It is an open problem whether a metric space with bounded geometry that

does not coarsely embed into a Hilbert space admits a coarsely embedded se-

quence of expanders.

In this paper, we prove that a metric space (not necessarily with bounded

geometry) that does not coarsely embed into a Hilbert space admits a coarsely

embedded sequence of “generalized expanders”. This weaker notion of expanders

can be roughly described as a sequence of Poincaré inequalities with respect

to finitely supported probability measures on X × X. We also provide similar

obstructions for coarse embeddings into families of metric spaces such as Lp, for

every 1 ≤ p <∞, uniformly convex Banach spaces, and CAT(0) spaces.

For the sake of clarity, we chose to present most of our results first in the

case of Hilbert spaces. However, our characterization (see Theorem 14) of the

non-existence of coarse embedding into Lp deserves some attention. Indeed, our

Poincaré inequalities are not equivalent for different values of 2 ≤ p < ∞. This

follows from a result of Naor and Mendel [MN] (see also [JR]) saying that Lp does

not coarsely embed into Lq if 2 ≤ q < p. This is different from what happens

with real expanders, as having a sequence of expanders prevents from having a

coarse embedding into Lp, for any 1 ≤ p <∞. In particular, at least without any

assumption of bounded geometry, our generalized expanders cannot be replaced

by actual expanders.

To conclude, let us remark that finding subspaces of Lp for some p > 2, with

bounded geometry, which do not coarsely embed into L2, would answer negatively

the problem mentioned above.

1.2 Obstruction to Haagerup Property

A countable group is said to have the Haagerup property if it admits a proper

affine action on a Hilbert space. An obstruction for an infinite countable group to

have the Haagerup Property is known as Property T (also called Property FH),

which says that every isometric affine action has a fixed point (or equivalently

bounded orbits). A weaker obstruction is to have relative property T with respect

to an infinite subset [C1, C2]. The case where this subset is a normal subgroup

has been mostly considered, as it has strong consequences. On the other hand,

there are examples of groups which do not have relative property T with respect

to any subgroup, but have it with respect to some infinite subset [C1]. The

question whether the latter property is equivalent to the negation of Haagerup

Property is still open.

In this paper, we partially answer this question by showing that a countable

group does not have Haagerup Property if and only if it has relative Property T
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with respect to a sequence of probabilities whose supports eventually leave every

finite subset.

Acknowledgments. I am grateful to Yann Ollivier, Yves Stalder, Yves de Cor-

nulier, Bogdan Nica and the referee for their useful comments and corrections. I

address a special thank to James Lee who pointed to me [M1, Proposition 15.5.2].

2 Organization of the paper

Before describing the general organization of the paper, let us emphasize that the

proof of the main result (stated in its most general form in Theorem 14) is only

given in the last section (Section 5). The proof of Theorem 20, relative to length

functions on groups, and the proofs of the quantitative statements of Section 4.3

are straightforward adaptations of the proof of Theorem 14. Therefore they will

be omitted.

• In the next section, we will state our results in the Hilbert case. First,

in Subsection 3.1, we state our characterization of the non-existence of a

coarse embedding into a Hilbert space. In Subsection 3.2, we show that

a sequence of expanders in the usual sense is also a sequence of general-

ized expanders in our sense. Finally, in Subsection 3.3, we state various

equivalent formulations of our characterization of non-Haagerup property.

• In Section 4, we state a more general version of our main result in order to

characterize the non-(coarse)-embeddability into various classes of metric

spaces, such as Lp-spaces. This section is divided into three main subsec-

tions. Subsection 4.1 introduces the notion of sheaves of metrics in order

to study coarse embeddings into various classes of metric spaces. We then

state our main theorem. Subsection 4.2 is just an adaptation of the defi-

nitions and statements of Subsection 4.1 for groups, replacing metrics by

length functions (or left-invariant metrics). Finally, in Subsection 4.3, we

give quantitative statements relative to the compression of coarse embed-

dings into different classes of metric spaces.

• The last section is dedicated to the proof of our main result, namely The-

orem 14.
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3 Statement of results in the Hilbert case

In this section, we state our main results concerning embeddings into a Hilbert

space. In Section 4, using a slightly more sophisticated vocabulary, we generalize

to other geometries.

3.1 Coarse embeddability into Hilbert spaces and gener-
alized expanders

Let H denote a separable infinite dimensional Hilbert space. We denote by |v|
the norm of a vector in H. Let X = (X, d) be a metric space. For all r ≥ 0,

denote

∆r(X) = {(x, y) ∈ X2, d(x, y) ≥ r}.

In this paper, we prove that a metric space that does not coarsely embed into

a Hilbert space contains in a weak sense a sequence of expanders. Precisely,

following the idea of [T, Section 4.2], let us define

Definition 1.

• Let K and r be positive numbers. A finite metric space is called a general-

ized (K, r)-expander if there exists a symmetric probability measure µ sup-

ported on ∆r(X) with the following property. For every map F : X → H
satisfying ‖F (x)− F (y)‖ ≤ d(x, y) for all (x, y) ∈ ∆1(X), we have

Varµ(F ) :=
∑
x,y

‖F (x)− F (y)‖2µ(x, y) ≤ K2. (3.1)

• A sequence of finite metric spaces (Xn) is called a sequence of generalized

K-expander if for every n ∈ N, Xn is a (K, rn)-expanders, where rn →∞.

Remark 2. Note that (3.1) says that F sends certain pairs at distance at least rn
in Xn to pairs at distance at most K.

Recall that a family of metric spaces (Xi)i∈I coarsely embeds into a metric

space Y if there exists a family (Fi) of uniformly coarse embeddings of Xi into

Y , i.e. if there are two increasing, unbounded functions ρ− and ρ+ such that

ρ−(d(x, y)) ≤ d(Fi(x), Fi(y)) ≤ ρ+(d(x, y)),∀x, y ∈ Xi,∀i ∈ I. (3.2)

Proposition 3. A sequence of generalized expanders (Xn) does not coarsely em-

bed into a Hilbert space.
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Proof : Let K > 0 and for all n ∈ N, let Xn is a (K, rn)-expander, with

rn → ∞. For every n ∈ N, let Fn be a map from Xn → H, and that there

exists an increasing function ρ+ such that |Fn(x)− Fn(y)| ≤ ρ+(d(x, y)),∀x, y ∈
Xn, ∀n ∈ N. As observed in [CTV, Lemmas 2.4 and 3.11], if a metric space (or

a family of metric spaces) coarsely embeds into a Hilbert space, we can always

assume that the function ρ+ goes arbitrarily slowly to infinity (this follows from

a result of Bochner and Schoenberg [Sch, Theorem 8]). So in particular, we can

assume that ρ+(t) ≤ t, ∀t ≥ 1. But then, (3.1) tells us that pairs of points of Xn,

which are at distance ≥ rn are sent by Fn at distance less than K. As rn →∞,

this implies that any increasing function ρ− satisfying

ρ−(d(x, y)) ≤ |Fn(x)− Fn(y)|, ∀x, y ∈ Xn,∀n ∈ N

would have to be ≤ K. �

Our main result is the following theorem (which is a particular case of Corol-

lary 17).

Theorem 4. A metric space does not coarsely embed into a Hilbert space if and

only if it has a coarsely-embedded sequence of generalized expanders.

3.2 Comparison with the usual notion of expanders

The usual definition of an expander is a sequence of finite connected graphs (Xn)

with degree ≤ k, satisfying the following Poincaré inequality for all f ∈ `2(Xn)

1

|Xn|2
∑

x,y∈Xn

|f(x)− f(y)|2 ≤ C

|Xn|
∑
x∼y

|f(x)− f(y)|2, (3.3)

for some constant C > 0, and whose cardinality |Xn| goes to infinity when n →
∞. If νn denote the uniform measure on Xn ×Xn, this can be rewritten as

Varνn(f) ≤ C

|Xn|
∑
x∼y

|f(x)− f(y)|2.

Now, assuming that f is 1-Lipschitz, we have

Varνn(f) ≤ kC,

To obtain condition (3.1), we need to replace νn by a probability supported far

away from the diagonal. To do that, we just notice that at least half of the

mass of νn is actually supported on ∆rn , with rn = logk(|Xn|/2). Indeed, if r
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is some positive number, the number of pairs of Xn ×Xn which are at distance

≤ r is at most kr|Xn|. Hence the proportion of such pairs is ≤ kr/|Xn|, and

the statement follows. Therefore, renormalizing the restriction of νn to ∆rn , we

obtain a probability µn satisfying Varµn(f) ≤ 2Varνn(f) ≤ 2kC. Hence, we have

proved

Proposition 5. A sequence of expanders satisfying (3.3) with constant C, is a

sequence of generalized K-expanders, with K = (2kC)1/2. �

3.3 Haagerup property and relative property T with re-
spect to a family of probabilities

Recall that a countable group has the Haagerup Property if it acts metrically

properly by affine isometries on a Hilbert space. It is well known that this is

equivalent to saying that G has a proper Hilbert length (see Section 4 for the

definition of Hilbert length). On the other hand [C1] a group has relative Property

FH with respect to an infinite subset Ω if every Hilbert length on G is bounded

in restriction to Ω.

Definition 6. LetG be a countable group equipped with a proper length function

L0. Let (µn) be a sequence of probability measures on G. We say that G has

relative property FH with respect to (µn) if there exists K > 0 such that for every

Hilbert length L satisfying

L(g) ≤ L0(g), ∀g ∈ G,

and for every n ∈ N,

Eµn(L2) :=
∑
g∈G

L2(g)µn(g) ≤ K.

It is easy to see that this definition does not depend on L0 (see [CTV, Lem-

mas 2.4 and 3.11]).

Note that having relative property FH with respect to an infinite subset Ω =

{a1, a2, . . .} corresponds to having relative Property FH with respect to (µn),

where µn is the Dirac measure at an, for every n ∈ N.

Theorem 7. A countable group G does not have the Haagerup Property if and

only if it has relative Property FH with respect to a sequence of symmetric prob-

ability measures (µn), such that for all n ∈ N, µn is supported on a finite subset

of {g, L0(g) ≥ n}.
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Recall that an equivalent formulation of the Haagerup Property (actually

the original one) is as follows: there exists a sequence (φk) of positive defi-

nite functions on the group such that limk→∞ φk(g) = 1 for all g ∈ G, and

limg→∞ φk(g) = 0 for all k ∈ N (in terms of unitary representations, it says that

there exists a C0 unitary representation with almost-invariant vectors).

An obvious obstruction to the Haagerup Property is [C1] relative property T

with respect to an unbounded subset Ω: every sequence (φk) of positive definite

function on G converging to 1 pointwise, converges uniformly in restriction to

Ω. In [C1], it is actually proved that relative Property T with respect to Ω

is equivalent to relative Property FH with respect to Ω. Let us introduce the

following definition.

Definition 8. Let G be a countable group. Let (µn) be a sequence of probability

measures on G. We say that G has relative property T with respect to (µn) if

every sequence of positive definite function (φk) that pointwise converges to 1,

satisfies that limk→∞Eµn(φk) = 1 uniformly with respect to n ∈ N.

We have the following theorem

Theorem 9. A countable group G does not have the Haagerup Property if and

only if it has relative Property T with respect to a sequence of symmetric proba-

bility measures (µn), such that for all n ∈ N, µn is supported on a finite subset

of {g, L0(g) ≥ n}.

Proof : It is clear that relative Property T with respect to a sequence of prob-

abilities whose supports go to infinity violates the Haagerup Property. So what

we need to prove is the converse, namely, that the negation of Haagerup Prop-

erty implies relative Property T with respect to some (µn). By Theorem 7, it is

enough to prove that relative Property FH implies relative Property T, which is

a straightforward adaptation of the proof of [AW, Theorem 3]. �

4 A more general setting, and quantitative state-

ments

In this section, we switch to a slightly different point of view. The statements

we want to prove are of the following form: a metric space X cannot coarsely

embed into some class of spaces M if and only if it satisfies some sequence of

Poincaré inequalities. It is worth noting that these inequalities consist essentially

in a comparison between metrics on X. Namely, we compare the original metric
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on X with all the pull-back metrics obtained from maps to metric spaces of M.

Let us be more precise.

Let X be a set. A pseudo-metric on X is a function: σ : X2 → R+ such that

σ(x, y) = σ(y, x), σ(x, y) ≤ σ(x, z) + σ(z, y), and σ(x, x) = 0, for all x, y, z ∈ X.
In the sequel, a pseudo-metric will simply be called a metric.

If (Y, d) is a metric space and F : X → Y is a map, then we can consider

the pull-back metric σF (x, y) = d(F (x), F (y)), for all x, y ∈ X. Such metrics

are called Y -metrics on X. More generally, if M is a class of metric spaces, a

M-metric on X is a Y -metric for some Y ∈M.

4.1 Sheaves of metrics

Assume here that X = (X, d) is a metric space. A metric σ on X is called

coarse if there exist two increasing unbounded functions ρ−, ρ+ such that, for all

x, y ∈ X,
ρ−(d(x, y)) ≤ σ(x, y) ≤ ρ+(d(x, y)).

Note that if σ = σF is a Y -metric associated to a map F : X → Y , then σF is

coarse if and only if F is a coarse embedding.

Definition 10. A sheaf of metrics on a set X is a collection of pairs (σ,Ω), where

Ω is a subset of X, and σ is a metric defined on Ω. If Ω is an subset of X, we

denote by F(Ω) the set of pairs (σ,Ω) ∈ F .

We also assume that the restriction is well-defined from F(Ω) to F(Ω′) for

every Ω′ ⊂ Ω (which is satisfied by the sheave of M-metrics for some M).

One checks easily that squares of Hilbert metrics, and more generally p-powers

of Lp-metrics form a convex cone of the space of real-valued functions on X2. This

is in fact a crucial remark for what follows.

Definition 11. Let X be a set. A sheaf F of metrics on X is called p-admissible

(for some p > 0) if for every Ω, the following hold.

(i) The set of σp, where σ ∈ F(Ω) forms a convex cone of the space of functions

on Ω2.

(ii) F(Ω) is closed for the topology of pointwise convergence.

(iii) Let (Ui) be a family of finite subsets whose union is Ω, satisfying that for all

i, j ∈ I, there exists k such that Ui ∪ Uj ⊂ Uk. Let (σi, Ui) be a compatible

family of sections, in the sense that σi and σj coincide on the intersection

Ui ∩ Uj. Then there exists a section σ ∈ F(Ω), whose restriction to every

Ui is σi. In other words, F(Ω) is the inverse limit of the F(Ui).
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Proposition 12. Let X be a set, and let M be a class of metric spaces which is

closed under ultra-limits. Then the sheaf ofM-metrics on (subsets of) X satisfies

conditions (ii) and (iii) of Definition 11.

Proof : That X satisfies (ii) is trivial. Let (Ui)i∈I be as in (iii). Note that we

can assume that they all contain a point o ∈ Ω. σi ∈ F(Ui), choose Yi ∈ M and

Fi : Ui → Yi be such that σi(x, y) = d(Fi(x), Fi(y)) for all x, y ∈ Ui. In every Yi,

take yi = Fi(o) for the origin. Fix a non-principal ultra-filter U on I. Now, the

limit F of the Fi is well defined from

Ω =
⋃
i∈I

Ui → lim
U

(Yi, yi),

and σ(x, y) = d(F (x), F (y)) satisfies the third condition of Definition 11. �
As a consequence of the proposition, we get the following examples.

Examples 13.

• for p ≥ 1, the sheaf of Lp-metrics is p-admissible [H].

• Let c > 0 and 1 < p <∞. The classMc,p of (c, p)-uniformly convex Banach

spaces, is the class of uniformly convex Banach spaces whose moduli of

convexity satisfy δ(t) ≥ ctp. The sheaf of Mc,p-metrics is p-admissible.

• The sheaf of CAT(0)-metrics is 2-admissible.

Theorem 14. Let X be a metric space. Let F be a p-admissible sheaf of metrics

on X. Then there exists no coarse metric in F(X) if and only if for every function

ρ+ : R+ → R+, there exist K > 0, and a sequence of symmetric probability

measures (µn) with the following properties

- for every n ∈ N, µn is supported on a finite subset An of ∆n(X);

- for every n ∈ N and every σ ∈ F(An) satisfying

σ(x, y) ≤ ρ+(d(x, y)), ∀(x, y) ∈ An,

one has

Eµn(σp) ≤ Kp. (4.1)

Remark 15. Note that this theorem characterizes metric spaces that do not

coarsely embed into Lp-spaces, CAT (0)-spaces, uniformly convex Banach spaces...

Indeed, by a theorem of Pisier [Pi], any uniformly convex Banach space is isomor-

phic to a (c, p)-uniformly convex Banach space for some 1 < p < ∞ and c > 0.

We can also avoid to use this deep theorem by defining φ-admissible sheafs of

metrics for any non-decreasing convex function φ, and by adapting the proof of

Theorem 14 to this slightly more general setting.
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Generalizing the case of Hilbert spaces, the previous theorem can be reformu-

lated in terms of generalized expanders. Let M be a class of metric spaces.

Definition 16. A sequence of (M, p)-valued generalized expanders is a sequence

of finite metric spaces (Xn) satisfying the following property. For every function

ρ+ : R+ → R+, there exist K > 0, and a sequence rn → ∞ such that each Xn

carries a symmetric probability measure µn satisfying

- µn is supported on ∆rn(Xn);

- for all maps F from Xn to a metric space (Y, σ) ∈M, satisfying

σ(F (x), F (y)) ≤ ρ+(d(x, y)) ∀(x, y) ∈ ∆1(Xn),

we have ∑
x,y∈Xn

σ(F (x), F (y))pµn(x, y) ≤ Kp. (4.2)

Corollary 17. Let M be a class of metric spaces such that the corresponding

sheafs are p-admissible for some 1 ≤ p < ∞. Then a metric space X does not

coarsely embed into any element of M if and only if it has a coarsely embedded

sequence of (M, p)-valued generalized expanders. �

4.2 The invariant setting

If G is a countable discrete group, a length function on G is a function L :

G → R+ satisfying L(1) = 0, L(gh) ≤ L(g) + L(h), and L(g−1) = L(g) for

all g, h ∈ G. Clearly, a length function on G gives rise to a left-invariant metric

σL(g, h) = L(g−1h). Conversely, given a left-invariant metric σ, we define a length

function by L(g) = σ(1, g).

Let X be a metric space. An X-length L is a length whose associated left-

invariant metric σL is an X-metric. We can define sheaves of length functions as

we defined sheaves of metrics.

Definition 18. A sheaf of length functions F on a group G is a family of pairs

(Ω, L), where Ω is a symmetric neighborhood of 1, and L : Ω → R+ satisfying

L(1) = 0, L(gh) ≤ L(g) +L(h), L(g−1) = L(g) for all g, h ∈ Ω such that gh ∈ Ω.

Note that a sheaf of lengths naturally induces a sheaf of “locally invariant”

metrics on G by the relation σ(g, h) = L(g−1h) (whenever this is well defined).

We will say that a sheaf of lengths is p-admissible if so is the corresponding sheaf

of metrics.
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Example 19. IfM is a class of metric spaces, the sheaf ofM-lengths on G is the

set of (Ω, L) as above, where L(g) = σ(1, g) for someM-metric σ defined on Ω2,

satisfying σ(hg, hg′) = σ(g, g′) for all g, g′, h ∈ G such that g, g′, hg, hg′ ∈ Ω.

Let G equipped with a length function L0 (one might think of a finitely

generated group equipped with a word metric). A length L on G is called coarse

(relative to L0) if σL is a coarse metric on (G, σL0).

It is easy to see that the proof of Theorem 14 can be formulated with length

functions instead of metrics, which yields the following result

Theorem 20. Let G be a group equipped with a length function L0. Let F be a

p-admissible sheaf of lengths on G. Then there exists no coarse length in F(X) if

and only if for every function ρ+ : R+ → R+, there exist K > 0, and a sequence

of symmetric probability measures (µn) with the following properties

- for every n ∈ N, µn is supported on a finite subset An of {g, L0(g) ≥ n};

- for every n ∈ N and every L ∈ F(An) satisfying

L(g) ≤ ρ+(L0(g)), ∀g ∈ An,

one has

Eµn(Lp) ≤ Kp. (4.3)

4.3 Quantitative statements

Let F be a sheaf of metrics on X. The F -compression rate of X, denoted by

RF(X) is the supremum of all α > 0 such that there exists σ ∈ F(X) satisfying

d(x, y)α ≤ σ(x, y) ≤ d(x, y), for d(x, y) large enough. The Hilbert compression

rate, usually denoted by R(X), has been introduced in [GK] and studied by many

authors since then as it provides an interesting quasi-isometry invariant of finitely

generated groups.

A slight modification of the proof of Theorem 14 yields

Theorem 21. Let X be a metric space. Let F be a p-admissible sheaf of metrics

on X. The F-compression rate of X is at most α if and only if for all β > α,

there exist K > 0, and for every n ∈ N , a symmetric, finitely supported probability

measure µn on ∆n(X), with the following property: for every σ ∈ F(X) satisfying

σ(x, y) ≤ d(x, y), ∀(x, y) ∈ ∆1(X),

one has

Eµn(σp) ≤ (Knβ)p.
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Assume that X = G is a finitely generated group equipped with a word

metric, denoted by |g| = |g|S, associated to a finite symmetric generating subset

S. Theorem 21 becomes

Theorem 22. Let F be a p-admissible sheaf of length functions on G. The F-

compression rate of G is at most α if and only if fro all β > α, there exist K > 0,

and for every n ∈ N, a symmetric, finitely supported probability measure µn on

{g, |g| ≥ n} with the following property: for every L ∈ F(G) satisfying

L(g) ≤ |g|, ∀g ∈ G

one has

Eµn(Lp) ≤ (K|g|β)p.

5 Proof of Theorem 14

The “if” part is obvious, as the condition (4.3) roughly says that the sequence

µn selects pairs (x, y) of arbitrarily distant points in X for which σ(x, y) ≤ K.

Let X be a metric space, and let F be a p-admissible sheaf of metrics on X.

We assume that F(X) contains no coarse metric. Let ρ+ : R+ → R+ be an

increasing unbounded function.

Our first step is the next lemma. Let A be the set of finite subsets of X

containing a distinguished point o.

Lemma 23. Assume that there exists a function T : R+ → R+ with the following

property: for all U ∈ A, and all K > 0, there exists σ ∈ F(U) such that

σ(x, y) ≤ ρ+(d(x, y)), ∀x, y ∈ U

and

σ(x, y) ≥ K

for all (x, y) ∈ ∆T (K)(U). Then there exists a coarse element in F(X).

Proof : As F is p-admissible, up to taking a pointwise limit with respect to an

ultrafilter on A, we can assume that for all K > 0, there exists σ ∈ F(X) such

that

σ(x, y) ≤ ρ+(d(x, y)), ∀x, y ∈ X

and

σ(x, y) ≥ K

for all (x, y) ∈ ∆T (K)(X).
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Let Kn be an increasing sequence satisfying

∞∑
n=1

1

Kp
n
≤ 1,

and let T be as in the lemma. Now take σn as above, and define

σ(x, y) =

(∑
n≥1

(σn(x, y)/Kn)p
)1/p

for all x, y ∈ X. The fact that σ ∈ F(X) follows from the fact that F is p-

admissible. Moreover, we have

ρ−(d(x, y)) ≤ σ(x, y) ≤ ρ+(d(x, y)),

for all x, y ∈ X, where

ρ−(t) = (card{n, T (Kn) ≤ t})1/p .

Clearly, ρ−(t)→∞ when t→∞, so we are done. �

The second step of the proof is an adaptation of the proof of [M1, Proposi-

tion 15.5.2]. Suppose that there is no coarse element in F(X).

By the lemma, there exists a number K0 with the following property. For all

T0, there exist U ∈ A such that for all σ ∈ F(U) satisfying

σ(x, y) ≤ ρ+(d(x, y)), (5.1)

there are two points x, y in U such that T0 ≤ d(x, y) and

σ(x, y) < K0.

Note that we can take T0 such that ρ+(T0) ≥ K0.

Consider the two following convex subsets of `2 (U2) . Let C1 be the set of

functions φ : U2 → R+ satisfying

φ(x, y) ≤ ρ+(d(x, y))p, ∀(x, y) ∈ U2,

and

φ(x, y) ≥ Kp
0 , ∀(x, y) ∈ ∆T0(U). (5.2)

Let C2 be the set of σp, where σ ∈ F(U) satisfies

σ(x, y) ≤ ρ+(d(x, y)).
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The previous reformulation of the lemma implies that these two convex subsets

are disjoint. We have even better. For every subset V of a vector space E, we

denote

R+V = {tv, t ∈ R+, v ∈ V }.

Lemma 24. The cones R+C1 and R+C2 intersect only at {0}. Moreover, {0}
is extremal in both cones.

Proof : The fact that {0} is extremal is just a consequence of the fact that the

two cones only contain non-negative functions. Let t > 0 and let φ ∈ C2 \ {0}.
We want to prove that tφ does not belong to C1. By the first condition of p-

admissibility, there exists σt ∈ F(U) such that tφ = σpt . Moreover, if tφ also

satisfies (5.2), then σt satisfies (5.1), so tφ ∈ C2, and hence it cannot be in C1. �

Hence by Hahn-Banach’s theorem, there exists a vector u ∈ `2(U2) such that

〈φ, u〉 > 0,

for all non-zero φ ∈ C1 and

〈φ, u〉 < 0,

for all non-zero φ ∈ C2.

Let u+ = max{u, 0} and u− = max{−u, 0}. One sees that u+ is non-zero in

restriction to ∆T0(U) by applying the first inequality to the function

φ(x, y) =

{
0, if d(x, y) < T0;
Kp

0 , otherwise.

Now, apply the first inequality to the function

φ(x, y) =


Kp

0 , if u(x, y) > 0, and d(x, y) ≥ T0;
0, if u(x, y) > 0, and d(x, y) < T0;
ρ+(d(x, y))p, otherwise.

Note that this is possible as T0 has been chosen such that ρ+(T0) ≥ K0. We get∑
x,y

ρ+(d(x, y))pu−(x, y) ≤ Kp
0

∑
(x,y)∈∆T0

(U)

u+(x, y).

On the other hand, if φ ∈ C2, i.e. φ(x, y) = σ(x, y)p, then using the second

inequality, ∑
(x,y)∈∆T0

(B(o,T0))

σ(x, y)pu+(x, y) ≤
∑

(x,y)∈B(o,T0)2

σ(x, y)pu+(x, y)

≤
∑
x,y

σ(x, y)pu−(x, y)

≤
∑
x,y

ρ+(d(x, y))pu−(x, y).

14



Now, combining these two inequalities, we get∑
x,y

σ(x, y)p
u+(x, y)∑

(x,y)∈∆T0
(U) u+(x, y)

≤ Kp
0 .

So the theorem follows by taking the probability measure on ∆T0(U) defined by

µ(x, y) =
u+(x, y)∑

(x,y)∈∆T0
(U) u+(x, y)

. �
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